
ACL-IJCNLP 2015

The 53rd Annual Meeting of the
Association for Computational Linguistics

and
The 7th International Joint Conference on

Natural Language Processing

Proceedings of System Demonstrations

July 26-31, 2015
Beijing, China

c©2015 The Association for Computational Linguistics
and The Asian Federation of Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-941643-99-0

ii

Preface

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing, on July 26-31,
2015 in Beijing, China.

The system demonstrations program offers the presentation of early research prototypes as well as
interesting mature systems. We received 62 submissions, of which 25 were selected for inclusion in
the program (acceptance rate of 40.32%) after review by three members of the program committee.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions.

System Demonstration Co-Chairs
Hsin-Hsi Chen
Katja Markert

iii

Organizers

Co-Chairs:

Hsin-Hsi Chen, National Taiwan University (Taiwan)
Katja Markert, University of Hanover (Germany) and University of Leeds (UK)

Program Committee:

Johan Bos, University of Groningen (Netherlands)
Miriam Butt, University of Konstanz (Germany)
Wenliang Chen, Soochow University, Suzhou (China)
Gao Cong, Nanyang Technological University (Singapore)
Katja Filippova, Google Inc.
E. Dario Gutierrez, University of Berkeley (USA)
Yufang Hou, University of Heidelberg (Germany)
Hen-Hsen Huang, National Taiwan University (Taiwan)
Wai Lam, The Chinese University of Hong Kong (HK)
Gary Geunbae Lee, POSTECH (Korea)
Maria Liakata, University of Warwick (UK)
Chuan-Jie Lin, National Taiwan Ocean University (Taiwan)
Annie Louis, University of Edinburgh (UK)
Saif Mohammad, National Research Council Canada (Canada)
Roberto Navigli, Sapienza University of Rome (Italy)
Vincent Ng, University of Texas at Dallas (USA)
Malvina Nissim, University of Groningen (Nederlands)
Naoaki Okayaki, Tohoku University (Japan)
Jong Park, KAIST (Korea)
Barbara Plank, the University of Copenhagen (Denmark)
Andrei Popescu-Belis, Idiap Research Institute (Switzerland)
Antonio Reyes, Instituto Superior de Intérpretes y Traductores (Mexico)
Arndt Riester, University of Stuttgart (Germany)
Stefan Riezler, Heidelberg University (Germany)
Satoshi Sekine, New York University (USA)
Ekaterina Shutova, University of Cambridge (UK)
Stefan Siersdorfer, Leibniz-University Hannover (Germany)
Lucia Specia, Sheffield University (UK)
Efstathios Stamatatos, University of the Aegean (Greece)
Hiroya Takamura, Tokyo Institute of Technology (Japan)
Richard Tzong-Han Tsai, National Central University (Taiwan)
Yuen-Hsien Tseng, National Taiwan Normal University (Taiwan)
Yannick Versley, University of Heidelberg (Germany)
Liang-Chih Yu, Yuan Ze University (Taiwan)
Wei Zhang, Institute for Infocomm Research (Singapore)
Heike Zinsmeister, University of Hamburg (Germany)

v

Table of Contents

A System Demonstration of a Framework for Computer Assisted Pronunciation Training
Renlong Ai and Feiyu Xu . 1

IMI — A Multilingual Semantic Annotation Environment
Francis Bond, Luís Morgado da Costa and Tuan Anh Lê . 7

In-tool Learning for Selective Manual Annotation in Large Corpora
Erik-Lân Do Dinh, Richard Eckart de Castilho and Iryna Gurevych . 13

KeLP: a Kernel-based Learning Platform for Natural Language Processing
Simone Filice, Giuseppe Castellucci, Danilo Croce and Roberto Basili . 19

Multi-modal Visualization and Search for Text and Prosody Annotations
Markus Gärtner, Katrin Schweitzer, Kerstin Eckart and Jonas Kuhn . 25

NEED4Tweet: A Twitterbot for Tweets Named Entity Extraction and Disambiguation
Mena Habib and Maurice van Keulen . 31

Visual Error Analysis for Entity Linking
Benjamin Heinzerling and Michael Strube. .37

A Web-based Collaborative Evaluation Tool for Automatically Learned Relation Extraction Patterns
Leonhard Hennig, Hong Li, Sebastian Krause, Feiyu Xu and Hans Uszkoreit 43

A Dual-Layer Semantic Role Labeling System
Lun-Wei Ku, Shafqat Mumtaz Virk and Yann-Huei Lee . 49

A system for fine-grained aspect-based sentiment analysis of Chinese
Janna Lipenkova . 55

Plug Latent Structures and Play Coreference Resolution
Sebastian Martschat, Patrick Claus and Michael Strube . 61

SCHNÄPPER: A Web Toolkit for Exploratory Relation Extraction
Thilo Michael and Alan Akbik . 67

OMWEdit - The Integrated Open Multilingual Wordnet Editing System
Luís Morgado da Costa and Francis Bond . 73

SACRY: Syntax-based Automatic Crossword puzzle Resolution sYstem
Alessandro Moschitti, Massimo Nicosia and Gianni Barlacchi . 79

LEXenstein: A Framework for Lexical Simplification
Gustavo Paetzold and Lucia Specia . 85

Sharing annotations better: RESTful Open Annotation
Sampo Pyysalo, Jorge Campos, Juan Miguel Cejuela, Filip Ginter, Kai Hakala, Chen Li, Pontus

Stenetorp and Lars Juhl Jensen .91

A Data Sharing and Annotation Service Infrastructure
Stelios Piperidis, Dimitrios Galanis, Juli Bakagianni and Sokratis Sofianopoulos 97

vii

JoBimViz: A Web-based Visualization for Graph-based Distributional Semantic Models
Eugen Ruppert, Manuel Kaufmann, Martin Riedl and Chris Biemann . 103

End-to-end Argument Generation System in Debating
Misa Sato, Kohsuke Yanai, Toshinori Miyoshi, Toshihiko Yanase, Makoto Iwayama, Qinghua Sun

and Yoshiki Niwa . 109

Multi-level Translation Quality Prediction with QuEst++
Lucia Specia, Gustavo Paetzold and Carolina Scarton . 115

WA-Continuum: Visualising Word Alignments across Multiple Parallel Sentences Simultaneously
David Steele and Lucia Specia . 121

A Domain-independent Rule-based Framework for Event Extraction
Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, Mihai Surdeanu and Thomas Hicks 127

Storybase: Towards Building a Knowledge Base for News Events
Zhaohui Wu, Chen Liang and C. Lee Giles . 133

WriteAhead: Mining Grammar Patterns in Corpora for Assisted Writing
Tzu-Hsi Yen, Jian-Cheng Wu, Jim Chang, Joanne Boisson and Jason Chang 139

NiuParser: A Chinese Syntactic and Semantic Parsing Toolkit
Jingbo Zhu, Muhua Zhu, Qiang Wang and Tong Xiao . 145

viii

Conference Program

Monday, July 27th, 2015

18:00–21:00

A System Demonstration of a Framework for Computer Assisted Pronunciation
Training
Renlong Ai and Feiyu Xu

IMI — A Multilingual Semantic Annotation Environment
Francis Bond, Luís Morgado da Costa and Tuan Anh Lê

In-tool Learning for Selective Manual Annotation in Large Corpora
Erik-Lân Do Dinh, Richard Eckart de Castilho and Iryna Gurevych

KeLP: a Kernel-based Learning Platform for Natural Language Processing
Simone Filice, Giuseppe Castellucci, Danilo Croce and Roberto Basili

Multi-modal Visualization and Search for Text and Prosody Annotations
Markus Gärtner, Katrin Schweitzer, Kerstin Eckart and Jonas Kuhn

NEED4Tweet: A Twitterbot for Tweets Named Entity Extraction and Disambigua-
tion
Mena Habib and Maurice van Keulen

Visual Error Analysis for Entity Linking
Benjamin Heinzerling and Michael Strube

A Web-based Collaborative Evaluation Tool for Automatically Learned Relation
Extraction Patterns
Leonhard Hennig, Hong Li, Sebastian Krause, Feiyu Xu and Hans Uszkoreit

A Dual-Layer Semantic Role Labeling System
Lun-Wei Ku, Shafqat Mumtaz Virk and Yann-Huei Lee

A system for fine-grained aspect-based sentiment analysis of Chinese
Janna Lipenkova

Plug Latent Structures and Play Coreference Resolution
Sebastian Martschat, Patrick Claus and Michael Strube

ix

Monday, July 27th, 2015 (continued)

SCHNÄPPER: A Web Toolkit for Exploratory Relation Extraction
Thilo Michael and Alan Akbik

OMWEdit - The Integrated Open Multilingual Wordnet Editing System
Luís Morgado da Costa and Francis Bond

SACRY: Syntax-based Automatic Crossword puzzle Resolution sYstem
Alessandro Moschitti, Massimo Nicosia and Gianni Barlacchi

LEXenstein: A Framework for Lexical Simplification
Gustavo Paetzold and Lucia Specia

Sharing annotations better: RESTful Open Annotation
Sampo Pyysalo, Jorge Campos, Juan Miguel Cejuela, Filip Ginter, Kai Hakala,
Chen Li, Pontus Stenetorp and Lars Juhl Jensen

A Data Sharing and Annotation Service Infrastructure
Stelios Piperidis, Dimitrios Galanis, Juli Bakagianni and Sokratis Sofianopoulos

JoBimViz: A Web-based Visualization for Graph-based Distributional Semantic
Models
Eugen Ruppert, Manuel Kaufmann, Martin Riedl and Chris Biemann

End-to-end Argument Generation System in Debating
Misa Sato, Kohsuke Yanai, Toshinori Miyoshi, Toshihiko Yanase, Makoto
Iwayama, Qinghua Sun and Yoshiki Niwa

Multi-level Translation Quality Prediction with QuEst++
Lucia Specia, Gustavo Paetzold and Carolina Scarton

WA-Continuum: Visualising Word Alignments across Multiple Parallel Sentences
Simultaneously
David Steele and Lucia Specia

A Domain-independent Rule-based Framework for Event Extraction
Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, Mihai Surdeanu and Thomas
Hicks

Storybase: Towards Building a Knowledge Base for News Events
Zhaohui Wu, Chen Liang and C. Lee Giles

WriteAhead: Mining Grammar Patterns in Corpora for Assisted Writing
Tzu-Hsi Yen, Jian-Cheng Wu, Jim Chang, Joanne Boisson and Jason Chang

x

Monday, July 27th, 2015 (continued)

NiuParser: A Chinese Syntactic and Semantic Parsing Toolkit
Jingbo Zhu, Muhua Zhu, Qiang Wang and Tong Xiao

xi

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 1–6,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

A System Demonstration of a Framework for Computer Assisted
Pronunciation Training

Renlong Ai, Feiyu Xu
German Research Center for Artificial Intelligence, Language Technology Lab

Alt-Moabit 91c, 10559 Berlin, Germany
{renlong.ai,feiyu}@dfki.de

Abstract

In this paper, we demonstrate a system im-
plementation of a framework for computer
assisted pronunciation training for second
language learner (L2). This framework
supports an iterative improvement of the
automatic pronunciation error recognition
and classification by allowing integration
of annotated error data. The annotated er-
ror data is acquired via an annotation tool
for linguists. This paper will give a de-
tailed description of the annotation tool
and explains the error types. Furthermore,
it will present the automatic error recogni-
tion method and the methods for automatic
visual and audio feedback. This system
demonstrates a novel approach to interac-
tive and individualized learning for pro-
nunciation training.

1 Introduction

Second language (L2) acquisition is a much
greater challenge for human cognition than first
language (L1) acquisition during the critical pe-
riod. Especially by older children and adults, L2
is usually not acquired solely through imitation in
daily communication but by dedicated language
education. The teaching of second and further lan-
guages normally combines transmission of knowl-
edge with practicing of skills. One major hurdle is
the interference of L1 proficiency with L2.

Modern language learning courses are no longer
exclusively based on books or face-to-face lec-
tures. A clear trend is web-based, interactive, mul-
timedia and personalized learning. Learners want
to be flexible as to times and places for learn-
ing: home, trains, vacation, etc. Both face-to-
face teaching and 7/24 personal online language
learning services are very expensive. There is a
growing economic pressure to employ computer-

assisted methods for improving language learn-
ing in quality, efficiency and scalability. The
current philosophy of Computer Assisted Lan-
guage Learning (CALL) puts a strong emphasis on
learner-centered materials that enable learners to
work on their own. CALL tries to support two im-
portant features in language learning: interactive
learning and individualized learning.

Natural language processing (NLP) technolo-
gies play a growing important role for CALL
(Hubbard, 2009). They can help to identify errors
in student input and provide feedback so that the
learners can be aware of them (Heift, 2013; Na-
gata, 1993). Furthermore, they can help to build
models of the achieved proficiency of the learners
and provide materials and tasks appropriate.

In this paper, we demonstrate an implementa-
tion of a framework of computer assisted pronun-
ciation training for L2. The current version, which
is a further development of the Sprinter system (Ai
et al., 2014), automatically recognises and classi-
fies the pronunciation errors of learners and pro-
vides visual and audio feedback with respect to
the error types. The framework contains two sub-
systems: 1) the annotation tool which provides
linguists an easy environment for annotating pro-
nunciation errors in learners’ speech data; 2) the
speech verification tool which identifies learners’
prosody and pronunciation errors and helps to cor-
rect them.

The remainder of the paper is as follows: Sec-
tion 2 describes the system architecture; Section 3
and 4 explain how each subsystem works; Section
5 evaluates the speech verification tool; A brief
conclusion and future plan is mentioned at last in
Section 6.

2 System Description

Figure 1 depicts the framework and the interaction
between the annotation tool and the speech veri-
fication tool. As presented below, the speech ver-

1

ification tool is initialised with a language model
trained with audio data from 10 learners. In case
that learners’ audio data can be collected and an-
notated in the online system, the error database can
be updated on the fly and the language model can
be updated dynamically, hence speech verification
will improve itself iteratively until enough pronun-
ciation errors are gathered and no annotation will
be needed. Comparing to existing methods on

Learner’s Audio
Data

Speech Verification
Tool

Annotation Tool
Error Database

+
Trained Model for
Error Detection

Annotators

Learners

Feedback are provided to learners to improve their second language

Figure 1: Overall Framework Architecture

pronunciation error detection, including building
classifiers with Linear Discriminant Analysis or
Decision Tree (Truong et al., 2004), or using Sup-
port Vector Machine (SVM) classifier based on ap-
plying transformation on Mel Frequency Cepstral
coefficients (MFCC) of learners’ audio data (Pi-
card et al., 2010; Ananthakrishnan et al., 2011),
our HMM classifier has the advantage that it is
trained from finely annotated L2 speech error data,
hence can recognise error types that are specifi-
cally defined in the annotations. Moreover, the re-
sults not only show the differences between gold
standard and learner data, but also contain infor-
mation of corrective feedback. Comparing to a
general Goodness of Pronunciation (GOP) score
or simply showing differences in waveform, our
feedback pinpoints different types of error down
to phoneme level and show learners how to pro-
nounce them correctly via various means. The
same annotating-training-verifying process can be
adapted to all languages as far as our open source
components support them, thus, with almost no
extra efforts. Since people with the same L1 back-
ground tend to make the same pronunciation errors
while learning a second language (Witt, 2012), we
choose a specific L1-L2 pair in our experiment,
namely, Germans who learn English.

3 Annotation Tool

To provide annotators an easy and efficient in-
terface, we have further developed MAT (Ai and

Figure 2: Screenshot of the Annotation Tool

Charfuelan, 2014), with which pronunciation er-
rors can be annotated via simple mouse clicks and
single phoneme inputs from keyboard. During the
annotation, errors are automatically stored in an
error database, which then updates the speech ver-
ification tool. We also add checking mechanisms
to validate the annotations and ask annotators to
deal with conflicts.

3.1 Target Pronunciation Errors

Four types of phoneme-level pronunciation errors
can be annotated in the ways as shown in Figure
2. They are:

• Deletion: A phoneme is removed from
learner’s utterance, e.g. to omit /g/ in “Eng-
land”. Annotators only need to check the
checkbox in column deletion.
• Insertion: A phoneme is inserted after an-

other one, e.g. learner tries to pronounce a
silent letter, like ‘b’ in “dumb”. In this case
the annotator should check insertion and type
the inserted phoneme in column spoken.
• Substitution: A phoneme is replaced by an-

other one, e.g. replacing /z/ with /s/ in “was”.
The annotator should check substitution and
type the actually pronounced phoneme in
spoken.
• Distortion: A phoneme is not pronounced

fully correct, yet is not so wrong that it be-
comes another phoneme, e.g. pronouncing
/u/ with tongue slightly backward. In this
case the annotator should also select a hint
from the drop down list in hint column to
indicate how the error phoneme can be cor-
rected.

2

3.2 Annotations

As depicted in Figure 2, annotations can be con-
ducted easily and directly with this tool. If an an-
notator finds a pronunciation error, he/she can sim-
ply check the checkbox at line: phoneme and col-
umn: error type from the table, and provide extra
information of the actually spoken phoneme and
also hints of how to pronounce correctly. To make
the annotation more convenient and efficient, sev-
eral functions are built in the tool:
• Phoneme sequences are generated via MARY

phonemizer. Phonemes are listed in the first
column of the table and also in the header of
the waveform panel. Clicking on a phoneme
in the header will highlight the row of the
corresponding phoneme in the table, and vice
versa. The word, which the clicked phoneme
belongs to, is also highlighted in the middle
panel where the sentence is shown. Syllables
in words are also retrieved from text analysis
and displayed in the first column.
• Phoneme boundaries are recognized via

forced alignment performed with HTK. An-
notators can play any single phoneme, sylla-
ble or word by double-clicking them in the
first column, or play any part of the sentence
by choosing a range in the waveform panel
with mouse and hit space on keyboard. In this
way annotators can focus on error phonemes
without bothering to listen to the whole sen-
tence.
• There is already a list of hints on articulation

provided. If a correction cannot be found in
the list, annotators can click hints button and
add the correction to the list.

After the annotation for a single audio file is done,
the annotator clicks Commit to submit the annota-
tions. The Commit function will check the anno-
tation additionally:
• If insertion is marked, the inserted phoneme

should be also written in spoken.
• If substitution is marked, the phoneme, which

the original phoneme is substituted to, should
also be written in spoken.
• If distortion is marked, a comment should be

provided by annotators to indicate in which
way this phoneme is distorted.
• Only one kind of error can be annotated per

phoneme.
If the annotations are valid, the pronunciation

errors and their diphone or triphone informations

Text

Audio

Text Analysis

Signal Processing

Forced AlignmentSpeech
Model Label Files

Acoustic parameters

MaryXML

MARY TTS Annotations Tool

Annotations in
Extended MaryXML

Format

Annotator

Figure 3: Components in annotation tool

are stored in an error database, which is later used
in training the language model for error detection
and also in feedback generation.

4 Speech Verification Tool

The speech verification tool identifies the pronun-
ciation errors in learners’ speech and provides
feedback on correction, and also analyze the dif-
ferences in pitch and duration between gold stan-
dard and learners’ speech and display them in
comprehensive ways. The goal is to help learners
speak second language error-free and with rhythm
and intonation like native speakers.

4.1 Pronunciation Error Detection
Pronunciation error detection is realized by per-
forming phoneme recognition with HTK and com-
paring the correct and recognized phoneme se-
quence. Errors can be retrieved from the differ-
ences between the sequences. The sentence read
by learner is processed by MARY phonemizer to
generate the correct phoneme sequence. Possible
pronunciation errors are then fetched from the er-
ror database based on the phonemes and their di-
phone and triphone information in the sequences.
A grammar for phoneme recognition is then com-
posed from the errors and the phoneme sequence.

text

recognized
phoneme sequence

trained model

features

dictionary

grammar

correct phoneme
sequence

audio

MARY phonemizer

feature extraction

error database

sequence
identical?

✔�

✗�

sequences are identical

not identical

No pronunciation
error is detected.

Unmatched phonemes are
 possibly mispronounced.

Figure 4: Workflow of Pronunciation Error Detection

Errors are handled differently as they appear in
the grammar:
• Deletion means a phoneme can be optional in

the grammar.

3

• Insertion means an extra phoneme, i.e. the
inserted one, can be optional in the grammar.
• Substitution means multiple phonemes can

appear at this position: the correct one and
the substituted ones.
• Distortion also means multiple phonemes can

appear at the same position: the correct and
their distorted alias, which are represented
with phoneme plus number. For example, the
phoneme /A/ can be distorted in two ways:
either tongue is placed backward or tongue
starts too forward. Since /A/ is represented as
/A/ in MARY, its two distorted versions are
/A1/ and /A2/.

If a given sentence with its MARY phoneme
sequence is:

I’ll be in London for the whole year.
A l b i I n l V n d @ n f O r D @ h @U l j I r

A grammar with following content

(sil A l b (i |i1) I n l (V |A |O) n {d} @ n f
(O |O2) r (D |z) @ h @U l j (I |I1) {(r |A)} sil)

will be generated, because the following pronun-
ciation errors have been learned:

1. /i/ in be can be distorted.
2. /2/ in London can be substituted with /A/ or

/O/.
3. /d/ in London can be removed by learners

while pronouncing.
4. /O:/ in for can be distorted.
5. /D/ in the can be replaced with /z/.
6. /i:/ in year can be distorted.
7. /@/ in year can be substituted with /A/, and can

also be deleted by learners.
If the predefined errors appear in learners’

speech, they will be identified by comparing the
different phonemes in the correct phoneme se-
quence generated with MARY phonemizer and the
recognized sequence with HTK. Moreover, cor-
rective feedback can also be created by fetching
the hint, which annotators provide, from the error
database. E.g. if /A1/ instead of /A/ is recognized
for word are, we can provide the hint for this dis-
torted /A/: Tongue needs to be slightly further for-
ward.

4.2 Prosody Differences

Prosody differences between gold standard and
learners’ speech are calculated and shown to learn-

ers, not only visually, but also with audio feed-
back. The prosody from gold standard is applied
to learners’ speech, so learners can hear their own
voice with native prosody, in this way it might be
easier for them to mimic the gold standard prosody
(Flege, 1995).

Audio Data from
Learner and Gold

Standard

Text

Snack
Extracted Pitch

Contours

MaryTTS NLP Tools

Speech Model HTK

MaryXML

Forced Alignment
Results of both
Learners and
Gold Standard

Scale Factor
Calculator

Visualized
Comparison of

Pitch and Duration

FD-PSOLA
Processor

Prosody
Transplantation

Perform Prosody Transplantation
only when it’s safe to do so.

Figure 5: Workflow of Prosody Comparison and Transplan-
tation

Duration differences can be calculated directly
from the results of forced alignment. To gain more
accurate alignment, the language model is trained
with gold standard data and a selected set of learn-
ers’ data. Before displaying the differences to
learners as in Figure 6, the durations in learners’
speech are normalized so that only words with
large duration differences are shown.

Pitch differences are calculated with Snack
Sound Toolkit1. Dynamic time warping is ap-
plied to the gold standard against speech data from
learners, so that differences in pitch can be shown
per phoneme synchronously. Due to the fact that
each person has a distinct baseline in pitch, differ-
ences in pitch value are not considered as differ-
ences, we show only differences in pitch variation.

We use FD-PSOLA combined with DTW
(Latsch and Netto, 2011) to perform prosody
transplantation and generate audio feedback that
learners can perceive. Despite the high perfor-
mance of the method, there are still cases that
prosody transplantation yields faulty results, e.g.
the synthesized speech sounds very artificial or
there are significant gaps between words or even
phonemes. Therefore a scale factor calculator runs
before the transplantation to determine if it makes
sense to transplant the prosody, and will only do it
and provide it as feedback when the scale factors
do not exceed the threshold.

4.3 User Interface

Figure 6 shows a screenshot of the speech verifi-
cation tool. Learners can choose sentences they
want to practice from the list in the left, and

1http://www.speech.kth.se/snack/

4

click Record and speak to the microphone. Af-
ter the audio is recorded, they can click Check
to display the verification results. Pronunciation
errors are marked in the first panel with colors
other than green. Red, pink, yellow and pur-
ple are used for substitution, distortion, deletion
and insertion. The second panel shows the dif-
ferences in pitches, significant and medium dif-
ferences are rendered with red and yellow. The
panel below shows the differences in durations.
Hints of correction or improvement are shown as
text if learners click on the colored phonemes or
words. If prosody transplantation is feasible, the
button Transplanted is enabled and will play audio
with learners’ voice and transplanted gold stan-
dard prosody upon click.

Figure 6: Screenshot of the Speech Verification Tool

5 Evaluation

Experiments are conducted both objectively and
subjectively, in order to evaluate the performance
of error detection and also how our feedback can
help learners improve their second language skills

5.1 Objective Evaluation

To train the language model for pronunciation er-
ror detection, we let 1506 sentences read by native
Britons. Given these sentences, 96 sentences are
carefully selected, which cover almost all typical
pronunciation errors made by Germans who learn
English, and have been read by 10 Germans at dif-
ferent English skill levels. To evaluate our error
detection system, we let 4 additional German peo-
ple read these 96 sentences. The recordings were
sent to both annotators and the error detection sys-
tem. The results from error detection are trans-
formed to MARYXML format and compared with
the annotations.

true
positive

false
positive

false
negative total recall precision

deletion 46 0 4 50 92% 100%
insertion 17 0 1 18 94.4% 100%

substitution 1264 14 2 1266 99.8% 98.9%
distortion 745 102 26 771 96.6% 88.0%

total 2072 116 33 2105 98.4% 94.6%

Table 1: A statistic of the error detection result. True pos-
itive: actually detected errors; false positive: correct pro-
nounced phonemes detected as errors; false negative: errors
not detected.

The results show a very high precision in recog-
nizing deletion and insertion. The recalls are also
very good considering that there are new deletion
phenomena in testers’ speech that are not involved
in old training data. Although a large amount of
substitution errors appear in the test data, they
have been detected accurately. This proves that
training a language model considering specific L1
background is important for correct error recogni-
tion. For example in our case, most typical sub-
stitution errors made by Germans are well trained,
like pronouncing /D/ like /z/ in the, or /z/ like /s/ in
was.

Detecting distortion errors seems a more dif-
ficult task for the system. Although a good re-
call is achieved, the precision is not satisfying. In
CALL, this is perhaps not helpful because learn-
ers will be discouraged if they make correct pro-
nunciation but are told wrong by the system. More
speech data is required for training the model. Our
annotators are experienced linguists but they may
still holds different criterion on judging distortion.
Having more linguists working on the annotation
should also help to improve the accuracy of error
detection.

5.2 Subjective Evaluation

To evaluate whether and how our feedback can
help learners improve their second language, we
designed a progressive experiment. 4 learners are
chosen to read 30 sentences from the list. They
can listen to gold standard as many times as they
need, and record the speech when they are ready.
If there are pronunciation errors or prosody differ-
ences, they can view hints or listen to gold stan-
dard, and then try again. If there are still prosody
differences, they can then hear the transplanted
speech, as many times as they need, and then try
to record again. Insertions and deletions are easily
corrected by learners once they have been pointed
out. We examined the substitution errors that were
not corrected, and found most of them are be-

5

insertion deletion substitution distortion total
detected errors 13 4 467 220 704
corrected errors 13 4 429 116 562

Table 2: Amount of detected and corrected pronunciation
errors from test speech data.

tween phoneme /æ/ and /e/, and also /@Ú/ and /O/.
The differences between the phoneme pairs were
not easily perceived by learners, and they need to
be taught systematically how to pronounce these
phonemes. It was difficult for learners to correct
distortions. Besides providing tutorial on how to
pronounce error phonemes correctly, our system
also needs to be modified so that it doesn’t handle
distortion so strictly.

differences in count
of phonemes (pitch)
or words (duration)

correct after
viewing hints

corrected after listening
to prosody transplantation

pitch 474 343 438
duration 205 135 177

Table 3: Amount of detected and corrected prosody differ-
ences from test speech data.

The results on prosody differences show that
most of these differences can be perceived and ad-
justed by learners, if they are given enough infor-
mation. Almost all the remaining differences are
from long sentences. Learners couldn’t pay atten-
tion to all differences in one attempt. We believe
that learners should be able to read all sentences
in native intonation and rhythm if they try another
several times.

6 Conclusion

In this paper we presents a framework for com-
puter assisted pronunciation training. Its anno-
tation tool substantially simplifies the acquisition
of speech error data, while its speech verifica-
tion tool automatically detects pronunciation er-
rors and prosody differences in learners’ speech
and provide corrective feedback. Objective and
subjective evaluations show that the system not
only performs accurately in error detection but
also helps learners realize and correct their errors.

In the future, we attempt to integrate more feed-
back content such as video tutorial or articulation
animation for teaching pronunciation.

7 Acknowledgment

This research was partially supported by the
German Federal Ministry of Education and Re-
search (BMBF) through the projects Deependance

(01IW11003) and ALL SIDES (01IW14002).

References
Renlong Ai and Marcela Charfuelan. 2014. Mat:

a tool for l2 pronunciation errors annotation. In
Proceedings of the 9th International Conference on
Language Resources and Evaluation (LREC-2014).
European Language Resources Association.

Renlong Ai, Marcela Charfuelan, Walter Kasper, Tina
Klwer, Hans Uszkoreit, Feiyu Xu, Sandra Gas-
ber, and Philip Gienandt. 2014. Sprinter: Lan-
guage technologies for interactive and multimedia
language learning. In Proceedings of the 9th In-
ternational Conference on Language Resources and
Evaluation (LREC-2014). European Language Re-
sources Association.

Gopal Ananthakrishnan, Preben Wik, Olov Engwall,
and Sherif Abdou. 2011. Using an ensemble
of classifiers for mispronunciation feedback. In
SLaTE, pages 49–52.

James E Flege. 1995. Second language speech learn-
ing: Theory, findings, and problems. Speech Per-
ception and Linguistic Experience: Theoretical and
Methodological Issues, pages 233–273.

Trude Heift. 2013. Learner control and error correc-
tion in icall: Browsers, peekers, and adamants. Cal-
ico Journal, 19(2):295–313.

Philip Hubbard. 2009. Computer Assisted Language
Learning: Critical Concepts in Linguistics, volume
I-IV. London & New York: Routledge.

V. L. Latsch and S. L. Netto. 2011. Pitch-synchronous
time alignment of speech signals for prosody trans-
plantation. In IEEE International Symposium on
Circuits and Systems (ISCAS), Rio de Janeiro,
Brazil.

Noriko Nagata. 1993. Intelligent computer feedback
for second language instruction. The Modern Lan-
guage Journal, 77(3):330–339.

Sébastien Picard, Gopal Ananthakrishnan, Preben Wik,
Olov Engwall, and Sherif Abdou. 2010. Detection
of specific mispronunciations using audiovisual fea-
tures. In AVSP, pages 7–2.

Khiet Truong, Ambra Neri, Catia Cucchiarini, and
Helmer Strik. 2004. Automatic pronunciation er-
ror detection: an acoustic-phonetic approach. In In-
STIL/ICALL Symposium 2004.

S. M. Witt. 2012. Automatic error detection in pronun-
ciation training: where we are and where we need to
go. In International Symposium on Automatic De-
tection of Errors in Pronunciation Training, Stock-
holm, Sweden.

6

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 7–12,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

IMI —AMultilingual Semantic Annotation Environment

Francis Bond, Luís Morgado da Costa and Tuấn Anh Lê
Linguistics and Multilingual Studies

Nanyang Technological University, Singapore
{bond@ieee.org, luis.passos.morgado@gmail.com, tuananh.ke@gmail.com}

Abstract
Semantic annotated parallel corpora,
though rare, play an increasingly impor-
tant role in natural language processing.
These corpora provide valuable data for
computational tasks like sense-based
machine translation and word sense
disambiguation, but also to contrastive
linguistics and translation studies. In
this paper we present the ongoing devel-
opment of a web-based corpus semantic
annotation environment that uses the Open
Multilingual Wordnet (Bond and Foster,
2013) as a sense inventory. The system
includes interfaces to help coordinating
the annotation project and a corpus brows-
ing interface designed specifically to meet
the needs of a semantically annotated
corpus. The tool was designed to build
the NTU-Multilingual Corpus (Tan and
Bond, 2012). For the past six years, our
tools have been tested and developed in
parallel with the semantic annotation of a
portion of this corpus in Chinese, English,
Japanese and Indonesian. The annotation
system is released under an open source
license (MIT).

1 Introduction

Plain text parallel corpora are relatively widely
available andwidely used in NLP, such asmachine
translation system development (Koehn, 2005,
e.g.,). In contrast, there are very few parallel sense
tagged corpora due to the expense of tagging the
corpora and creating the sense inventories in mul-
tiple languages. The one exception is the trans-
lations of English SemCor (Landes et al., 1998)
for Italian (Bentivogli and Pianta, 2005), Roma-
nian (Lupu et al., 2005) and Japanese (Bond et al.,
2012). Even for this corpus, not all of the origi-
nal English texts have been translated and tagged,

and not all words are tagged in the translated text
(typically only those with a corresponding English
sense).

In this paper we present IMI, a web-based mul-
tilingual semantic annotation system designed for
the task of sense annotation. The main goals of
its design were to decrease the cost of production
of these resources by optimizing the speed of tag-
ging, and to facilitate the management of this kind
of project. To accomplish this, we aimed at devel-
oping a simple and intuitive web-based system that
allows parallel tagging by many users at a time,
optimized for speed by requiring minimum input
from the annotators.

We centered our development around the an-
notation of the NTU-Multilingual Corpus (NTU-
MC: Tan and Bond, 2012). The NTU-MC is
an open multilingual parallel corpus originally de-
signed to include many layers of syntactic and se-
mantic annotation. We selected a portion of this
corpus based on 7,093 sentences of English, total-
ing 22,762 sentences of Chinese, Japanese and In-
donesian parallel text. A series of undergraduate
linguistics students were trained on the tool and
annotated the corpus over several years. They also
offered extensive qualitative and quantitative feed-
back on the usage of our system.

The remainder of this paper is arranged as fol-
lows. In Section 2 we introduce related work. Sec-
tion 3 describes the main functionality of our sys-
tem then we finish with Section 4, which summa-
rizes and discusses our current and future work.

2 Related Work

In this sectionwe introduce the corpus (NTU-MC),
the sense inventory (OMW), and a brief overview
of currently available tools.

7

2.1 The NTU-Multilingual Corpus
(NTU-MC)

The NTU-MC (Tan and Bond, 2012) has data
available for eight languages from seven language
families (Arabic, Chinese, English, Indonesian,
Japanese, Korean, Vietnamese and Thai), dis-
tributed across four domains (story, essay, news,
and tourism). The corpus started off with mono-
lingual part-of-speech (POS) annotation and cross-
lingual linking of sentences. We are extending it
to includemonolingual sense annotation and cross-
lingual word and concept alignments (Bond et al.,
2013). Out of the available languages, Chinese,
English, Japanese and Indonesian were chosen for
further processing and annotation (due to the avail-
ability of lexical and human resources). As part
of the annotation, we are also expanding the sense
and concept inventory of the wordnets: Princeton
Wordnet (PWN: Fellbaum, 1998), the Japanese
Wordnet (Isahara et al., 2008), the Chinese Open
Wordnet (Wang and Bond, 2013) and the Word-
net Bahasa (Nurril Hirfana et al. 2011) through
the Open Multingual Wordnet (Bond and Foster,
2013).

2.2 The Open Multilingual Wordnet

The task of semantic annotating a corpus involves
the manual (and often automated) disambiguation
of words using lexical semantic resources – select-
ing, for each word, the best match in a pool of
available concepts. Among this type of resources,
the PWNhas, perhaps, attained the greatest visibil-
ity. As a resource, a wordnet is simply a huge net
of concepts, senses and definitions linked through
many different types of relations. Because of pop-
ularity and confirmed utility, many projects have
developed wordnets for different languages.

The Open Multilingual Wordent (OMW) (Bond
and Foster, 2013) is an open source multilin-
gual resource that combinesmany individual open-
source wordnet projects, along with data extracted
fromWiktionary and theUnicodeCommonLocale
Data Repository. It contains over 2 million senses
distributed over more than 150 languages, linked
through PWN. Browsing can be done monolin-
gual or multilingually, and it incorporates a full-
fledged wordnet editing system which our system
uses (OMWEdit: da Costa and Bond, 2015).

2.3 Other Available Systems
There are many text annotation tools available for
research (e.g., Stenetorp et al., 2012). However,
sense annotation has some features that differ from
most common annotation tasks (such asNE or POS
annotation). In particular, the number of tags, and
the information associated with each tag is very
large. Sense tagging for English using the PWN,
for example, when unrestricted, defaults at over
a hundred thousand possible tags to chose from:
even constrained by the lemma, there may be over
40 tags and the set of tags will very from lemma to
lemma.
There are only a few annotation tools designed

specifically for sense annotation. We were able
to find the following: the tools to tag the Hinoki
Corpus (Bond et al., 2008), for Japanese, and the
Sense Annotation Tool for the American National
Corpus (SATANiC: Passonneau et al., 2009), for
English. Both of these tools were developed to be
used in a monolingual environment, and have not
been released.
The only open source tool that we could findwas

Chooser (Koeva et al., 2008), a multi-task annota-
tion tool that was used to tag the Bulgarian Sense
Tagged Corpus (Koeva et al., 2006). This tool is
open source, language independent and is capable
of integrating a wordnet as a sense inventory. Un-
fortunately, it was not designed to be a web-service
which means it is difficult to coordinate the work
of multiple users.

3 System Overview and Architecture

Given the scenario of available systems, we de-
cided we had enough motivation to start the de-
velopment of a new Semantic Annotation Environ-
ment (IMI).
Because a large part of sense-tagging is adding

new senses to the inventory, we integrated IMIwith
the existing tools for editing and displaying the
Open Multilingual Wordnet. This integration was
done mainly through the development of a sin-
gle web-based environment, with a common login,
and API communications between interfaces. We
also designed a custom mode to display OMW re-
sults in a condensed way.Sharing a common login
system allows our annotators to access the OMW
wordnet editing mode (right hand of Figure 1) so
that, when needed, annotators can add new senses
and concepts to fit the data in the corpus.
Our system is written in Python and uses SQLite

8

Figure 1: Sequential/Textual Tagger Interface

to store the data. It is tested on Firefox, Chrome
and Safari browsers. In the remainder of this sec-
tion we discuss its main functionality.1

3.1 The Annotation Interfaces

The sequential/textual tagger (Figure 1) was de-
signed for concept-by-concept sequential tagging.
It shows a short context around the sentence cur-
rently being tagged. Clicking a word generates an
automated query in the OMW frame (on the right
of Figure 1).
As it is costly to remember the set of senses for

each word, we normally tag with a lexical/targeted
tagger (Figure 2 displays only the left side of this
tagging interface, as the OMW frame is identical
to that of Figure 1). Querying the OMW with this
tagger is very similar to the description above. The
main difference of this interface is that it focuses
on a single lexical unit across the corpus. In the
example provided in Figure 2, every occurrence of
the lemmawire is tagged at the same time. For fre-
quent words, the number of results displayed can
be restricted. In this interface, only the sentence
where the word occurs is provided as context, but
a larger context can also be accessed by clicking
on the sentence ID. Since the concept inventory
is the same for the full list of words to be tagged,
time is saved by keeping the concepts fresh in the
annotator’s mind, and quality is ensured by com-

1The annotation interface software and corpora are avail-
able from the NTU-MC page: <http://compling.hss.
ntu.edu.sg/ntumc/>.

paring different usages of different senses at the
same time.

Figure 2: Targeted/Lexical Tagger

In both tagging interfaces, a tag is selected
among an array of radio buttons displayed next to
the words being tagged. Besides the numerical op-
tions that match the results retrieved by the OMW,
the interface also allows tagging with a set of meta
tags for named entities and to flag other issues. We
use a similar set to that of Bond et al. (2013). With
every tag, a comment field is provided as an op-
tional field, where annotators can leave notes or
describe errors.

9

Missing senses are one of the major problems
during the semantic annotation. We overcome this
by integrating the wordnet editing interface pro-
vided by the OMW. Depending on the annotation
task at hands, the annotation of a corpus can be
done in parallel with the expansion of the respec-
tive wordnet’s concept and sense inventory.
A third tagging interface (not shown) allows

also the direct manipulation of the corpus struc-
ture. Its major features include creating, deleting
and editing sentences, words and concepts. It is
too generalized to be used as an efficient tagger,
but it is useful to correct POS tags, tokenization er-
rors and occasional spelling mistakes. It can also
be used to correct or create complex concept struc-
tures of multi-word expressions, that could not be
automatically identified.
The minimal input required by our interfaces (in

the typical case, just clicking a radio button), espe-
cially the lexical tagger, ensures time isn’t wasted
with complex interfaces. It also guarantees that
through the automated linking of the databases,
we avoid typos and similar noise in the produced
data. An earlier version allowed annotators to tag
directly with synset IDs, but it turned out that it
was very common for the ID to be mangled in
some way, so we now only allow entering a synset
through the linking to the OMW.

3.2 Annotation Agreement
IMI also includes a tool to measure inter-annotator
agreement (Figure 3). Up to four annotations can
be compared, for any section of the corpus. The
tool also calculates the majority tag (MajTag). Av-
erage agreements scores are then computed be-
tween annotators and between annotators and the
majority tag. Results are displayed by sentence and
for the selected portion (e.g. the entire corpus).
Agreement with the MajTag is color coded for
each annotation so that the annotators can quickly
spot disagreements. The interface provides quick
access to database editing for all taggers, and to the
OMW editing tools. The elected MajTag can also
be automatically propagated as the final tag for ev-
ery instance.
For some texts up to three annotators have been

used, with one being a research assistant and two
being students in a semantics class. These students
only had a half hour of training, and used the se-
quential tagger to tag around 250 concepts each.
The average inter-annotator agreement was 67.5%.
Tagging speed was around 60 concepts/hour (self

reported time). Note that roughly 25% of the po-
tential concepts were pre-marked as x: entries such
as preposition in, which should only be tagged on
the very rare cases it is an adjective (This is very in
this year or noun (I live in Lafayette, IN). Because
the students were minimally trained (and not all
highlymotivated) we expected a low agreement. If
two out of three annotators agreed then the words
were tagged with the majority tag. Where all three
annotators disagreed the students were required to
discuss and re-tag those entries, and submit a re-
port on them. An expert (the first author) then
read (andmarked) all the reports and fixed any tags
where he disagreed with their proposed solution.
Adjudicating and marking the reports takes about
30 minutes each, with some difficult to fix prob-
lems left for later. As a result of this process, all
words have been seen by multiple annotators, and
all hard ones by an expert (and our students have
a much better understanding of the issues in repre-
senting word meaning using a fixed sense inven-
tory)
For most texts, we only have enough funding to

pay for a single annotator. Targetted tagging (an-
notating by word type) is known to be more accu-
rate (Langone et al., 2004; Bond et al., 2008) and
we use this for the single annotator. We expect
to catch errors when we compare the annotations
across languages: the annotation of the translation
can serve as another annotator (although of course
not all concepts match across languages).

3.3 Journaling
We take advantage of the relational database and
use SQL triggers to keep track of every committed
change, time-stamping and recording the annota-
tor on every commit (true for both scripted and hu-
manmanipulated data). The system requires going
through a login system before granting access to
the tools, hence permitting a detailed yet automatic
journaling system. A detailed and tractable history
of the annotation is available to control both the
work-flow and check the quality of annotation. We
can export the data into a variety of formats, such
as RDF compatible XML and plain text triples.

3.4 Corpus Search Interface
Snapshots of the corpus are made available
through an online corpus look up (Figure 4: avail-
able here: <http://compling.hss.ntu.edu.
sg/ntumc/cgi-bin/showcorpus.cgi>). This
search tool can query the corpus by concept key,

10

Figure 3: Inter-annotator Agreement Reports

Figure 4: Corpus Search Interface (results for the regular expression ‘multi*’ as concept lemma, using
sentence ids to restrict the search to the Kyoto News Corpus, in bitext mode for Mandarin Chinese)

concept lemma, word, lemma, sentence id and
POS, as well as any combination of these fields.
Mousing over a word shows its lemma, pos, sense
and annotators’ comments (if any), clicking on a
word pops up more information about the lemma,
pos and sense (such as definitions) that can be
clicked for even more information. Further, it
is possible to see aligned sentences (for as many
languages as selected), and color coded sentiment
scores using two freely available sentiment lexi-
cons, the SentiWordNet (Baccianella et al., 2010)
and the ML-SentiCon (Cruz et al., 2014) (individ-
ually or intersected). Further improvements will
allow highlighting cross-lingual word and concept
alignments (inspired by Nara: Song and Bond,
2009).

4 Summary and Future Work

We have described the main interfaces and func-
tionality of IMI. It has undergone almost six years
of development, and is now a mature annotation
platform. The improvement of its interfaces and

functionality have not only greatly boosted the
speed of the NTU-MC annotation, but has also
greatly facilitated its coordination - making it eas-
ier to maintain both consistency and quality of the
corpus.
In the near future we intend to:

• refine the cross-lingual word and concept
alignment tool (not shown here)

• develop a reporting interface, where the
project coordinators can easily review the
history of changes committed to the corpus
database

• add a simple corpus import tool for adding
new texts in different languages

• further develop the corpus search interface,
to allow highlighting cross-lingual word and
concept links

• implement more automated consistency
checks (e.g. match lemmas of words with

11

the lemmas of concepts, verify that concept
lemmas are still senses of the concept used to
tag a word, etc.)

• improve graphical coherence, as different
parts of the toolkit have originally been devel-
oped separately, as a whole, our system cur-
rently lacks graphical coherence

We hope that the open release of our system can
motivate other projects to embrace semantic anno-
tation projects, especially projects that are less ori-
ented towards development of systems. We would
like every wordnet to be accompanied by a sense-
tagged corpus!

Acknowledgments

This research was supported in part by the MOE
Tier 2 grant That’s what you meant: a Rich Rep-
resentation for Manipulation of Meaning (MOE
ARC41/13). We would also like to thank our an-
notators for their hard work and patience during
this system’s development.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani.

2010. Sentiwordnet 3.0: An enhanced lexical resource for
sentiment analysis and opinionmining. In Nicoletta Calzo-
lari (Conference Chair), Khalid Choukri, Bente Maegaard,
JosephMariani, Jan Odijk, Stelios Piperidis, Mike Rosner,
and Daniel Tapias, editors, Proceedings of the Seventh In-
ternational Conference on Language Resources and Eval-
uation (LREC’10). European Language Resources Asso-
ciation (ELRA), Valletta, Malta.

Luisa Bentivogli and Emanuele Pianta. 2005. Exploiting par-
allel texts in the creation of multilingual semantically an-
notated resources: the multisemcor corpus. Natural Lan-
guage Engineering, 11(3):247–261.

Francis Bond, Timothy Baldwin, Richard Fothergill, andKiy-
otaka Uchimoto. 2012. Japanese SemCor: A sense-tagged
corpus of Japanese. In Proceedings of the 6th Global
WordNet Conference (GWC 2012), pages 56–63. Matsue.

Francis Bond and Ryan Foster. 2013. Linking and extend-
ing an open multilingual wordnet. In 51st Annual Meeting
of the Association for Computational Linguistics: ACL-
2013, pages 1352–1362. Sofia. URL http://aclweb.
org/anthology/P13-1133.

Francis Bond, Sanae Fujita, and Takaaki Tanaka. 2008. The
Hinoki syntactic and semantic treebank of Japanese. Lan-
guage Resources and Evaluation, 42(2):243–251. URL
http://dx.doi.org/10.1007/s10579-008-9062-z,
(Re-issue of DOI 10.1007/s10579-007-9036-6 as Springer
lost the Japanese text).

Francis Bond, Shan Wang, Eshley Huini Gao, Hazel Shuwen
Mok, and Jeanette Yiwen Tan. 2013. Developing parallel
sense-tagged corpora with wordnets. In Proceedings of the
7th Linguistic Annotation Workshop and Interoperability
with Discourse (LAW 2013), pages 149–158. Sofia. URL
http://www.aclweb.org/anthology/W13-2319.

Fermín L Cruz, José A Troyano, Beatriz Pontes, and F Javier
Ortega. 2014. Building layered, multilingual sentiment
lexicons at synset and lemma levels. Expert Systems with
Applications, 41(13):5984–5994.

Luís Morgado da Costa and Francis Bond. 2015. OMWEdit
- the integrated open multilingual wordnet editing system.
In ACL-2015 System Demonstrations. (this volume).

Christine Fellbaum, editor. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Hitoshi Isahara, Francis Bond, Kiyotaka Uchimoto, Masao
Utiyama, and Kyoko Kanzaki. 2008. Development of the
Japanese WordNet. In Sixth International conference on
Language Resources and Evaluation (LREC 2008). Mar-
rakech.

Philipp Koehn. 2005. Europarl: A parallel corpus for statisti-
cal machine translation. InMT Summit X.

Svetla Koeva, Sv Leseva, and Maria Todorova. 2006. Bul-
garian sense tagged corpus. In Proceedings of the 5th
SALTMIL Workshop on Minority Languages: Strategies
for Developing Machine Translation for Minority Lan-
guages, Genoa, Italy, pages 79–87.

Svetla Koeva, Borislav Rizov, and Svetlozara Leseva. 2008.
Chooser: a multi-task annotation tool. In LREC.

Shari Landes, Claudia Leacock, and Christiane Fellbaum.
1998. Building semantic concordances. In Fellbaum
(1998), chapter 8, pages 199–216.

Helen Langone, Benjamin R. Haskell, and George A. Miller.
2004. Annotating wordnet. In Workshop On Frontiers In
Corpus Annotation, pages 63–69. ACL, Boston.

Monica Lupu, Diana Trandabat, and Maria Husarciuc. 2005.
ARomanian semcor aligned to the English and Italianmul-
tisemcor. In Proceedings 1st ROMANCEFrameNetWork-
shop at EUROLAN 2005 Summer School, pages 20–27.
EUROLAN, Cluj-Napoca, Romania.

Nurril Hirfana Mohamed Noor, Suerya Sapuan, and Francis
Bond. 2011. Creating the open Wordnet Bahasa. In Pro-
ceedings of the 25th Pacific Asia Conference on Language,
Information and Computation (PACLIC 25), pages 258–
267. Singapore.

Rebecca J Passonneau, Ansaf Salleb-Aouissi, and Nancy Ide.
2009. Making sense of word sense variation. In Proceed-
ings of the Workshop on Semantic Evaluations: Recent
Achievements and Future Directions, pages 2–9. Associa-
tion for Computational Linguistics.

Sanghoun Song and Francis Bond. 2009. Online search inter-
face for the Sejong Korean-Japanese bilingual corps and
auto-interpolation of phrase alignment. In Proceedings
of the Third Linguistic Annotation Workshop (LAW III),
pages 146–149. Singapore.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko
Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 2012. brat:
a web-based tool for NLP-assisted text annotation. In Pro-
ceedings of the Demonstrations Session at EACL 2012.

Liling Tan and Francis Bond. 2012. Building and annotat-
ing the linguistically diverse NTU-MC (NTU-multilingual
corpus). International Journal of Asian Language Pro-
cessing, 22(4):161–174.

Shan Wang and Francis Bond. 2013. Building the Chinese
Open Wordnet (COW): Starting from core synsets. In
Proceedings of the 11th Workshop on Asian Language
Resources, a Workshop at IJCNLP-2013, pages 10–18.
Nagoya.

12

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 13–18,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

In-tool Learning for Selective Manual Annotation in Large Corpora

Erik-Lân Do Dinh†, Richard Eckart de Castilho†, Iryna Gurevych†‡
†Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, Technische Universität Darmstadt
‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)

German Institute for Educational Research and Educational Information
http://www.ukp.tu-darmstadt.de

Abstract

We present a novel approach to the selec-
tive annotation of large corpora through
the use of machine learning. Linguis-
tic search engines used to locate potential
instances of an infrequent phenomenon
do not support ranking the search re-
sults. This favors the use of high-precision
queries that return only a few results over
broader queries that have a higher recall.
Our approach introduces a classifier used
to rank the search results and thus help-
ing the annotator focus on those results
with the highest potential of being an in-
stance of the phenomenon in question,
even in low-precision queries. The clas-
sifier is trained in an in-tool fashion, ex-
cept for preprocessing relying only on the
manual annotations done by the users in
the querying tool itself. To implement
this approach, we build upon CSniper1, a
web-based multi-user search and annota-
tion tool.

1 Introduction

With the rapidly growing body of digitally avail-
able language data, it becomes possible to investi-
gate phenomena of the language system that man-
ifest themselves infrequently in corpus data, e.g.
non-canonical constructions. To pinpoint occur-
rences of such phenomena and to annotate them
requires a new kind of annotation tool, since man-
ual, sequential annotation is not feasible anymore
for large amounts of texts.

An annotation-by-query approach to identify
such phenomena in large corpora is implemented

1https://dkpro.github.io/dkpro-csniper

in the recently published open-source tool CSniper
(Eckart de Castilho et al., 2012).

To enable a selective manual annotation pro-
cess, a linguistic search engine is used, allowing
the creation of queries which single out potential
instances of the phenomenon in question. Those
potential instances are then displayed to the user,
who annotates each one as being an instance of
the phenomenon or not. This process of search-
ing and annotating can be performed by multiple
users concurrently; the annotations are stored for
each user separately. In a subsequent evaluation
step, a user can review the annotations of all users,
e.g. to discard a query if it yields unsatisfying re-
sults. Finally, the annotations of multiple users can
be merged into a gold standard.

Query

Annotate

Rank

Evaluate

Aggregate

review
assessments

refine
query

Figure 1: Annotation-by-query workflow extended
with a ranking step.

This approach relieves the annotator from hav-
ing to read through the corpus from the beginning
to the end to look for instances of a phenomenon.
However, the search may yield many results that
may superficially appear to be an instance of the
desired phenomenon, but due to ambiguities or
due to a broadly defined query only a small sub-
set may be actual instances. This still leaves the
annotator with the tedious task of clicking through
the search results to mark the true instances.

13

To reduce the time and effort required, we
present an extension of the annotation-by-query
approach (Figure 1) that introduces a ranking of
the query results (Section 2) by means of machine
learning; we order the results by confidence of
the used classifier. To obtain a model for the
classifier, we employ an in-tool learning approach,
where we learn from the annotations that are made
by users in the tool itself. This makes our ranking
approach useful for highly specific tasks, since no
pre-trained models are needed.

Finally we demonstrate the viability of our con-
cept by the example task of finding non-canonical
constructions in Section 3.

2 Ranking linguistic query results

Our approach employs machine learning to facili-
tate — but not to completely replace — the man-
ual annotation of query results. A query expresses
the intention of the user to find a specific linguis-
tic phenomenon (information need). An infor-
mation retrieval search engine would provide the
user with a list of results that are ranked accord-
ing to their relevance, fulfilling the information
need. However, linguistic search engines such as
CQP (Evert and Hardie, 2011) — which is used
by CSniper — are basically pattern-matching en-
gines, operating on different lexical or morpho-
syntactic features like part-of-speech (POS) tags
and lemmata and do not have a concept of rele-
vance. Thus, if the query provided by the user
overgeneralizes, relevant results are hidden among
many irrelevant ones, ultimately failing to satisfy
the user’s information need.

To tackle this problem, we use the annotations
already created by users on the search results to
train a classifier. Unannotated query results are
then fed to the classifier whose output values are
then used as relevance ratings by which the results
are ranked. The classifier producing the ranking
can be invoked by the user at any time; it can be
configured in certain characteristics, e.g. the an-
notations of which users should be used as train-
ing data, or how many of the selected users have
to agree on an annotation for it to be included.

2.1 Workflow and ranking process in
CSniper

Currently, we train the classifier on features de-
rived from the constituency parse tree, which
makes it useful for tasks such as locating sen-

tences containing infrequent ambiguous grammat-
ical constructions (cf. Section 3). Since parsing
the query results is too time-intensive to be done
during runtime, we parsed the corpora in advance
and stored the parse trees in a database. To train
the classifier, we employed SVM-light-tk (Mos-
chitti, 2006; Joachims, 1999), a support vector ma-
chine implementation which uses a tree kernel to
integrate all sub-trees of the parse tree as features.

Consider the following typical scenario incor-
porating the ranking: A user constructs a query
based on various features, such as POS tags or
lemmata, which are used to search for matching
sentences, e.g.

“It” [lemma=“be”] [pos=“AT0”]?
[pos=“NN.*”]2

The result is a list of sentences presented in a
keywords-in-context (KWIC) view, along with an
annotation field (Figure 2).

Then the user starts to annotate these sentences
as Correct or Wrong, depending whether they
truly represent instances of the phenomenon in
question. Clicking on the Rank results button
(Figure 2) invokes our ranking process: The SVM-
light-tk classifier is trained using the parse trees of
the sentences which the user previously annotated.
The resulting model is then used to classify the re-
maining sentences in the query results. We rank
the sentences according to the output value of the
decision function of the classifier (which we in-
terpret as a relevance/confidence rating) and tran-
siently label a sentence as either (Correct) (output
value > 0) or (Wrong) (output value ≤ 0). The re-
sults in the KWIC view are then reordered accord-
ing to the rank, showing the highest-ranking result
first. Repeatedly annotating those highest-ranking
results and re-ranking allows for quickly annotat-
ing instances of the phenomenon, while also im-
proving the classifier accuracy at the same time.

2.2 Find mode
After annotating instances based on simple queries
and ML-supported ranked queries, we considered
the natural next step to be searching automatically
for the phenomenon in question utilizing machine
learning, using arbitrary sentences from the cor-
pus as input for the classifier instead of only the
results returned by a query. Such an automatic
search could address two concerns: 1) it removes

2It-cleft example query: “It”, followed by a form of “to
be”, an optional determiner and a common noun.

14

Figure 2: A screenshot showing the results table after the ranking process, with sentences sorted by
confidence of the classifier (Score). The results are shown in a keywords-in-context (KWIC) view, sepa-
rating left context, query match and right context (within a range of one sentence). Clicking on (Correct)
changes the label to Correct.

the need for the user to design new queries, al-
lowing users less experienced in the query lan-
guage to annotate more effectively side-by-side
with advanced users; 2) it could optimally gener-
alize over all the queries that users have already
made and potentially locate instances that had not
been found by individual high-precision queries.

To support this, we implemented the Find
mode, to locate instances of a phenomenon while
abstracting from the queries. In this mode, the
SVM is first trained from all previously (manu-
ally) labeled instances for a given phenomenon,
without taking the queries into account that were
used to find those instances. Then the corpus is
partitioned into smaller parts containing a prede-
fined amount of sentences (we used 500). One
of these partitions is chosen at random, and the
sentences therein are ranked using the SVM. This
step is repeated, until a previously defined num-
ber of sentences have been classified as Correct.
Those sentences are then shown to the user, who
now can either confirm a sentence as containing
the phenomenon or label it Wrong otherwise.

2.3 Related work

Existing annotation tools include automation
functionality for annotation tasks, ranging from
rule-based tagging to more complex, machine-
learning-based approaches.

Such functionalities can be found in the anno-
tation software WordFreak (Morton and LaCivita,
2003), where a plug-in architecture allows for a
variety of different taggers and classifiers to be in-
tegrated, for example part-of-speech taggers or co-
reference resolution engines. Those require pre-
trained models, which limits the applicability of
the automation capabilities of WordFreak to tasks
for which such models are actually available. In
addition to assigning annotations a single label,

WordFreak allows plugins to rank labels for each
annotation based on the confidence of the used
classifier. Note that this is different to our rank-
ing approach, where we instead perform a ranking
of the search results which shall be annotated.

Another tool incorporating machine learning is
WebAnno (Yimam et al., 2014), which imple-
ments features such as custom labels and anno-
tation types. In addition, WebAnno supports au-
tomatic annotation similar to our approach, also
employing machine learning to build models from
the data annotated by users. Those models are then
used to annotate the remainder of the documents.
To accomplish this, WebAnno uses a split-pane
view, showing automatic suggestions in one pane
and manually entered annotations in another. The
user can accept a suggested annotation, which is
transferred to the manual pane. Lacking the search
capability, WebAnno lists automatic annotations
in the running corpus text, which makes it unsuited
for selective annotation in large corpora. The ap-
proach that we implemented on top of CSniper in-
stead ranks the search results for a given query by
confidence of the classifier.

Yet another form of in-tool learning is active
learning, as is implemented, e.g., in Dualist (Set-
tles, 2011). In an active learning scenario the sys-
tem aims to efficiently train an accurate classifier
(i.e. with as little training data as possible) and
thus repeatedly asks the user to annotate instances
from which it can learn the most. Such an ap-
proach can work well for reducing the amount of
training data needed to produce a model which
achieves high accuracy, as has been — amongst
others — shown by Hachey et al. (2005). How-
ever, they also learn in their experiments that those
highly informative instances are often harder to
annotate and increase required time and effort of
annotators. Our approach is different from active

15

learning as our goal is not to improve the training
efficiency of the classifier but rather to allow the
user to interactively find and label as many true
instances of a phenomenon as possible in a large
corpus. Thus, the items presented to the user are
not determined by the expected information gain
for the classifier but rather by the confidence of the
classifier, presenting the user with those instances
first which are most likely to be occurrences of the
phenomenon in question.

3 Case study: Finding non-canonical
constructions

We demonstrate our novel approach on the task of
locating non-canonical constructions (NCC) and
conduct an intrinsic evaluation of the accuracy
of the system augmented with machine learning
output on the data annotated by expert linguists.
The linguists annotated sentences for occurrences
of certain NCC subtypes: information-packaging
constructions (Huddleston and Pullum, 2002, pp.
1365ff.), which present information in a differ-
ent way from their canonical counterparts without
changing truth conditions; specifically It-clefts (“It
was Peter who made lunch.”), NP-preposing (“A
treasure, he was searching.”), and PP-inversion
(“To his left lay the forest.”) clauses.

For our experiments, we used the British Na-
tional Corpus (2007), comprising 100 million
words in multiple domains3. Constituency pars-
ing was conducted using the factored variant of
the Stanford Parser (Klein and Manning, 2003),
incorporated into a UIMA pipeline using DKPro
Core (Eckart de Castilho and Gurevych, 2014).

As a baseline we use queries representing the
experts’ intuition about the realization of the
NCCs in terms of POS tags and lemmata. We
show that our system improves the precision of the
query results even with little training data. Also
we present run times for our ranking system un-
der real-world conditions for different training set
sizes. Further, we compare Krippendorff’s α co-
efficient as an inter-annotator agreement measure
among only annotators to the α which treats our
system as one additional annotator.

We conducted the experiments based on the
manually assigned labels of up to five annota-
tors. If a sentence has been annotated by multiple

3CSniper and the used SVM implementation are language
independent, which allowed us to also run additional prelim-
inary tests using German data.

users, we use the label that has been assigned by
the majority; in case of a tie, we ignore the sen-
tence. These so created gold standard annotations
were used in an iterative cross-validation setting:
for each query and the corresponding annotated
sentences we ran nine cross-validation configura-
tions, ranging from a 10/90 split between training
and testing data to a 90/10 split, to investigate the
reliability of the classifier as well as its ability to
achieve usable results with little training data.

For It-clefts, we observe that elaborate queries
already have a high precision, on which the SVM
improves only marginally. The query

“It” /VCC[] [pos=“NP0”]+ /RC[]4 (it17)

already yields a precision of 0.9598, which does
not increase using our method (using 10% as train-
ing data, comparing the precision for the remain-
ing 90%). However, while broader queries yield
lower precision, the gain by using the SVM be-
comes significant (Table 1), as exemplified by the
precision improvement from 0.4919 to 0.7782 for
the following It-cleft query, even at a 10/90 split.

“It” /VCC[] /NP[] /RC[]5 (it2)

For other inspected types of NCC, even elaborate
queries yield a low baseline precision, which our
approach can improve significantly. This effect
can be observed for example in the following NP-
preposing query, where precision can be improved
from 0.3946 to 0.5871.

[pos=”N.*”]{1,2} [pos=”PNP” & word!=”I”]
[pos=”V.*”]6 (np55)

We conducted a cursory, “real-world” test re-
garding the speed of the ranking system.7 Training
the SVM on differently sized subsets of the 449
sentences returned by a test query, we measured
the time from clicking the Rank results button until
the process was complete and the GUI had updated
to reorder the sentences (i.e. including database
queries, training, classifying, GUI update). The
process times averaged over five “runs” for each
training set size (20%, 50% and 90%) amount to 5
seconds, 7 seconds, and 14 seconds respectively.
This leaves us with the preliminary impression
that our system is fast enough for small to medium

4“It”, verb clause, one or more proper nouns, relative
clause. VCC, NC, and RC are macros we defined in CQP,
see Table 2.

5“It”, verb clause, noun phrase, relative clause.
6One to two nouns, personal pronoun other than “I”, verb.
7System configuration: Intel i5 2,4 GHz, 2GB RAM, SSD

3GB/s, Linux in a VM

16

it2 it17 it33 np34 np55 np76 pp42 pp99 pp103

Baseline 0.4919 0.9598 0.7076 0.4715 0.3946 0.4985 0.7893 0.4349 0.2365
SVM, 10/90 0.7782 0.9598 0.7572 0.5744 0.5871 0.5274 0.8152 0.8357 0.8469
SVM, 50/50 0.8517 0.9608 0.8954 0.6410 0.6872 0.6193 0.8657 0.8769 0.8720
SVM, 90/10 0.8634 0.9646 0.9261 0.6822 0.7723 0.6806 0.8865 0.8820 0.8796

Table 1: Precision for various NCC queries (Baseline) and for using the SVM with 10%, 50% and 90%
training data.

sized training sets; as the last result suggests, for
larger sets it would be desirable for our system to
be faster overall. One way to achieve this is to
pre-compute the feature vectors used in the train-
ing phase once — this could be done at the same
time with the parsing of the sentences, i.e. at the
setup time of the system.

Krippendorff’s α, an inter-annotator agreement
(IAA) measure which usually assumes values be-
tween 0 (no reliable agreement) and 1 (perfect
agreement), amounts to 0.8207 averaged over all
manually created It-cleft annotations. If we inter-
pret the SVM as an additional annotator (αsvm),
the IAA drops to 0.5903. At first glance this
seems quite low, however upon closer inspection
this can be explained by an overfitting of the clas-
sifier. This effect occurs for the already precise
baseline queries, where in some cases less than
5% of the query results were labeled as Wrong.
The same holds for NP-preposing (α: 0.6574,
αsvm: 0.3835) and PP-inversion (α: 0.9410,
αsvm: 0.6964). We interpret this as the classifier
being successful in helping the annotators after a
brief training phase identifying additional occur-
rences of particular variants of a phenomenon as
covered by the queries, but not easily generalizing
to variants substantially different from those cov-
ered by the queries.

4 Conclusion

With automatic ranking we introduced an exten-
sion to the annotation-by-query workflow which
facilitates manual, selective annotation of large
corpora. We explained the benefits of in-tool
learning to this task and our extension of an open-
source tool to incorporate this functionality. Fi-
nally, we showed the applicability of the concept
and its implementation to the task of finding non-
canonical constructions.

For future work, we plan to speed up the learn-
ing process (e.g. by saving feature vectors instead

of re-calculating them), and also add the ability
for users to configure the features used to train the
classifier, e.g. incorporating lemmata or named
entities instead of only using the parse tree. In-
tegrating such configuration options in an easily
understandable and user-friendly fashion may not
be trivial but can help to generalize the approach
to support additional kinds of sentence level anno-
tation.

Acknowledgements

We would like to thank Pia Gerhard, Sabine
Bartsch, Gert Webelhuth, and Janina Rado for an-
notating and testing. Furthermore we would like
to thank Janina Rado for creating the CQP macros
used in the tests.

This work has been supported by the Ger-
man Federal Ministry of Education and Re-
search (BMBF) under the promotional reference
01UG1416B (CEDIFOR), by the German Insti-
tute for Educational Research (DIPF) as part of
the graduate program “Knowledge Discovery in
Scientific Literature” (KDSL), and by the Volk-
swagen Foundation as part of the Lichtenberg-
Professorship Program under grant No. I/82806.

References
Richard Eckart de Castilho and Iryna Gurevych. 2014.

A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines.
In Proceedings of the Workshop on OIAF4HLT at
COLING 2014, pages 1–11.

Richard Eckart de Castilho, Iryna Gurevych, and
Sabine Bartsch. 2012. CSniper: Annotation-
by-query for Non-canonical Constructions in Large
Corpora. In Proceedings of ACL 2012, System
Demonstrations, pages 85–90, Stroudsburg, PA,
USA. ACL.

Stefan Evert and Andrew Hardie. 2011. Twenty-first
century corpus workbench: Updating a query archi-
tecture for the new millennium. In Proceedings of
CL2011, Birmingham, UK.

17

Shortcut Expansion

VCC ([pos=”VBB” | pos=”VBD” | pos=”VBZ”]* [lemma=”be”]) |
([pos=”V.*”]* [pos=”VBG” | pos=”VBI” | pos=”VBN”]* [lemma=”be”])

NP [pos=”AT0”]? []? [pos=”AJ.*”]* [pos=”N.*”]

RC ([pos=”DTQ” | pos=”PNQ” | pos=”CJT”] /VCF[] []?) |
([pos=”CJT”]? /NP[] /VCF[] []?) |
([pos=”PR.*”]* [pos=”.Q”] /NP[] /VCF[] []?)

VCF [pos=”V.?B” | pos=”V.?D” | pos=”V.?Z” | pos=”VM0”] [pos=”V.*”]*

Table 2: CQP macro expansions for self-defined macros. BNC uses the CLAWS5 tagset for POS tags
(http://www.natcorp.ox.ac.uk/docs/c5spec.html).

Ben Hachey, Beatrice Alex, and Markus Becker. 2005.
Investigating the Effects of Selective Sampling on
the Annotation Task. In Proceedings of CoNLL
2005, pages 144–151, Stroudsburg, PA, USA. ACL.

Rodney D. Huddleston and Geoffrey K. Pullum. 2002.
The Cambridge Grammar of the English Language.
Cambridge University Press.

Thorsten Joachims. 1999. Making large-scale sup-
port vector machine learning practical. In Bernhard
Schölkopf, Christopher J. C. Burges, and Alexan-
der J. Smola, editors, Advances in Kernel Methods,
pages 169–184. MIT Press, Cambridge, MA, USA.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate Unlexicalized Parsing. In Proceedings of ACL
2003, pages 423–430, Stroudsburg, PA, USA. ACL.

Thomas Morton and Jeremy LaCivita. 2003.
WordFreak: An open tool for linguistic annota-
tion. In Proceedings of NAACL HLT 2003, NAACL-
Demonstrations, pages 17–18, Stroudsburg, PA,
USA. ACL.

Alessandro Moschitti. 2006. Making Tree Kernels
Practical for Natural Language Learning. In Pro-
ceedings of EACL 2006, pages 113–120, Trento,
Italy.

Burr Settles. 2011. Closing the Loop: Fast, Inter-
active Semi-supervised Annotation with Queries on
Features and Instances. In Proceedings of EMNLP
2011, pages 1467–1478, Stroudsburg, PA, USA.
ACL.

The British National Corpus, version 3 (BNC XML
Edition). 2007. Distributed by Oxford University
Computing Services on behalf of the BNC Consor-
tium. URL: http://www.natcorp.ox.ac.uk/.

Seid Muhie Yimam, Richard Eckart de Castilho, Iryna
Gurevych, and Chris Biemann. 2014. Automatic
Annotation Suggestions and Custom Annotation
Layers in WebAnno. In Proceedings of ACL 2014,
System Demonstrations, pages 91–96, Stroudsburg,
PA, USA. ACL.

18

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 19–24,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

KeLP: a Kernel-based Learning Platform for Natural Language
Processing

Simone Filice(†), Giuseppe Castellucci(‡), Danilo Croce(?), Roberto Basili(?)

(†) Dept. of Civil Engineering and Computer Science Engineering
(‡) Dept. of Electronic Engineering
(?) Dept. of Enterprise Engineering

University of Roma, Tor Vergata, Italy
{filice,croce,basili}@info.uniroma2.it; castellucci@ing.uniroma2.it

Abstract

Kernel-based learning algorithms have
been shown to achieve state-of-the-art re-
sults in many Natural Language Process-
ing (NLP) tasks. We present KELP, a Java
framework that supports the implementa-
tion of both kernel-based learning algo-
rithms and kernel functions over generic
data representation, e.g. vectorial data or
discrete structures. The framework has
been designed to decouple kernel func-
tions and learning algorithms: once a new
kernel function has been implemented it
can be adopted in all the available kernel-
machine algorithms. The platform in-
cludes different Online and Batch Learn-
ing algorithms for Classification, Regres-
sion and Clustering, as well as several Ker-
nel functions, ranging from vector-based
to structural kernels. This paper will show
the main aspects of the framework by ap-
plying it to different NLP tasks.

1 Introduction

Most of the existing Machine Learning (ML) plat-
forms assume that instances are represented as
vectors in a feature space, e.g. (Joachims, 1999;
Hall et al., 2009; Chang and Lin, 2011), that must
be defined beforehand. In Natural Language Pro-
cessing (NLP) the definition of a feature space of-
ten requires a complex feature engineering phase.
Let us consider any NLP task in which syntactic
information is crucial, e.g. Boundary Detection in
Semantic Role Labeling (Carreras and Màrquez,
2005). Understanding which syntactic patterns
should be captured is non-trivial and usually the
resulting feature vector model is a poor approxi-

mation. Instead, a more natural approach is oper-
ating directly with the parse tree of sentences. Ker-
nel methods (Shawe-Taylor and Cristianini, 2004)
provide an efficient and effective solution, allow-
ing to represent data at a more abstract level, while
their computation still looks at the informative
properties of them. For instance, Tree Kernels
(Collins and Duffy, 2001) take in input two syntac-
tic parse trees, and compute a similarity measure
by looking at the shared sub-structures.

In this paper, KELP, a Java kernel based learn-
ing platform is presented. It supports the imple-
mentation of Kernel-based learning algorithms, as
well as kernel functions over generic data repre-
sentations, e.g. vectorial data or discrete struc-
tures, such as trees and sequences. The framework
has been designed to decouple data structures, ker-
nel functions and learning algorithms in order to
maximize the re-use of existing functionalities: as
an example, a new kernel can be included inherit-
ing existing algorithms and vice versa. KELP sup-
ports XML and JSON serialization of kernel func-
tions and algorithms, enabling the agile definition
of kernel-based learning systems without writing
additional lines of code. KELP can effectively
tackle a wide variety of learning problems. In par-
ticular, in this paper we will show how vectorial
and structured data can be exploited by KELP in
three NLP tasks: Twitter Sentiment Analysis, Text
Categorization and Question Classification.

2 Framework Overview

KELP is a machine learning library completely
written in Java. The Java language has been cho-
sen in order to be compatible with many Java
NLP/IR tools that are developed by the commu-

19

nity, such as Stanford CoreNLP1, OpenNLP2 or
Lucene3. KELP is released as open source soft-
ware under the Apache 2.0 license and the source
code is available on github4. Furthermore it can
be imported via Maven. A detailed documentation
of KELP with helpful examples and use cases is
available on the website of the Semantic Analytics
Group5 of the University of Roma, Tor Vergata.

In this Section, a closer look at the implementa-
tion of different kinds of data representations, ker-
nel functions and kernel-based learning algorithms
is provided.

2.1 Data Representations

KELP supports both vectorial and structured
data to model learning instances. For ex-
ample, SparseVector can host a Bag-of-
Words model, while DenseVector can rep-
resent data derived from low dimensional em-
beddings. TreeRepresentation can model
a parse tree and SequenceRepresentation
can be adopted to represent sequences of charac-
ters or sequences of words. Moreover, the plat-
form enables the definition of more complex forms
of data such as pairs, which are useful in model-
ing those problems where instances can be natu-
rally represented as pairs of texts, such as question
and answer in Q/A re-ranking (Severyn and Mos-
chitti, 2013), text and hypothesis in textual entail-
ment (Zanzotto et al., 2009) or sentence pairs in
paraphrasing detection (Filice et al., 2015).

2.2 Kernels

Many ML algorithms rely on the notion of similar-
ity between examples. Kernel methods (Shawe-
Taylor and Cristianini, 2004) leverage on the
so-called kernel functions, which compute the
similarity between instances in an implicit high-
dimensional feature space without explicitly com-
puting the coordinates of the data in that space.
The kernel operation is often cheaper from a com-
putational perspective and specific kernels have
been defined for sequences, graphs, trees, texts,
images, as well as vectors.

Kernels can be combined and composed to
create richer similarity metrics, where infor-
mation from different Representations can

1
http://nlp.stanford.edu/software/corenlp.shtml

2
https://opennlp.apache.org/

3
http://lucene.apache.org/

4
https://github.com/SAG-KeLP

5
http://sag.art.uniroma2.it/demo-software/kelp/

be exploited at the same time. This flexibil-
ity is completely supported by KELP, which is
also easy to extend with new kernels. Among
the currently available implementations of ker-
nels, there are various standard kernels, such
as LinearKernel, PolynomialKernel or
RbfKernel. A large set of kernels specifically
designed for NLP applications will be described
in the following section.

2.2.1 Kernels for NLP
Many tasks in NLP cannot be properly tackled
considering only a Bag-of-Words approach and re-
quire the exploration of deep syntactic aspects. In
question classification the syntactic information is
crucial has largely demonstrated in (Croce et al.,
2011). In Textual Entailment Recognition or in
Paraphrase Detection a pure lexical similarity be-
tween text and hypothesis cannot capture any dif-
ference between Federer won against Nadal and
Nadal won against Federer. A manual definition
of an artificial feature set accounting for syntax
is a very expensive operation that requires a deep
knowledge of the linguistic phenomena character-
izing a specific task. Moreover, every task has
specific patterns that must be considered, making
a manual feature engineering an extremely com-
plex and not portable operation. How can linguis-
tic patterns characterizing a question be automat-
ically discovered? How can linguistic rewriting
rules in paraphrasing be learnt? How can seman-
tic and syntactic relations in textual entailment be
automatically captured? An elegant and efficient
approach to solve NLP problems involving the us-
age of syntax is provided by tree kernels (Collins
and Duffy, 2001). Instead of trying to design a
synthetic feature space, tree kernels directly oper-
ate on the parse tree of sentences evaluating the
tree fragments shared by two trees. This operation
implicitly corresponds to a dot product in the fea-
ture space of all possible tree fragments. The di-
mensionality of such space is extremely large and
operating directly on it is not viable.

Many tree kernels are implemented in KELP,
and they differ by the type of tree fragment
considered in the evaluation of the matching
structures. In the SubTreeKernel (Collins
and Duffy, 2001) valid fragments are subtrees
(ST), i.e. any node of a tree along with
all its descendants. A subset tree (SST) ex-
ploited by the SubSetTreeKernel is a more
general structure since its leaves can be non-

20

S

VP

PP

NP

NNP

Nadal

IN

against

VBD

won

NP

NNP

Federer
=⇒

NP

NNP

Federer

NNP

Federer

VP

PP

NP

NNP

Nadal

IN

against

VBD

won

VBD

won

PP

NP

NNP

Nadal

IN

against

IN

against

NP

NNP

Nadal

a) b)

S

VPNP

NP

NNP

VP

PPVBZ

IN

against

S

NP

NNP

Federer

PP

NP

NNP

Nadal

PP

IN

VP

PP

NPIN

PP

NP

NNP

Nadal

IN
PP

NP

NNP

IN

S

VPNP

NNP

Federer

S

VP

VBD

won

NP

NNP

Federer

S

VP

PP

IN

NP

NNP

Federer

c) d)

Figure 1: a) Constituent parse tree of the sentence
Federer won against Nadal. b) some subtrees. c)
some subset trees. d) some partial trees.

terminal symbols. The SSTs satisfy the con-
straint that grammatical rules cannot be bro-
ken. PartialTreeKernel (Moschitti, 2006)
relaxes this constraint considering partial trees
(PT), i.e. fragments generated by the applica-
tion of partial production rules. Examples of dif-
ferent kinds of tree fragments are shown in Fig-
ure 1. The SmoothedPartialTreeKernel
(SPTK) (Croce et al., 2011) allows to match those
fragments that are not identical but that are se-
mantically related, by relying on the similarity
between lexical items, e.g. by applying a word
similarity metric (e.g. WordNet or word em-
beddings similarities). The adopted implementa-
tion allows to easily extend the notion of simi-
larity between nodes, enabling the implementa-
tion of more expressive kernels, as the Compo-
sitionally Smoothed Partial Tree Kernel (CSPTK)
that embeds algebraic operators of Distributional
Compositional Semantics (Annesi et al., 2014).
Moreover, the SequenceKernel (Bunescu and
Mooney, 2005) is included in the library, and it
allows to compare two texts evaluating the num-
ber of common sub-sequences. This implicitly
corresponds to operate on the space of all possi-
ble N-grams. Kernels operating over pairs, such
as the PreferenceKernel (Shen and Joshi,
2003) for re-ranking, are also included in KELP.

2.3 Machine Learning Algorithms

In ML, a plethora of learning algorithms have
been defined for different purposes, and many

variations of the existing ones as well as com-
pletely new learning methods are often proposed.
KELP provides a large number of learning algo-
rithms6 ranging from batch, e.g. Support Vec-
tor Machines (Vapnik, 1995), to online learning
models, e.g. PassiveAggressive algorithms
(Crammer et al., 2006), and from linear to kernel-
based methods, for tackling classification, regres-
sion or clustering tasks. Moreover, algorithms
can be composed in meta-learning schemas, like
multi-class classification (e.g. One-VS-One and
One-VS-All, (Rifkin and Klautau, 2004)) and
multi-label classification, or can be combined in
ensembles. A simple interface taxonomy allows
to easily extend the platform with new custom
learning algorithms. A complete support for tack-
ling NLP tasks is thus provided. For exam-
ple, in scenarios where the syntactic informa-
tion is necessary for achieving good accuracy,
C-SVM or ν-SVM (Chang and Lin, 2011) oper-
ating on trees with kernels can be effectively ap-
plied. When dealing with large datasets, many
efficient learning algorithm can be adopted, like
linear methods, e.g. Pegasos (Shalev-Shwartz
et al., 2007) or LibLinear, (Fan et al., 2008),
or like budgeted kernel-based algorithms, e.g.
RandomizedPerceptron (Cesa-Bianchi and
Gentile, 2006).

Listing 1: A JSON example.
{"algorithm" : "oneVsAll",
"baseAlgorithm" : {
"algorithm" : "binaryCSvmClassification",
"c" : 10,
"kernel" : {
"kernelType" : "linearComb",
"weights" : [1,1],
"toCombine" : [
{
"kernelType" : "norm",
"baseKernel" : {
"kernelType" : "ptk",
"mu" : 0.4,
"lambda" : 0.4,
"representation" : "parseTree"

}
},
{
"kernelType" : "linear",
"representation" : "Bag-of-Words"

}
]

}
}

}

2.4 A JSON example

Kernel functions and algorithms are serializable in
JSON or XML. This is useful for instantiating a
new algorithm without writing a single line of Java

6All the algorithms are completely re-implemented in
Java and they do not wrap any external library

21

code, i.e. the algorithm description can be pro-
vided in JSON to an interpreter that will instantiate
it. Listing 1 reports a JSON example of a kernel-
based Support Vector Machine operating in a one-
vs-all schema, where a kernel linear combination
between a normalized Partial Tree Kernel and a
linear kernel is adopted. As the listing shows ker-
nels and algorithms can be easily composed and
combined in order to create new training models.

3 Case Studies in NLP

In this Section, the functionalities and use of the
learning platform are shown. We apply KELP to
very different NLP tasks, i.e. Sentiment Analysis
in Twitter, Text Categorization and Question Clas-
sification, providing examples of kernel-based and
linear learning algorithms. Further examples are
available on the KELP website7 where it is shown
how to instantiate each algorithm or kernel via
JSON and how to add new algorithms, represen-
tations and kernels.

3.1 Sentiment Analysis in Twitter
The task of Sentiment Analysis in Twitter has been
proposed in 2013 during the SemEval competi-
tion (Nakov et al., 2013). We built a classifier
for the subtask B, i.e. the classification of a tweet
with respect to the positive, negative and neutral
classes. The contribution of different kernel func-
tions is evaluated using the Support Vector Ma-
chine learning algorithm. As shown in Table 1, we
apply linear (Lin), polynomial (Poly) and Gaus-
sian (Rbf) kernels on two different data represen-
tations: a Bag-Of-Words model of tweets (BoW)
and a distributional representation (WS). The
last is obtained by linearly combining the distri-
butional vectors corresponding to the words of a
message; these vectors are obtained by applying a
Skip-gram model (Mikolov et al., 2013) with the
word2vec tool8 over 20 million of tweets. The lin-
ear combination of the proposed kernel functions
is also applied, e.g. PolyBow+RbfWS . The mean
F1-measure of the positive and negative classes
(pn)9 as well as of all the classes (pnn) is shown
in Table 1.

3.2 Text Categorization
In order to show the scalability of the platform,
a second evaluation considers linear algorithms.

7
http://sag.art.uniroma2.it/demo-software/kelp/

8
https://code.google.com/p/word2vec/

9pn was the official metric of the SemEval competition.

Kernel MeanF1(pn) MeanF1(pnn)
LinBoW 59.72 63.53
PolyBoW 54.58 59.27
LinWS 60.79 63.94
RbfWS 61.68 65.05
LinBoW +LinWS 66.12 68.56
PolyBoW +RbfWS 64.92 68.10

Table 1: Results of Sentiment Analysis

We selected the Text Categorization task on the
RCV1 dataset (Lewis et al., 2004) with the setting
that can be found on the LibLinear website10. In
this version of the dataset, CCAT and ECAT are
collapsed into a positive class, while GCAT and
MCAT are the negative class, resulting in a dataset
composed by 20, 242 examples. As shown in Ta-
ble 2, we applied the LibLinear, Pegasos and Lin-
ear Passive-Aggressive implementations, comput-
ing the accuracy and the standard deviation with
respect to a 5-fold cross validation strategy.

Task Accuracy Std
LibLinear 96.74% 0.0029
Pegasos 95.31% 0.0033
Passive Aggressive 96.60% 0.0024

Table 2: Text Categorization Accuracy

3.3 Question Classification

The third case study explores the application of
Tree Kernels to Question Classification (QC), an
inference task required in many Question Answer-
ing processes. In this problem, questions writ-
ten in natural language are assigned to different
classes. A QC system should select the correct
class given an instance question. In this setting,
Tree Kernels allow to directly model the examples
in terms of their parse trees. The reference cor-
pus is the UIUC dataset (Li and Roth, 2002), in-
cluding 5,452 questions for training and 500 ques-
tions for test11, organized in six coarse-grained
classes, such as HUMAN or LOCATION. Again,
Kernel-based SVM has been evaluated adopting
the same setup of (Croce et al., 2011). A pure lex-
ical model based on a linear kernel over a Bag-of-
Words (BoW) is considered a baseline. The con-
tribution of the syntactic information is demon-
strated by the results achieved by the Partial Tree
Kernel (PTK), the Smoothed Partial Tree Kernels
(SPTK) and the Compositionally Smoothed Par-
tial Tree Kernel (CSPTK), as shown in Table 3.

10
http://www.csie.ntu.edu.tw/∼cjlin/

libsvmtools/datasets/
11
http://cogcomp.cs.illinois.edu/Data/QA/QC/

22

Kernel Accuracy
BoW 87.2%
PolyBoW 88.8%
PTK 91.6%
SPTK 94.6%
CSPTK 95.0%

Table 3: Question Classification Accuracy.

4 Related Work

Many software tools for computational linguis-
tic research already exist. Tools like Stan-
ford CoreNLP or OpenNLP provide a complete
pipeline for performing linguistic tasks such as
stemming, lemmatization, Part-of-Speech tagging
or parsing. They are complementary to KELP:
they can be used in the feature extraction phase,
while KELP will care about the machine learning
part. Regarding other machine learning platforms
there are plenty of available possibilities, but for
different reasons no one can provide something
close to what the proposed library offers.

Weka (Hall et al., 2009) is a collection of ma-
chine learning algorithms for data mining tasks.
The algorithms can either be applied directly to
a dataset or called from Java. It contains vari-
ous tools for different data mining activities: data
pre-processing, classification, regression, cluster-
ing and visualization.

Mallet (McCallum, 2002) is more oriented to
NLP applications. It is entirely in Java and in-
cludes feature extraction tools for converting text
into vectors and statistical analysis tools for docu-
ment classification, clustering, topic modeling, in-
formation extraction, and other machine learning
applications to text. Regarding the kernel-based
learning both Weka and Mallet leverage on Lib-
SVM, and obviously inherit its limits.

LibSVM (Chang and Lin, 2011) is a machine
learning platform focusing on Support Vector Ma-
chines. It is written in C++ language and it
includes different SVM formulations: C-svm,
Nu-svm and OneClass-svm, as well as a one-
vs-one multi classification schema. It implements
also regression support vector solvers. It has been
ported in different languages, including Java. The
batch learning part of KELP is strongly inspired
by LibSVM formulations and implementations.
LibSVM is mainly intended for plain users and
does not provide any support for extendibility. It
can operate only on sparse feature vectors via stan-
dard kernel functions. No structured representa-
tions are considered.

Another very popular Support Vector Machines
(SVM) package is SvmLight (Joachims, 1999). It
is entirely written in C language and its main fea-
ture is speed. It solves classification and regres-
sion problems, as well as ranking problems. Its
efficiency is paid in terms of extensibility: C lan-
guage does not allow a fast prototyping of new ma-
chine learning kernels or algorithms. Many times
in research contexts fast prototyping is more im-
portant than performances: the proposed platform
has been developed with extensibility in mind.

The most similar platform to ours is JKernel-
Machines (Picard et al., 2013). It is a Java based
package focused on Kernel machines. Just like the
proposed library, JKernelMachines is primary de-
signed to deal with custom kernels that cannot be
easily found in standard libraries. Standard SVM
optimization algorithms are implemented, but also
more sophisticated learning-based kernel combi-
nation methods such as Multiple Kernel Learn-
ing (MKL). However, many features covered by
KELP are not offered by JKernelMachines, just
like tree kernels, regression and clustering. More-
over, different architectural choices have been ap-
plied in KELP in order to support an easier com-
position and combination of representations, ker-
nels as well as learning algorithms.

5 Conclusions

This paper presented KELP, a Java framework
to support the application of Kernel-based learn-
ing methods with a particular attention to Lan-
guage Learning tasks. The library implements a
large variety of kernel functions used in NLP (such
as Tree Kernels or Sequence Kernels) as well as
many learning algorithms useful in classification,
regression, novelty detection or clustering prob-
lems. KELP can be imported via Maven but its
usage is not restricted to a Java-compliant environ-
ment as it allows to build complex kernel machine
based systems, leveraging on JSON/XML inter-
faces to instantiate classifiers. The entire frame-
work has been designed to support researchers in
the development of new kernel functions or algo-
rithms, providing a principled decoupling of the
data structures in order to maximize the re-use of
existing functionalities. The benefits of the pro-
posed environment have been shown in three NLP
tasks, where results in line with the state-of-the-art
have been reached with the simple application of
various kernel functions available in KELP.

23

References
Paolo Annesi, Danilo Croce, and Roberto Basili. 2014.

Semantic compositionality in tree kernels. In Proc.
of CIKM 2014, pages 1029–1038, New York, NY,
USA. ACM.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
Subsequence kernels for relation extraction. In
NIPS.

Xavier Carreras and Lluı́s Màrquez. 2005. Intro-
duction to the conll-2005 shared task: Semantic
role labeling. In Proceedings of the Ninth Confer-
ence on Computational Natural Language Learn-
ing, CONLL ’05, pages 152–164, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Nicolò Cesa-Bianchi and Claudio Gentile. 2006.
Tracking the best hyperplane with a simple budget
perceptron. In In Proc. of the 19th Annual Con-
ference on Computational Learning Theory, pages
483–498. Springer-Verlag.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2:27:1–27:27.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In NIPS.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. JMLR, 7:551–585,
December.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via con-
volution kernels on dependency trees. In EMNLP,
Edinburgh.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A li-
brary for large linear classification. J. Mach. Learn.
Res., 9:1871–1874, June.

Simone Filice, Giovanni Da San Martino, and Alessan-
dro Moschitti. 2015. Structural representations for
learning relations between pairs of texts. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics, Beijing, China,
July. Association for Computational Linguistics.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
sigkdd explor., 11(1).

T. Joachims. 1999. Making large-scale SVM learning
practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vec-
tor Learning, pages 169–184. MIT Press.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res.,
5:361–397, December.

X. Li and D. Roth. 2002. Learning question classifiers.
In Proceedings of ACL ’02, COLING ’02, pages 1–
7, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In ECML, Berlin, Germany, September.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis
in twitter. In Proceedings of SemEval 2013, pages
312–320, Atlanta, USA. ACL.

David Picard, Nicolas Thome, and Matthieu Cord.
2013. Jkernelmachines: A simple framework for
kernel machines. Journal of Machine Learning Re-
search, 14:1417–1421.

Ryan Rifkin and Aldebaro Klautau. 2004. In defense
of one-vs-all classification. J. Mach. Learn. Res.,
5:101–141, December.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In Proceedings of the 2013 Conference
on EMNLP, pages 458–467, Seattle, USA. ACL.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. 2007.
Pegasos: Primal estimated sub–gradient solver for
SVM. In Proc. of ICML.

John Shawe-Taylor and Nello Cristianini. 2004. Ker-
nel Methods for Pattern Analysis. Cambridge Uni-
versity Press.

Libin Shen and Aravind K. Joshi. 2003. An svm based
voting algorithm with application to parse reranking.
In In Proc. of CoNLL 2003, pages 9–16.

Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag New York, Inc.,
New York, NY, USA.

Fabio massimo Zanzotto, Marco Pennacchiotti, and
Alessandro Moschitti. 2009. A machine learn-
ing approach to textual entailment recognition. Nat.
Lang. Eng., 15(4):551–582, October.

24

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 25–30,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

Multi-modal Visualization and Search for Text and Prosody Annotations

Markus Gärtner Katrin Schweitzer Kerstin Eckart Jonas Kuhn
Institute for Natural Language Processing

University of Stuttgart
{markus.gaertner,kati,eckartkn,kuhn}@ims.uni-stuttgart.de

Abstract

We present ICARUS for intonation, an in-
teractive tool to browse and search au-
tomatically derived descriptions of fun-
damental frequency contours. It offers
access to tonal features in combination
with other annotation layers like part-of-
speech, syntax or coreference and visual-
izes them in a highly customizable graphi-
cal interface with various playback func-
tions. The built-in search allows multi-
level queries, the construction of which
can be done graphically or textually, and
includes the ability to search F0 contours
based on various similarity measures.

1 Introduction

In this paper we present ICARUS for intonation,
a new module for the query and visualization tool
ICARUS by Gärtner et al. (2013). 1

So far, ICARUS included modules for the han-
dling of dependency treebanks (Gärtner et al.,
2013) and coreference data (Gärtner et al., 2014),
thus supporting typical annotation layers from the
processing of written data. However, the graphi-
cal query builder and the intuitive example-based
search could prove just as expedient for other
types of data, such as speech corpora, transcribed
and annotated for sub word features. This also al-
lows combined research on speech and text data,
e.g. the analysis of different tonal realizations of a
certain syntactic structure.

ICARUS for intonation allows to import
syllable-based prosodic features into ICARUS,
which can then be visualized and queried either

1ICARUS for intonation is written in Java and is
therefore platform independent. It is open source (un-
der GNU GPL) and we provide both sources and binaries
for download on http://www.ims.uni-stuttgart.
de/data/icarus.html

individually or in a combined search with e.g. syn-
tactic features or coreference information. The
latter targets several user groups: speech data ex-
perts can adjust fine-grained settings on pitch ac-
cent shapes in their queries and can easily add con-
straints on part-of-speech or syntax information,
while an expert user of dependency treebanks can
get a simple visualization of the intonation contour
of a sentence.

Furthermore ICARUS focuses on automatic an-
notations to allow for search on large data sets.
Thus ICARUS for intonation’s main features for
prosodic search are based on PaIntE, a parametric
intonation model (Möhler, 1998; Möhler, 2001).
So far, most data in intonation research is man-
ually annotated, which is a very time consuming
task: the time for annotating speech data is many
times higher than the real time of the audio record-
ing. For example the Tones and Break Indices
(ToBI) system for American English (Beckman
and Hirschberg, 1999) takes experienced annota-
tors about 100-200 times the real time (Syrdal et
al., 2001). While manual annotations for pitch
accents and prosodic phrase boundaries can also
be imported, our main goal with this module is
to provide intonation researchers with a customiz-
able tool to conduct thorough studies on very large
sets of only automatically annotated speech data.

In Sections 2 and 3 we introduce the PaIntE
model and describe the current input format for
the data importer. Section 4 demonstrates several
visualization functionalities, and Section 5 dis-
cusses the search facilities, including dependency
and intonation as well as coreference and intona-
tion queries. After discussing some related work
in Section 6 we conclude in Section 7.

2 The PaIntE Model

The PaIntE model (Möhler, 1998; Möhler, 2001)
approximates a peak in the F0 contour by em-
ploying a model function operating on a 3-syllable

25

a
1

a
2

H
z

time (syllable−normalized)

Figure 1: The PaIntE model function and its pa-
rameters. Figure adapted from (Möhler, 2001).

window. There are 6 free parameters in the func-
tion term which are set by the model so that the
actual F0 shape is fit best. They are linguistically
meaningful: parameter b locates the peak within
the 3-syllable window, parameter d encodes its ab-
solute height. The remaining parameters specify
the steepness and amplitude of the rise before, and
the fall after the peak (parameters a1 and a2 for
the steepness and c1/c2 for the amplitude).

Figure 1 illustrates the function. It displays the
syllable for which the parametrization is carried
out (σ∗) and its immediate neighbors. The x-axis
indicates time (normalized for syllable duration,
the current syllable spans from 0 to 1) and the y-
axis displays the fundamental frequency in Hertz.
The PaIntE model has been used for the model-
ing of different languages, e.g. Norwegian, Ital-
ian, German and English (Cosi et al., 2002; Kelly
and Schweitzer, in press; Schweitzer et al., 2015).

3 Data Representation

ICARUS for intonation ships with reader imple-
mentations for two very different formats. One
is an extended version of the format used for the
2011 and 2012 CoNLL shared tasks (Pradhan et
al., 2011; Pradhan et al., 2012) with a number of
additional columns to accommodate features for
the syllable level. This format stores all annota-
tions corresponding to a word token in one line
and packs syllable features into a list separated
by pipe-characters (’|’). To address syllable cen-
tric data like the typical output of speech process-
ing systems, a second flexible tabular format was
specified where each line of text corresponds to a
single syllable and a global header describes the
content of all columns and how to read and map
them to the internal data model of ICARUS.

Figure 2: PaIntE Editor currently displaying 2
curves and their respective parameters. The lower
section shows saved and named prototypes.

To enable audio playback functionality
ICARUS for intonation requires access to the
appropriate sound files. In both formats described
above, special properties define the name of a
sound file to be used for playback. Timestamp
values on various levels (syllable, word, sentence
or document) point to the respective section in the
audio data, which currently is required to be in the
Waveform Audio File Format (*.wav files).

4 Visualization

Since the ICARUS for intonation module is build
on the data model used for corpora with corefer-
ence annotations in ICARUS, existing visualiza-
tions for coreference data can be used. However,
they make no use of syllable level features and
do not provide playback functionality. Therefore
a couple of new visualizations have been imple-
mented, adding visual information about PaIntE
curves in several levels of granularity.

4.1 PaIntE Editor
To get familiar with the visualization of PaIntE pa-
rameters the PaIntE Editor (Figure 2) offers users
with little or no knowledge about PaIntE a starting
point to directly see the impact of changes to cer-
tain parameters. In this editor the user can define
multiple PaIntE curves either from scratch or by
importing them from real examples in a corpus.
Changes to individual parameters can be applied
via sliders or input fields and are displayed in real-
time. Additionally a persistent storage of PaIntE
curves is provided where the user can save param-
eter sets that are of interest to him along with a
description and identifier, the latter of which can
be used when searching (see Section 5).

4.2 Curve Preview
For all visualizations dealing with PaIntE curves
ICARUS for intonation provides a compact “pre-

26

view” on the sentence level (lower parts of Fig-
ures 3 and 4b). Instead of drawing the full curves
for all syllables, only syllables in which a peak
was found (based on the peak’s timing encoded in
the PaIntE parameter b) are displayed. The visual-
ization of the curve then only uses the amplitudes
of rise and fall and the absolute height of the peak
(c1, c2 and d). Since the user can freely customize
the filter window for the peak this curve preview
offers a fast way to spot interesting parts of the F0
contour when exploring data manually.

4.3 Document Outline
Figure 3 shows parts of the main entry point for
manual exploration in ICARUS for intonation.
Having selected a section of the corpus the user
wishes to inspect (with sentences grouped into
documents in the left section of the figure) he then
gets a detailed outline of the contents of that doc-
ument using one of several available presentation
modes. The default visualization for data holding
PaIntE annotations arranges the document’s con-
tent one sentence per line, making use of the above
mentioned curve preview to provide the user with
a very compact overview of an entire document.
For each sentence a detail panel can be unfolded
which renders the complete PaIntE curves above
the preview area. Several aspects of the visualiza-
tion are highly customizable (like the number of
words to show detailed curves for) and the user
can select the content of the detail panel by mov-
ing a slider through the sentence.

An important feature of the Document Outline
is the fine-grained playback functionality. The
user is free to play a variety of sections of the
sound data linked to the document currently being
displayed. Speaker buttons at the left border play
predefined parts of the sound data like sentences or
the current content of a detail panel. By clicking
on individual word or syllable labels in the detail
panel the playback can be selected even finer.

4.4 Sentence Outline
When only single sentences are visualized,
ICARUS for intonation displays a more detailed
outline showing the PaIntE curves for all syllables
in the sentence grouped by the surrounding words.
In Figure 4b part of a sentence is visualized in this
way (the screenshot also contains visual highlight-
ing as its content is the result of a search).

In contrast to the more condensed document
outline, this visualization offers a great deal more

space for additional information on the syllable
level to be displayed. As for playback function-
ality it offers granularity similar to the document
outline, allowing the user to play the entire sen-
tence or restrict it to individual words or syllables.

4.5 Label Patterns

Both formats currently read by ICARUS for in-
tonation can contain more information on the
syllable and word level than can be presented
to the user without overloading the visualiza-
tion. Therefore the two visualizations described
above make heavy use of so called label pat-
terns to produce the actual text displayed at var-
ious locations. A label pattern is a string de-
scribing a format according to which a certain
text should be created. Expressions of the form
“{<level>:<property>}” define where informa-
tion extracted from the visualized data should be
inserted. The <level> specifies the level of data
to query ({syl,word,sent,doc} for the syllable,
word, sentence and document levels). For example
the default pattern “{word:form}\n{word:pos}”,
used in the Document Outline (see Section 4.3) to
display the text for a sentence, extracts the surface
form and part-of-speech tag for a word and places
them below each other as shown in Figure 3. The
user can freely define the default patterns for a
number of locations as well as change the patterns
used for the active visualization on the fly. Besides
directly extracting data and displaying it as text,
patterns offer additional options that define how to
convert e.g. numerical values into strings or how
to post process or aggregate generated texts. How-
ever, going into details of the pattern engine is be-
yond the scope of this paper.

5 Search

ICARUS for intonation augments both the coref-
erence and dependency search facilities already
available in ICARUS by adding access to vari-
ous syllable features and implementing multiple
specialized search constraints based on the PaIntE
model. For example the user can search for prede-
fined F0 contours (rise, fall, rise-fall or
unaccented) based on customizable criteria or
use one of several similarity measures available,
like Euclidean distance or cosine similarity.

Sets of PaIntE parameters can either be defined
explicitly by listing all values or by referencing a
previously saved prototype from the PaIntE Editor

27

Figure 3: Visualization of the first few sentences in a document with preview curves painted above the
raw text outline. The top sentence has its detail panel unfolded, showing PaIntE curves for all syllables
of a selected number of words.

by name (see Section 4.1). The ICARUS search
engine allows queries to be created either graphi-
cally (by creating nodes and attaching constraints
to them) or textually via a simple query language
(Gärtner et al., 2013).

The following two sections outline some exam-
ple use cases that combine prosodic features with
structural information on different layers for anal-
ysis and Section 5.3 shows some of the similar-
ity measures used for searching. Example data in
those sections is taken from the DIRNDL corpus
(Eckart et al., 2012) with coreference information
(Björkelund et al., 2014) and some added features.

5.1 Syntax and Intonation
As part of a recent study (Riester and Pio-
ntek, in press) adjective-noun sequences from the
DIRNDL corpus have been analyzed based on
their tonal realization. Of interest in this study
concerning relative givenness (Wagner, 2006)
were those adjective-noun sequences where the
adjective was tonally more prominent than the ad-
jacent noun. An example of how to find them is
shown in Figure 4. The query (Figure 4a) will
match adjectives (ADJA) adjacent to a following
noun (NN) which must not have another dependent
that is either a modifying noun or name (NE). The
results are presented to the user using the detailed
Sentence Outline (Figure 4b) from Section 4.4.

5.2 Coreference and Intonation
Besides finding exact matches in a data set the
search engine in ICARUS can be used to analyze
value distributions for an annotation. Using the

query in Figure 5a the search engine is asked to
look for mentions the size of up to 2 words that
are not the root of a coreference chain. The spe-
cial grouping operator <*> results in the creation
of a frequency list (Figure 5b) over the Boolean
tonal prominence property (which purely relies on
the peak excursion with a customizable threshold)
of the head word of each mention that was found
based on the above constraints. By clicking on one
of the entries in this list the user will then be pre-
sented with all the instances that contributed to the
respective frequency for further exploration.

5.3 Similarity Search
The continuous nature of the PaIntE parameters
makes using absolute values to search for curve
forms very impractical. Therefore ICARUS for
intonation provides a collection of similarity mea-
sures and other constraints that can be used to find
syllables with PaIntE curves similar to a given pro-
totype. Most of them are customizable by the user
and investigation and refinement of the available
similarity measures is subject of ongoing work.

Figure 6 shows an example of using co-
sine similarity to find instances in the data
set that are similar to a defined prototype
curve. In this case the first syllable of the
accented word “Steinmeier” was found to be
of interest and saved in the PaIntE editor with
the identifier prototype stein. The query
[painteAngle$"$prototype stein"<="5.0"]

then looks for PaIntE curves which do not differ
from the prototype by more than 5 degrees.

When using PaIntE curves as part of a search

28

(a) graphical query

(b) result outline with highlighting

Figure 4: Example search query combining syntax and intonation constraints and an excerpt of the
corresponding result outline.

(a) (b)

Figure 5: Simple search combining coreference
and intonation features. It is meant to investigate
the distribution of “tonally prominent” mentions
that are given (already introduced) in a discourse.

(a) (b)

Figure 6: Prototype of a PaIntE curve as found in
the data and an example result of a search using
cosine similarity.

constraint the corresponding result visualization
will render those curves when highlighting result
instances as can be seen on the first peak (dashed
blue curve) in Figures 6b. This provides the user
with accurate information on how “visually close”
a match is towards the used constraints.

6 Related Work

A number of well established tools exist for visual-
ization of text corpora annotated with dependency
or coreference, many of which have been dis-
cussed in other ICARUS related papers (Gärtner
et al., 2013; Gärtner et al., 2014). In terms of
search functionality those tools offer a broad range
of complexity, ranging from string-searching on
surface forms2 up to queries on multi-level anno-

2http://code.google.com/p/whatswrong/

tations (Zeldes et al., 2009; Pajas and Štěpánek,
2009). However, they do not support a dedicated
search and visualization for prosodic syllable level
annotations. Tools like ELAN (Wittenburg et al.,
2006) provide an interface for adding (flat) anno-
tations to multi-modal corpora, but focus on audio
and video data. More importantly, ICARUS for
intonation is so far the first tool using the PaIntE
model for F0 contour visualizations, a task pre-
viously worked around via general curve plotting
tools like R3 and also is first to provide a collection
of search constraints dedicated to PaIntE curves.

Eckart et al. (2010) describe a database that
serves as a generic query tool for multiple anno-
tation layers. It allows to take annotations of tonal
features into account and has also been tested with
the DIRNDL corpus. However, this database has
been designed as an expert system, e.g. for inter-
nal use in projects that create annotations. It does
not provide any visualization or query functions
besides basic SQL queries and no sound playback.

The focus on preprocessed or completely anno-
tated data in ICARUS distinguishes it from typical
tools in the domain of Spoken Document Retrieval
(SDR) or Spoken Term Detection (STD). These
use automatic speech recognition and information
retrieval technologies in order to prepare and pro-
cess audio data (Garofolo et al., 2000).

7 Conclusion

We presented ICARUS for intonation, a flexible
visualization and search tool for multi-modal (text
and speech) data. The tool augments existing vi-
sualization and search features of ICARUS to han-
dle prosodic annotations and introduces a collec-

3http://www.r-project.org

29

tion of novel visualizations and search functional-
ities. In addition to the highly customizable visu-
alizations it allows for a very fine-grained play-
back of speech data for displayed sections of a
corpus directly from within the graphical user in-
terface. The built-in search engine lets the user
combine prosodic constraints with constraints of
other annotation layers like syntax or coreference,
thereby supporting complex search queries, and it
features aggregated result views. Being based on
the ICARUS platform’s plugin-engine, the module
can be extended to cover additional data formats.

Acknowledgments

This work was funded by the German Federal
Ministry of Education and Research (BMBF) via
CLARIN-D, No. 01UG1120F and the German
Research Foundation (DFG) via the SFB 732,
project INF.

References
Mary Beckman and Julia Hirschberg. 1999. The ToBI

Annotation Conventions. http://www.ling.
ohio-state.edu/˜tobi/ame_tobi/
annotation_conventions.html.

Anders Björkelund, Kerstin Eckart, Arndt Riester,
Nadja Schauffler, and Katrin Schweitzer. 2014. The
Extended DIRNDL Corpus as a Resource for Coref-
erence and Bridging Resolution. In LREC.

P. Cosi, C. Avesani, F. Tesser, R. Gretter, and F. Pi-
anesi. 2002. A modified “PaIntE” model for Ital-
ian TTS. In Speech Synthesis, 2002. Proceedings of
2002 IEEE Workshop on, pages 131 – 134.

Kerstin Eckart, Kurt Eberle, and Ulrich Heid. 2010.
An Infrastructure for More Reliable Corpus Analy-
sis. In LREC: Workshop on Web Services and Pro-
cessing Pipelines in HLT, pages 8–14, Valletta.

Kerstin Eckart, Arndt Riester, and Katrin Schweitzer.
2012. A Discourse Information Radio News
Database for Linguistic Analysis. In Christian
Chiarcos, Sebastian Nordhoff, and Sebastian Hell-
mann, editors, Linked Data in Linguistics, pages 65–
75. Springer, Heidelberg.

John S. Garofolo, Cedric G. P. Auzanne, and Ellen M.
Voorhees. 2000. The TREC Spoken Document Re-
trieval Track: A Success Story. In in Text Retrieval
Conference (TREC) 8, pages 16–19.

Markus Gärtner, Gregor Thiele, Wolfgang Seeker, An-
ders Björkelund, and Jonas Kuhn. 2013. ICARUS
– An Extensible Graphical Search Tool for Depen-
dency Treebanks. In ACL: System Demonstrations,
pages 55–60, Sofia, Bulgaria.

Markus Gärtner, Anders Björkelund, Gregor Thiele,
Wolfgang Seeker, and Jonas Kuhn. 2014. Visualiza-
tion, Search, and Error Analysis for Coreference An-
notations. In ACL: System Demonstrations, pages
7–12, Baltimore, Maryland.

Niamh Kelly and Katrin Schweitzer. in press. Examin-
ing Lexical Tonal Contrast in Norwegian Using Into-
nation Modelling. In Proceedings of the 18th Inter-
national Congress of Phonetic Sciences, Glasgow,
UK.

Gregor Möhler. 1998. Describing intonation with a
parametric model. In ICSLP, volume 7, pages 2851–
2854.

Gregor Möhler. 2001. Improvements of the PaIntE
model for F0 parametrization. Technical report, In-
stitute of Natural Language Processing, University
of Stuttgart. Draft version.

Petr Pajas and Jan Štěpánek. 2009. System for
Querying Syntactically Annotated Corpora. In ACL-
IJCNLP: Software Demonstrations, pages 33–36,
Suntec, Singapore.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen
Xue. 2011. CoNLL-2011 Shared Task: Modeling
Unrestricted Coreference in OntoNotes. In CoNLL:
Shared Task, pages 1–27, Portland, Oregon, USA.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In EMNLP-
CoNLL: Shared Task, pages 1–40, Jeju Island, Ko-
rea.

Arndt Riester and Jörn Piontek. in press. Anarchy in
the NP. When new nouns get deaccented and given
nouns don’t. Lingua.

Katrin Schweitzer, Michael Walsh, Sasha Calhoun,
Hinrich Schütze, Bernd Möbius, Antje Schweitzer,
and Grzegorz Dogil. 2015. Exploring the relation-
ship between intonation and the lexicon: Evidence
for lexicalised storage of intonation. Speech Com-
munication, 66(0):65–81.

Ann K. Syrdal, Julia Hirschberg, Julie McGory, and
Mary Beckman. 2001. Automatic ToBI Predic-
tion and Alignment to Speed Manual Labeling of
Prosody. Speech Commun., 33(1-2):135–151.

Michael Wagner. 2006. Givenness and Locality.
In Masayuki Gibson and Jonathan Howell, editors,
Proceedings of SALT XVI, pages 295–312.

P. Wittenburg, H. Brugman, A. Russel, A. Klassmann,
and H. Sloetjes. 2006. ELAN: a Professional
Framework for Multimodality Research. In LREC.

Amir Zeldes, Julia Ritz, Anke Lüdeling, and Christian
Chiarcos. 2009. ANNIS: A Search Tool for Multi-
Layer Annotated Corpora. In Proceedings of Cor-
pus Linguistics.

30

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 31–36,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

NEED4Tweet: A Twitterbot for Tweets Named Entity Extraction and
Disambiguation

Mena B. Habib
Database Chair

University of Twente
Enschede, The Netherlands

m.b.habib@ewi.utwente.nl

Maurice van Keulen
Database Chair

University of Twente
Enschede, The Netherlands

m.vankeulen@utwente.nl

Abstract

In this demo paper, we present
NEED4Tweet, a Twitterbot for named en-
tity extraction (NEE) and disambiguation
(NED) for Tweets. The straightforward
application of state-of-the-art extraction
and disambiguation approaches on infor-
mal text widely used in Tweets, typically
results in significantly degraded perfor-
mance due to the lack of formal structure;
the lack of sufficient context required;
and the seldom entities involved. In this
paper, we introduce a novel framework
that copes with the introduced challenges.
We rely on contextual and semantic
features more than syntactic features
which are less informative. We believe
that disambiguation can help to improve
the extraction process. This mimics the
way humans understand language.

1 Introduction

Twitter is an important source for continuously
and instantly updated information. It contains a
large amount of unstructured information about
users, locations, events, etc. Shortness and infor-
mality of Tweets are challenges for Natural Lan-
guage Processing (NLP) tasks. Information Ex-
traction (IE) is the NLP field of research that is
concerned with obtaining structured information
from unstructured text. IE systems attempt to in-
terpret human language text in order to extract in-
formation about different types of events, entities,
or relationships. Named entity extraction (NEE) is
a subtask of IE that aims to locate phrases (men-
tions) in the text that represent names of persons,
organizations, or locations regardless of their type.
Named entity disambiguation (NED) is the task of
determining which concrete person, place, event,
etc. is referred to by a mention. Wikipedia articles
are widely used as an entity’s reference.

Challenges: NEE and NED in informal text are
challenging. Here we summarize the challenges of
NEE and NED for Tweets:

• The informal language widely used in Tweets
makes the extraction process more difficult.
Proper capitalization is a key feature that the
state-of-the-art NEE approaches have relied
on. However, this feature gets less atten-
tion from Twitter users when they write their
Tweets.

• The limited length (140 characters) of Tweets
forces the senders to provide dense informa-
tion by using acronyms and informal lan-
guage. This makes both the extraction and
the disambiguation processes more complex.

• The limited coverage of a Knowledge Base
(KB) is another challenge facing NED for
tweets. According to (Lin et al., 2012), 5 mil-
lion out of 15 million mentions on the Web
cannot be linked to Wikipedia. This means
that relying only on a KB for NED leads to
around 33% loss in the disambiguated enti-
ties. This percentage is higher on Twitter be-
cause of its social nature where users also dis-
cuss information about seldom entities.

• The processes of NEE and NED involve
degrees of uncertainty. For example, in
the tweet “history should show that bush jr
should be in jail or at least never should
have been president”, for some NEE systems,
it may be uncertain whether the word ‘jr’
should be part of the mention bush or not.
This motivates us to fundamentally consider
sets of possible alternatives in an early stage
of the extraction and the disambiguation pro-
cesses and do a later filtration instead of mak-
ing hard decisions from the beginning.

• Named entity (NE) representation in KBs
poses another NED challenge. The YAGO

31

KB (Suchanek et al., 2007) uses the
Wikipedia anchor text as a possible mention
representation for named entities. However,
there may be more representations that do
not appear in the Wikipedia anchor text, but
are meant to refer to the entity because of a
spelling mistake or because of a new abbre-
viation for the entity.

In this demo, we introduce NEED4Tweet, a
Twitterbot for a combined system for NEE and
NED in Tweets that uses their interdependency
and mimics how humans exploit it in language
understanding. The system is based on our work
(Habib and van Keulen, 2015). We use a generic
open world approach for NED in Tweets for any
named entity even though it has no Wikipedia ar-
ticle. Mentions are disambiguated by assigning
them to either a Wikipedia article or a home page.
We handle the uncertainty involved in the extrac-
tion process by considering possible alternatives
in an early stage then evaluate these alternatives
later based on disambiguation outcomes. The pro-
posed approach is shown to be robust against the
coverage of KBs and the informality of the used
language.

2 Related work

2.1 Named Entity Disambiguation

NED in Web documents is a topic that is well
covered in literature. Recently, researchers have
attempted NED for informal short text such as
Tweets. Most of this research investigate the prob-
lem of entity-oriented disambiguation. Within this
theme, (Spina et al., 2011), (Christoforaki et al.,
2011), (Yerva et al., 2012) and (Delgado et al.,
2012) focus on the task of filtering Tweets con-
taining a given a mention of topic-centric entity,
depending whether the Tweet is actually related to
the entity or not. They develop a set of features
(co-occurrence, Web-based features, collection-
based features) to find keywords for positive and
negative cases.

Similar to our problem discussed in Section 3.2,
is the problem of entity home page finding, which
was part of the TREC Web and entity tracks.
One of the proposed approaches for this task was
(Westerveld et al., 2002). The authors combine
content information with other sources as diverse
as inlinks, URLs and anchors to find an entry page.
Although the TREC problem looks similar to ours,

the Tweets’ short informal nature makes it more
tricky to find an entity reference page.

2.2 Named Entity Extraction

Many tools and services have been developed for
the NEE task in web documents written in for-
mal language. In spite of this, few research efforts
studied NEE in Tweets. In (Ritter et al.,), the au-
thors built an NLP pipeline to perform NEE. The
pipeline involves part-of-speech tagging, shallow
parsing, and a novel SVM classifier that predicts
the informativeness of capitalization in a Tweet. It
trains a Conditional Random Fields (CRF) model
with all the aforementioned features for NEE. For
classification, LabeledLDA is applied where entity
types are used as classes. A bag-of-words-based
profile is generated for each entity type, and the
same is done with each extracted mention. Clas-
sification is done based on the comparison of the
two.

The contextual relationship between the micro-
posts is considered by (Jung, 2012). The pa-
per proposes merging the microtexts by discov-
ering contextual relationship between the micro-
texts. A group of microtexts contextually linked
with each other is regarded as a microtext clus-
ter. Once this microtext cluster is obtained, they
expect that the performance of NEE can be better.
The authors provide some suggestions for Contex-
tual closure, Microtext cluster, Semantic closure,
Temporal closure, and Social closure. Those clo-
sures are used by Maximum Entropy for the NER
task.

Similarly, (Li et al., 2012) exploits the gregari-
ous property in the local context derived from the
Twitter stream in an unsupervised manner. The
system first leverages the global context obtained
from Wikipedia and Web N-Gram corpus to par-
tition Tweets into valid segments (phrases) using
a dynamic programming algorithm. Each such
Tweet segment is a candidate NE. Afterwards, a
ranking approach tries to rank segments according
to their probability of being an NE. The highly-
ranked segments have a higher chance of being
true NEs. Each segment is represented as a node
in a graph, and using the Wikipedia and the con-
text of Tweet (adjacent nodes (segments)), a score
is assigned to that segment if it is an NE or not.

32

Extraction
Phase1: NE Candidates

Generation

Extraction
Phase2: NE Candidates

Filtering
Disambiguation

Our Approach For NEE & NED

Extraction Disambiguation

Traditional Approaches For NEE & NED

Figure 1: Traditional approaches versus our approach for NEE and NED.

3 NEED4Tweet

Although the logical order for a traditional IE
system is to complete the extraction process be-
fore commencing with the disambiguation pro-
cess, we start with an initial extraction-like phase
aiming for high recall (i.e. aiming to find as many
reasonable mention candidates as possible). We
then attempt disambiguation for all the extracted
mentions. Finally we classify extracted mention
candidates into true and false NE using features
(clues) derived from the results of the disambigua-
tion phase such as KB information and entity co-
herency. Figure 1 illustrates our general approach
contrasted with the traditional process.

The potential of this order is that the disam-
biguation step gives extra clues (such as Entity-
Tweet context similarity) about each NE candi-
date. This information can help in the decision
whether the candidate is a true NE or not.

3.1 Mention Candidates Generation

This phase is aiming to find as many reasonable
mention candidates as possible. For this task, we
unionize the output of the following mention can-
didates generation methods:

• Tweet Segmentation: Tweet text is seg-
mented using the segmentation algorithm de-
scribed in (Li et al., 2012). Each segment is
considered a mention candidate.

• KB Lookup: We scan all possible n-grams of
the Tweet against the mentions-entities table
of YAGO KB. N-grams that matches a YAGO
mention are considered mention candidates.

3.2 Disambiguation

For NED, we use a generic open world NED
approach where mentions are disambiguated by
assigning them to either a Wikipedia article
(Wikipedia entity) or a home page (non-Wikipedia
entity) (Habib and van Keulen, 2013). The NED
approach is composed of three modules; matcher,
feature extractor, and SVM ranker.

• Matcher: This module is responsible for
finding the possible candidate entities of a
given mention. For this task, we use the
mention-entity table of YAGO KB to get the
possible entities for the given mention. Fur-
thermore, we use the mention as an input
query for the Google API. The top 18 Web
pages retrieved by Google are also consid-
ered candidate entities for that mention.

• Feature Extractor: For each entity page
candidate, we extract a set of context and
URL features. Context features (such as
language model and overlapping terms be-
tween tweet and document) measure the
context similarity between mention context
(the tweet text) and entity candidates’ home
pages. URL features (such as path length and
mention-URL string similarity) measure the
likelihood of the candidate URL being a rep-
resentative of the entity home page. These
features give indicators on how likely the
candidate entity page could be a representa-
tive to the mention.

• SVM Ranker: After extracting the afore-
mentioned set of features, SVM classifier is
used to rank candidate entity pages of a men-
tion. We consider the top ranked page to be

33

the entity of the input mention. In this demo,
we use an SVM which is trained on the two
NED datasets presented in (Habib and van
Keulen, 2013).

3.3 Mention Candidates Filtering
After generating the mentions candidate list, we
apply our disambiguate approach to disambiguate
each mention candidate. After that, we use another
SVM classifier to predict which mention candi-
dates are true positives and which ones are not. For
each mention candidate, we extract the following
set of features :

• Shape Features: If the mention candidate is
initially or fully capitalized and if it contains
digits.

• Probabilistic Features:

– The joint and conditional probability of
the mention candidate obtained from the
Microsoft Web N-Gram service.

– The stickiness of the segment as de-
scribed in (Li et al., 2012).

– The segment frequency over around
5 million tweets1.

• KB Features:

– Whether the segment appears in Word-
Net.

– Whether the segment appears in the
YAGO mention-entity look-up table.

• Disambiguation Features: All the features
described in Section 3.2 derived from the en-
tity page linked to the given mention candi-
date.

In this demo, we use an SVM which is trained
on four different NEE datasets presented in (Ritter
et al.,), (Basave et al., 2013), (Locke and Martin,
2009), and (Habib and van Keulen, 2012).

3.4 Final NE Set Generation
Beside the SVM, we also use a trained CRF model
for NEE. We use the CRF model described in (Zhu
et al., 2014) trained on the four collections men-
tioned in Section 3.3. To train the CRF, Tweet text
is tokenized using a special tweet tokenizer (Gim-
pel et al., 2011) and the following features are ex-
tracted and used for training:

1http://wis.ewi.tudelft.nl/umap2011/ +
TREC 2011 Microblog track collection.

(a) Example 1: Tweet for testing both NEE and NED.

(b) Example 2: Tweet for testing NED only.

(c) Tweet reply.

(d) Results of example 1

(e) Results of example 2

Figure 2: NEED4Tweet Twitterbot

• The Part of Speech (POS) tag of the token
provided by a special POS tagger designed
for tweets (Gimpel et al., 2011).

• Whether the token’s initial is capitalized.

• Whether the token’s characters are all capi-
talized.

• Whether the token has any capital letters.

We consider the best annotation set for the tweet
given by the CRF model as true positives. To gen-
erate the final NE set, we take the union of the
CRF annotation set (after being disambiguated)
and the SVM results, after removing duplicate and
overlapped extractions. To resolve the overlapped
mentions, we select the mention that appears in
Yago KB. If both mentions appear in Yago or both
don’t, we select the one with the longer length.

The idea behind this combination is that the
SVM and the CRF work in a different way. The

34

former is a distance based classifier that uses nu-
meric features for classification which CRF can
not handle, while the latter is a probabilistic model
that can naturally consider state-to-state depen-
dencies and feature-to-state dependencies. On the
other hand, SVM does not consider such depen-
dencies. The hybrid approach of both makes use
of the strength of each. While the CRF makes
better use of the traditional features like POS and
Capitalization, the SVM makes better use of the
disambiguation (coherency) features.

4 Twitterbot

A Twitterbot is a program used to produce au-
tomated posts on the Twitter microblogging ser-
vice. We developed our system as a Twitter-
bot which receives the Tweet, processes it and
sends a reply message contains a link to a page
that shows the generated annotations. We use
Twitter API2 for both receiving the Tweets and
sending the replies. To use NEED4Tweet Twit-
terbot, one should send a Tweet contains either
the mention ‘@UT NEED4Tweet’ or the hashtag
‘#NEED4Tweet’ as shown in Figures 2(a) and 2(b)
respectively. Withing few seconds after sending
the tweet, the sender will get a reply Tweet (see
Figure 2(c)) that includes link to a simple HTML
page contains the generated annotations (see Fig-
ures 2(d) and 2(e)). The page contains a list of
the extracted mentions, their start offset in the
Tweet, and their linked entities. It is also possi-
ble to test only the disambiguation component by
manually coating the mentions required to be dis-
ambiguated using double square brackets ([[]])as
shown in Figure 2(b).

5 Evaluation

5.1 Data sets

To validate our approach, we use three collections
of tweets. The first two data sets are mainly de-
signed for a NER task. We manually construct the
NED ground truth by linking each NE to only one
appropriate entity page. We give higher priority to
Wikipedia pages. When no Wikipedia page exists
for a mention, we link it to a non-Wikipedia home
page or profile page.

The first data set (Locke collection) is the one
used in (Locke and Martin, 2009). The second
data set (Habib collection) is the one used in

2https://dev.twitter.com/

(a) Locke collection

Pre. Rec. F1
DBpedia Spotlight 0.1004 0.2669 0.1459
Stanford + AIDA 0.5005 0.2940 0.3704
NEED4Tweet 0.5455 0.5640 0.5546

(b) Habib collection

Pre. Rec. F1
DBpedia Spotlight 0.3711 0.5333 0.4377
Stanford + AIDA 0.7263 0.5569 0.6304
NEED4Tweet 0.6861 0.7157 0.7006

(c) #Microposts collection

Pre. Rec. F1
DBpedia Spotlight 0.1873 0.3349 0.2403
Stanford + AIDA 0.5092 0.2795 0.3609
NEED4Tweet 0.5337 0.5343 0.5339

Table 1: Combined evaluation of NEE and NED.

(Habib and van Keulen, 2012) which is relatively
small in the number of tweets but rich in the num-
ber of NEs. It is composed mainly from tweeted
news about sportsmen, celebrities, politics, etc.

The third data set (#Microposts collection)
is provided by the #Microposts Named Entity
Extraction & Linking (NEEL) Challenge (Cano
Basave et al., 2014). The NEEL Challenge task
required participants to build systems to extract
entity mentions from a tweet and to link the ex-
tracted mentions to DBpedia. Note that this data
set does not contain any non-Wikipedia entities.
We have done the mapping from the YAGO KB to
DBpedia by identifying the Wikipedia page as a
common property for the identical entities.

5.2 Experimental Results

In this experiment, we compare the performance
of NEED4Tweet against two competitors: AIDA3

and DBpedia Spotlight.4 AIDA is a disambigua-
tion system although it uses Stanford NER for
automatic NE extraction. We consider the com-
bination of Stanford NER and the AIDA disam-
biguation system as one competitor to our extrac-
tion and disambiguation system. DBpedia Spot-
light (Mendes et al., 2011) is a tool for automat-
ically annotating mentions of DBpedia resources
in text. We used DBpedia Spotlight through its
Annotate Web Service endpoint. We used the

3https://d5gate.ag5.mpi-sb.mpg.de/
webaida/

4https://github.com/dbpedia-spotlight/
dbpedia-spotlight/wiki

35

NESpotter implementation for the extraction con-
figuration. The results in Table 1 show the superi-
ority of NEED4Tweet over DBpedia Spotlight and
the combined Stanford and AIDA system. More
experimental results and analysis can be found in
(Habib and van Keulen, 2015).

6 Conclusion

In this demo paper, we present NEED4Tweet, a
Twitterbot for NEE and NED in tweets. The sys-
tem is composed of three phases. The first phase
aims to generate NE candidates with an emphasis
on achieving high recall. The second phase aims
to disambiguate all the candidates generated in the
first phase. For this task, we use a generic non-
entity oriented disambiguation approach. Men-
tions are disambiguated by assigning them to ei-
ther a Wikipedia article or a home page. Finally,
the third phase is to filter the NE candidates using
features derived from disambiguation and other
shape and KB features. The proposed approach
is shown to be robust against the coverage of KBs
and the informality of the used language.

References
Amparo Elizabeth Cano Basave, Andrea Varga,

Matthew Rowe, Milan Stankovic, and Aba-Sah
Dadzie. 2013. Making sense of microposts
(#msm2013) concept extraction challenge. In Mak-
ing Sense of Microposts (#MSM2013) Concept Ex-
traction Challenge, pages 1–15.

Amparo Elizabeth Cano Basave, Giuseppe Rizzo, An-
drea Varga, Matthew Rowe, Milan Stankovic, and
Aba-Sah Dadzie. 2014. Making sense of microp-
osts (#microposts2014) named entity extraction &
linking challenge. In Proc. of (#Microposts2014)
Workshop, pages 54–60.

Maria Christoforaki, Ivie Erunse, and Cong Yu. 2011.
Searching social updates for topic-centric entities.
In Proc. of exploreWeb 2011 Workshop, pages 34–
39.

A. D. Delgado, R. Mart’ınez, A. Pérez Garc’ıa-Plaza,
and V. Fresno. 2012. Unsupervised Real-Time com-
pany name disambiguation in twitter. In Proc. of
RAMSS 2012 Workshop, pages 25–28.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: annotation, features, and experiments. In
Proc. of ACL 2011, HLT ’11, pages 42–47.

Mena B. Habib and Maurice van Keulen. 2012. Unsu-
pervised improvement of named entity extraction in
short informal context using disambiguation clues.
In Proc. of SWAIE 2012 Workshop, pages 1–10.

Mena B. Habib and M. van Keulen. 2013. A generic
open world named entity disambiguation approach
for tweets. In Proc. of KDIR 2013, pages 267–276.

Mena B. Habib and Maurice van Keulen. 2015. Twit-
terneed: A hybrid approach for named entity extrac-
tion and disambiguation for tweets. To appear in the
journal of Natural Language Engineering.

Jason J. Jung. 2012. Online named entity recogni-
tion method for microtexts in social networking ser-
vices: A case study of twitter. Expert Syst. Appl.,
39(9):8066–8070.

Chenliang Li, Jianshu Weng, Qi He, Yuxia Yao, An-
witaman Datta, Aixin Sun, and Bu-Sung Lee. 2012.
Twiner: named entity recognition in targeted twitter
stream. In Proc. of SIGIR 2012, pages 721–730.

Thomas Lin, Mausam, and Oren Etzioni. 2012. En-
tity linking at web scale. In Proc. of AKBC-WEKEX
2012 Workshop, pages 84–88.

Brian Locke and James Martin. 2009. Named en-
tity recognition: Adapting to microblogging. Senior
Thesis, University of Colorado.

Pablo N. Mendes, Max Jakob, Andrés Garcı́a-Silva,
and Christian Bizer. 2011. Dbpedia spotlight: Shed-
ding light on the web of documents. In Proc. of I-
Semantics 2011, pages 1–8.

A. Ritter, S. Clark, Mausam, and O. Etzioni. Named
entity recognition in tweets: An experimental study.
In Proc. of EMNLP 2011, pages 1524–1534.

Damiano Spina, Enrique Amigó, and Julio Gonzalo.
2011. Filter keywords and majority class strate-
gies for company name disambiguation in twitter. In
Proc. of CLEF 2011, pages 50–61.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proc. of WWW 2007, pages 697–706.

Thijs Westerveld, Wessel Kraaij, and Djoerd Hiemstra.
2002. Retrieving web pages using content, links,
urls and anchors. In Tenth Text REtrieval Confer-
ence, TREC 2001, volume SP 500, pages 663–672.

Surender Reddy Yerva, Zoltán Miklós, and Karl
Aberer. 2012. Entity-based classification of twitter
messages. IJCSA, 9(1):88–115.

Zhemin Zhu, Djoerd Hiemstra, and Peter Apers. 2014.
Linear co-occurrence rate networks (l-crns) for se-
quence labeling. In Statistical language and speech
processing, volume 8791 of Lecture notes in com-
puter science, pages 185–196.

36

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 37–42,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

Visual Error Analysis for Entity Linking

Benjamin Heinzerling
Research Training Group AIPHES

Heidelberg Institute for
Theoretical Studies gGmbH

Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

benjamin.heinzerling@h-its.org

Michael Strube
Heidelberg Institute for

Theoretical Studies gGmbH
Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany
michael.strube@h-its.org

Abstract

We present the Visual Entity Explorer
(VEX), an interactive tool for visually ex-
ploring and analyzing the output of en-
tity linking systems. VEX is designed to
aid developers in improving their systems
by visualizing system results, gold anno-
tations, and various mention detection and
entity linking error types in a clear, con-
cise, and customizable manner.

1 Introduction

Entity linking (EL) is the task of automatically
linking mentions of entities (e.g. persons, loca-
tions, organizations) in a text to their correspond-
ing entry in a given knowledge base (KB), such as
Wikipedia or Freebase. Depending on the setting,
the task may also require detection of entity men-
tions1, as well as identifying and clustering Not-
In-Lexicon (NIL) entities.

In recent years, the increasing interest in EL, re-
flected in the emergence of shared tasks such as
the TAC Entity Linking track (Ji et al., 2014), ERD
2014 (Carmel et al., 2014), and NEEL (Cano et
al., 2014), has fostered research on evaluation met-
rics for EL systems, leading to the development of
a dedicated scorer that covers different aspects of
EL system results using multiple metrics (Hachey
et al., 2014).

Based on the observation that representations in
entity linking (mentions linked to the same KB
entry) are very similar to those encountered in

1This setting is called Entity Discovery and Linking
(EDL) in the TAC 2014/15 entity linking tracks, and En-
tity Recognition and Disambiguation (ERD) in the Microsoft
ERD 2014 challenge.

coreference resolution (mentions linked by coref-
erence relations to the same entity), these metrics
include ones originally proposed for evaluation of
coreference resolutions systems, such as the MUC
score (Vilain et al., 1995), B3 (Bagga and Bald-
win, 1998), and CEAF (Luo, 2005) and variants
thereof (Cai and Strube, 2010).

While such metrics, which express system per-
formance in numeric terms of precision, recall,
and F1 scores, are well-suited for comparing sys-
tems, they are of limited use to EL system devel-
opers trying to identify problem areas and compo-
nents whose improvement will likely result in the
largest performance increase.

To address this problem, we present the Visual
Entity Explorer (VEX), an interactive tool for vi-
sually exploring the results produced by an EL
system. To our knowledge, there exist no other
dedicated tools for visualizing the output of EL
systems or similar representations.

VEX is available as free, open-source soft-
ware for download at http://github.com/
noutenki/vex and as a web service at http:
//cosyne.h-its.org/vex.

In the remainder of this paper, we first give an
overview of VEX (Section 2), proceed to present
several usage examples and discuss some of the in-
sights gained from performing a visual error anal-
ysis (Section 3), then describe its implementation
(Section 4), before concluding and discussing fu-
ture work (Section 5).

2 The Visual Entity Explorer

After loading system results and gold standard an-
notations in TAC 2014 or JSON format, as well
as the original document text files, VEX displays

37

Figure 1: Screenshot of VEX’s main display, consisting of document list (left), entity selectors (bottom
right), and the annotated document text (top right).

gold annotations, correct results, and errors as
shown in Figure 1. The document to be analyzed
can be selected via the clickable list of document
IDs on the left. Located bottom right, the entity
selectors for gold, true positive, and false positive
entities (defined below) can be used to toggle the
display of individual entities2. The selected enti-
ties are visualized in the top-right main area.

Similarly to the usage in coreference resolution,
where a cluster of mentions linked by coreference
relations is referred to as an entity, we define en-
tity to mean a cluster of mentions clustered either
implicitly by being linked to the same KB entry
(in case of non-NIL mentions) or clustered explic-
itly by performing NIL clustering (in case of NIL
mentions).

2For space reasons, the entity selectors are shown only
partially.

2.1 Visualizing Entity Linking Errors

Errors committed by an EL system can be broadly
categorized into mention detection errors and link-
ing/clustering errors. Mention detection errors, in
turn, can be divided into partial errors and full er-
rors.

2.1.1 Partial Mention Detection Errors
A partial mention detection error is a system men-
tion span that overlaps but is not identical to any
gold mention span. In VEX, partial mention detec-
tion errors are displayed using red square brackets,
either inside or outside the gold mention spans sig-
nified by golden-bordered rectangles (cf. the first
and last mention in Figure 2).

2.1.2 Full Mention Detection Errors
A full mention detection error is either (a) a sys-
tem mention span that has no overlapping gold
mention span at all, corresponding to a false pos-
itive (FP) detection, i.e. a precision error, or (b) a

38

Figure 2: Visualization of various mention detec-
tion and entity linking error types (see Section 2
for a detailed description).

gold mention span that has no overlap with any
system mention span, corresponding to a false
negative (FN) detection, i.e. a recall error. In VEX,
FP mention detections are marked by a dashed red
border and struck-out red text (cf. the second men-
tion in Figure 2), and FN mention detections by a
dashed gold-colored border and black text (cf. the
third mention in Figure 2). For further emphasis,
both gold and system mentions are displayed in
bold font.

2.1.3 Linking/Clustering Errors
Entities identified by the system are categorized
– and possibly split up – into True Positive (TP)
and False Positive (FP) entities. The mentions of
system entities are connected using dashed green
lines for TP entities and dashed red lines for FP en-
tities, while gold entity mentions are connected by
solid gold-colored lines. This choice of line styles
prevents loss of information through occlusion in
case of two lines connecting the same pair of men-
tions, as is the case with the first and last mention
in Figure 2.

Additionally, the text of system mentions linked
to the correct KB entry or identified correctly as
NIL is colored green and any text associated with
erroneous system entity links red.

3 Usage examples

In this section we show how VEX can be used to
perform a visual error analysis, gaining insights
that arguably cannot be attained by relying only
on evaluation metrics.

3.1 Example 1
Figure 2 shows mentions of VULCAN INC.3 as
identified by an EL system (marked red and green)

3In this paper, SMALL CAPS denote KB entries.

Figure 3: Visualization showing a mention detec-
tion error and an annotation error (see Section 3
for a description).

and the corresponding gold annotation4 (marked
in gold color). Of the three gold mentions, two
were detected and linked correctly by the system
and are thus colored green and connected with
a green dashed line. One gold mention is sur-
rounded with a gold-colored dashed box to indi-
cate a FN mention not detected by the system at
all. The dashed red box signifies a FP entity, re-
sulting from the system having detected a mention
that is not listed in the gold standard. However,
rather than a system error, this is arguably an an-
notation mistake.

Inspection of other entities and other documents
reveals that spurious FPs caused by gold anno-
tation errors appear to be a common occurrence
(see Figure 3 for another example). Since the su-
pervised machine learning algorithms commonly
used for named entity recognition, such as Con-
ditional Random Fields (Sutton and McCallum,
2007), require consistent training data, such incon-
sistencies hamper performance.

3.2 Example 2

From Figure 2 we can also tell that two men-
tion detection errors are caused by the inclusion
of sentence-final punctuation that doubles as ab-
breviation marker. The occurrence of similar cases
in other documents, e.g. inconsistent annotation of
“U.S.” and “U.S” as mentions of UNITED STATES,
shows the need for consistently applied annotation
guidelines.

3.3 Example 3

Another type of mention detection error is shown
in Figure 3: Here the system fails to detect “wash-
ington” as a mention of WASHINGTON, D.C.,

4The gold annotations are taken from the TAC 2014 EDL
Evaluation Queries and Links (V1.1).

39

likely due to the non-standard lower-case spelling.

3.4 Example 4

The visualization of the gold mentions of PAUL

ALLEN in Figure 1 shows that the EL system sim-
plistically partitioned and linked the mentions ac-
cording to string match, resulting in three system
entities, of which only the first, consisting of the
two “Paul Allen” mentions, is a TP. Even though
the four “Allen” mentions in Figure 1 align cor-
rectly with gold mentions, they are categorized as
a FP entity, since the system erroneously linked
them to the KB entry for the city of Allen, Texas,
resulting in a system entity that does not intersect
with any gold entity. The system commits a simi-
lar mistake for the mention “Paul”.

3.5 Insights

This analysis of only a few examples has already
revealed several categories of errors, either com-
mitted by the EL system or resulting from gold
annotation mistakes:

• mention detection errors due to non-standard
letter case, which suggest incorporating true-
casing (Lita et al., 2003) and/or a caseless
named entity recognition model (Manning et
al., 2014) into the mention detection process
could improve performance;

• mention detection errors due to off-by-one
errors involving punctuation, which sug-
gest the need for clear and consistently ap-
plied annotation guidelines, enabling devel-
opers to add hard-coded, task-specific post-
processing rules for dealing with such cases;

• mention detection errors due to missing gold
standard annotations, which suggest per-
forming a simple string match against already
annotated mentions to find cases of unanno-
tated mentions could significantly improve
the gold standard at little cost;

• linking/clustering errors, likely due to the
overly strong influence of features based on
string match with Wikipedia article titles,
which in some cases appears to outweigh
features designed to encourage clustering of
mentions if there exists a substring match be-
tween them, hence leading to an erroneous
partitioning of the gold entity by its various
surface forms.

4 Implementation

In this section we describe VEX’s implementation
and some of the design decisions made to achieve
an entity visualization suited for convenient error
analysis.

VEX consists of three main components. The
input component, implemented in Java 8, reads
gold and system annotations files, as well as the
original documents. Currently, the annotation for-
mat read by the official TAC 2014 scorer5, as well
as a simple JSON input format are supported. All
system and gold character offset ranges contained
in the input files are converted into HTML spans
and inserted into the document text. Since HTML
elements are required to conform to a tree struc-
ture, any overlap or nesting of spans is handled by
breaking up such spans into non-overlapping sub-
spans.

At this point, gold NIL clusters and system
NIL clusters are aligned by employing the Kuhn-
Munkres algorithm6 (Kuhn, 1955; Munkres,
1957), as is done in calculation of the CEAF met-
ric (Luo, 2005). The input component then
stores all inserted, non-overlapping spans in an in-
memory database.

The processing component queries gold
and system entity data for each document and
inventorizes all errors of interest. All data col-
lected by this component is added to the respec-
tive HTML spans in the form of CSS classes, en-
abling simple customization of the visualization
via a plain-text stylesheet.

The output component employs a tem-
plate engine7 to convert the data collected by
the processing component into HTML and
JavaScript for handling display and user interac-
tion in the web browser.

4.1 Design Decisions

One of VEX’s main design goals is enabling the
user to quickly identify entity linking and clus-
tering errors. Because a naive approach to entity
visualization by drawing edges between all possi-
ble pairings of mention spans quickly leads to a
cluttered graph (Figure 4a), we instead visualize
entities using Euclidean minimum spanning trees,
inspired by Martschat and Strube’s (2014) use of

5http://github.com/wikilinks/neleval
6Also known as Hungarian algorithm.
7https://github.com/jknack/handlebars.

java

40

(a) (b)

Figure 4: Cluttered visualization of an entity via its complete graph, drawing all pairwise connections
between mentions (a), and a more concise visualization of the same entity using an Euclidean minimum
spanning tree, connecting all mentions while minimizing total edge length (b).

spanning trees in error analysis for coreference
resolution.

An Euclidean minimum spanning tree is a min-
imum spanning tree (MST) of a graph whose ver-
tices represent points in a metric space and whose
edge weights are the spatial distances between
points8, i.e., it spans all graph vertices while min-
imizing total edge length. This allows for a much
more concise visualization (Figure 4b).

Since the actual positions of mention span el-
ements on the user’s screen depend on various
user environment factors such as font size and
browser window dimensions, the MSTs of dis-
played entities are computed using a client-side
JavaScript library9 and are automatically redrawn
if the browser window is resized. Drawing of
edges is performed via jsPlumb10, a highly cus-
tomizable library for line drawing in HTML doc-
uments.

In order not to overemphasize mention detec-
tion errors when displaying entities, VEX assumes
a system mention span to be correct if it has a non-
zero overlap with a gold mention span. For exam-
ple, consider the first gold mention “Vulcan Inc”
in Figure 2, which has not been detected correctly
by the system; it detected “Vulcan Inc.” instead.

8In our case, the metric space is the DOM document being
rendered by the web browser, a point is the top-left corner of a
text span element, and the distance metric is the pixel distance
between the top-left corners of text span elements.

9https://github.com/abetusk/
euclideanmst.js. This library employs Kruskal’s
algorithm (Kruskal, 1956) for finding MSTs.

10http://www.jsplumb.org

While a strict evaluation requiring perfect men-
tion spans will give no credit at all for this par-
tially correct result, seeing that this mention de-
tection error is already visually signified (by the
red square bracket), VEX treats the mention as de-
tected correctly for the purpose of visualizing the
entity graph, and counts it as a true positive in-
stance if it has been linked correctly.

While VEX provides sane defaults, the visual-
ization style can be easily customized via CSS,
e.g., in order to achieve a finer-grained catego-
rization of error types such as off-by-one mention
detection errors, or classification of non-NILs as
NILs and vice-versa.

5 Conclusions and Future Work

We presented the Visual Entity Explorer (VEX),
a tool for visual error analysis of entity linking
(EL) systems. We have shown how VEX can be
used for quickly identifying the components of an
EL system that appear to have a high potential for
improvement, as well as for finding errors in the
gold standard annotations. Since visual error anal-
ysis of our own EL system revealed several issues
and possible improvements, we believe perform-
ing such an analysis will prove useful for other de-
velopers of EL systems, as well.

In future work, we plan to extend VEX with
functionality for visualizing additional error types,
and for exploring entities not only in a single doc-
ument, but across documents. Given the structural
similarities entities in coreference resolution and

41

entities in entity linking share, we also will add
methods for visualizing entities found by corefer-
ence resolution systems.

Acknowledgements

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group “Adaptive Preparation of Information from
Heterogeneous Sources” (AIPHES) under grant
No. GRK 1994/1, and partially funded by the
Klaus Tschira Foundation, Heidelberg, Germany.
We would like to thank our colleague Sebastian
Martschat who commented on earlier drafts of this
paper.

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In Proceedings
of the 1st International Conference on Language
Resources and Evaluation, Granada, Spain, 28–30
May 1998, pages 563–566.

Jie Cai and Michael Strube. 2010. Evaluation metrics
for end-to-end coreference resolution systems. In
Proceedings of the SIGdial 2010 Conference: The
11th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, Tokyo, Japan, 24–25
September 2010, pages 28–36.

Amparo E. Cano, Giuseppe Rizzo, Andrea Varga,
Matthew Rowe, Milan Stankovic, and Aba-Sah
Dadzie. 2014. Making sense of microposts named
entity extraction & linking challenge. In Proceed-
ings of the 4th Workshop on Making Sense of Micro-
posts, Seoul, Korea, 7 April 2014, pages 54–60.

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich,
Bo-June Paul Hsu, and Kuansan Wang. 2014.
ERD’14: Entity recognition and disambiguation
challenge. In ACM SIGIR Forum, volume 48, pages
63–77. ACM.

Ben Hachey, Joel Nothman, and Will Radford. 2014.
Cheap and easy entity evaluation. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), Baltimore, Md., 22–27 June 2014, pages 464–
469.

Heng Ji, Joel Nothman, and Ben Hachey. 2014.
Overview of TAC-KBP2014 entity discovery and
linking tasks. In Proceedings of the Text Analy-
sis Conference, National Institute of Standards and
Technology, Gaithersburg, Maryland, USA, 17–18
November 2014.

Joseph B. Kruskal. 1956. On the shortest spanning
subtree of a graph and the traveling salesman prob-
lem. Proceedings of the American Mathematical so-
ciety, 7(1):48–50.

Harold W. Kuhn. 1955. The Hungarian method for
the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. Truecasing. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, Sapporo, Japan, 7–
12 July 2003, pages 152–159. Association for Com-
putational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution
performance metrics. In Proceedings of the Hu-
man Language Technology Conference and the 2005
Conference on Empirical Methods in Natural Lan-
guage Processing, Vancouver, B.C., Canada, 6–8
October 2005, pages 25–32.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, Balti-
more, Md., 22–27 June 2014, pages 55–60. Associ-
ation for Computational Linguistics.

Sebastian Martschat and Michael Strube. 2014. Recall
error analysis for coreference resolution. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, Doha, Qatar,
25–29 October 2014, pages 2070–2081.

James Munkres. 1957. Algorithms for the assignment
and transportation problems. Journal of the Society
for Industrial & Applied Mathematics, 5(1):32–38.

Charles Sutton and Andrew McCallum. 2007. An in-
troduction to conditional random fields for relational
learning. In L. Getoor and B. Taskar, editors, In-
troduction to Statistical Relational Learning, pages
93–128. MIT Press, Cambridge, Mass.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th Message Understanding Conference
(MUC-6), pages 45–52, San Mateo, Cal. Morgan
Kaufmann.

42

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 43–48,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

A Web-based Collaborative Evaluation Tool for Automatically Learned
Relation Extraction Patterns

Leonhard Hennig, Hong Li, Sebastian Krause, Feiyu Xu, and Hans Uszkoreit
Language Technology Lab, DFKI

Berlin, Germany
{leonhard.hennig,lihong,skrause,feiyu,uszkoreit}@dfki.de

Abstract

Patterns extracted from dependency parses
of sentences are a major source of knowl-
edge for most state-of-the-art relation ex-
traction systems, but can be of low qual-
ity in distantly supervised settings. We
present a linguistic annotation tool that al-
lows human experts to analyze and cate-
gorize automatically learned patterns, and
to identify common error classes. The an-
notations can be used to create datasets
that enable machine learning approaches
to pattern quality estimation. We also
present an experimental pattern error anal-
ysis for three semantic relations, where we
find that between 24% and 61% of the
learned dependency patterns are defective
due to preprocessing or parsing errors, or
due to violations of the distant supervision
assumption.

1 Introduction

Dependency parse trees of sentences have been
shown to be very useful structures for relation
extraction (RE), since they often capture syntac-
tic and semantic properties of a relation and its
arguments more compactly than more surface-
oriented representations (Grishman, 2012). Typ-
ically, shortest-path or similar algorithms are used
to extract a pattern from a sentence’s dependency
parse that connects the relation’s arguments. Such
patterns can be directly applied to parsed texts to
identify novel instances of a relation (Krause et
al., 2012), or they can be used as features in a su-
pervised learning approach (Mintz et al., 2009).
They are also useful by themselves, as linguistic
resources that capture the different ways in which
a given human language expresses semantic rela-
tions (Uszkoreit and Xu, 2013).

In recent years, distant supervision has be-
come a very important approach to relation extrac-

tion (Mintz et al., 2009; Surdeanu et al., 2012; Rit-
ter et al., 2013), due to the availability of large-
scale structured knowledge bases such as Free-
base (Bollacker et al., 2008). While typically
yielding a high recall of relation mentions, dis-
tant supervision makes several strong assumptions
that may significantly affect the quality of ex-
tracted dependency patterns. First, it assumes that
for each relation tuple ri(ei1 , . . . ,eik) in a knowl-
edge base, every sentence containing mentions of
ei1 , . . . ,eik (or a subset thereof) expresses the re-
lation ri (Surdeanu et al., 2012). This assumption
typically does not hold for most sentences, i.e., en-
tity mentions may co-occur without the sentence
expressing the target relation. Dependency pat-
terns extracted from such sentences should be dis-
carded to improve the precision of an RE system.
Furthermore, distant supervision assumes that the
knowledge base is complete: entity mention co-
occurrences with no known relations are ignored
or treated as negative training examples, lower-
ing the discriminative capabilities of a learned
model (Ritter et al., 2013).

Automatically estimating the quality of ex-
tracted patterns, e.g., by using data-driven statisti-
cal metrics, or by learning weights in a supervised
setting, leads to indirect measures of pattern qual-
ity, but tells us only very little about the (grammat-
ical) correctness and the semantic appropriateness
of the patterns themselves. We are hence inter-
ested in a more direct, expert-driven analysis of
dependency patterns and their properties, which
will hopefully guide us towards better automatic
quality metrics. To this end, we have developed
a linguistic annotation tool, PatternJudge, that al-
lows human experts to evaluate relation-specific
dependency patterns and their associated source
sentences. Our contributions in this paper are:

• We present a linguistic annotation tool for hu-
man expert-driven quality control of depen-
dency patterns (Section 3)

43

• We describe an annotation process for pattern
evaluation and the guidelines we developed
for it (Section 4)

• We present and discuss common error classes
observed in an initial study of three semantic
relations (Section 5)

2 Pattern Extraction

In this section, we briefly describe our approach
for extracting relation-specific dependency pat-
terns in a distantly supervised setting, called Web-
DARE (Krause et al., 2012). In contrast to most
other approaches, we consider not only binary, but
arbitrary n-ary relations, with n >= 2. For exam-
ple, we can define a 4-ary marriage relation with
the spouses as essential (required) arguments, and
optional arguments such as the wedding date and
location. Given a knowledge base (KB) contain-
ing such relations and their arguments, we select
a set of seed relation instances from the KB. We
then collect sentences from a large text corpus that
mention at least the essential arguments of a given
seed relation instance.

Sentences are preprocessed with a standard
NLP pipeline, including tokenization, named en-
tity recognition (NER) and linking, lemmatiza-
tion, part-of-speech tagging and word sense dis-
ambiguation (WSD).1 We also apply a depen-
dency parser producing Stanford dependency rela-
tions. Given a preprocessed sentence and the seed
relation instance which matches this sentence, the
pattern extraction algorithm first identifies the ar-
gument mentions of the seed relation instance oc-
curring in the sentence, and then determines and
composes the set of shortest paths connecting the
arguments in the dependency parse in a bottom-up
manner. Figure 1 visualizes the pattern extraction
process for an example sentence expressing the
marriage relation. The extracted pattern is shown
in attribute-value-matrix (AVM) notation in Fig-
ure 1c. For more details on the algorithm we refer
the interested reader to the DARE pattern extrac-
tion method described in Xu et al. (2007).

3 Evaluation tool – PatternJudge

To facilitate the manual evaluation of dependency
patterns, we have developed a web-based anno-

1We use the Stanford CoreNLP pipeline
(nlp.stanford.edu/software/corenlp.shtml),
and our own implementation of Babelfy (babelfy.org)
for WSD and entity linking.

tation tool, dubbed PatternJudge. With Pattern-
Judge, annotators can inspect patterns and source
sentences for a given relation, and evaluate their
grammatical and semantic correctness. The tool is
realized as a browser-based client with a back end
web server for data management. It is available
online at http://sargraph.dfki.de/pattern judge.

Figure 2 shows a screen shot of the user inter-
face. The interface is split into three main com-
ponents. The left part displays a list of avail-
able relations and patterns, and allows searching
for specific patterns or sentences. The center part
visualizes the currently selected dependency pat-
tern in AVM notation. In this notation, the IN-
PUT element contains the dependency pattern, and
the OUTPUT element lists the relation arguments
extracted by this pattern. In the example pattern
shown in Figure 2, these correspond to the spouses
and the wedding date. Thus, the patterns also con-
tain the semantic role label information of the tar-
get relation for the corresponding linguistic argu-
ments, which is not included in most traditional
pattern extraction approaches (e.g., Stevenson and
Greenwood (2005)).

The area below the representation of the pattern
lists the source sentences that it was observed in,
as well as some statistics about the frequency of
the pattern. Sentences are formatted to highlight
the important elements of the pattern. Relation
arguments are marked in red, content words oc-
curring in the pattern are marked in blue. Listing
the source sentences is important because it en-
ables the human expert to verify both the extracted
dependency pattern (e.g., to detect a parse error),
and the semantic correctness of the pattern, i.e.,
whether the sentences express the target relation.

The annotation tab on the right-hand side col-
lects the human expert’s feedback on the quality
of the selected pattern. Currently available op-
tions include labeling the pattern as “CORRECT”,
“CORRECT, BUT TOO SPECIFIC”, “INCORRECT”
or “UNCERTAIN/DON’T KNOW”. We describe the
intended scope and meaning of these feedback cat-
egories in Section 4. Note that this set of cate-
gories is not fixed, but simply reflects what we
have found to be useful distinctions thus far for
annotating patterns. Annotators can also provide
a comment, and, if desired, view the annotations
and comments of previous annotators of this pat-
tern. Since multiple experts can collaboratively
annotate the same pattern, these comments are

44

Brad Pitt married Jennifer Aniston in a private wedding ceremony in Malibu on July 29, 2000.

(a) Sentence with a mention of the marriage relation.

married
nsubj
tt dobj ��

prep in
%%

prep on

((
Brad Pitt Jennifer Aniston ceremony

prep in
��

July 29, 2000

Malibu

(b) Dependency pattern extracted from the sentence in (a).

head
[

lemma marry
POS V

]
dobj

[
type person
role SPOUSE2

]

prep in

head

[
lemma ceremony
POS N

]
prep in

[
type location
role CEREMONY

]

prep on
[

type date
role FROM

]
nsubj

[
type person
role SPOUSE1

]

(c) Generalized dependency pattern derived from (b).

Figure 1: Data flow for gathering dependency patterns from distantly labeled text.

Figure 2: User interface of the PatternJudge tool. The tool allows annotators to judge the quality of
automatically learned dependency patterns.

mainly used for discussion and clarification, but
also for adding error class information in cases
where an annotator decided to label a pattern as
“INCORRECT”.

In a separate tab (not shown in the Figure), an-
notators can inspect the word senses of the pat-
tern’s lemmas. Per lemma, we display a distri-
bution over word senses, since the sentence-level
WSD decisions may differ from each other. Anno-
tators can use this view to label the correct word
senses for a pattern. Word senses are directly
linked to BabelNet2 for reference. The Pattern-

2http://babelnet.org/

Judge tool also includes a basic user management
component to keep track of different annotators,
and for undoing or updating previous judgments.
All pattern judgments are persisted in a NoSQL
data base, and can be exported to CSV or other
standard formats for statistical analysis.

4 Expert-driven quality control

We use the PatternJudge tool for an experimental
analysis of dependency patterns. The analysis has
two major goals: to validate interesting, produc-
tive dependency patterns, and to identify common
error classes of defective patterns. In this section,

45

we describe the guidelines that we developed for
the manual evaluation process, and the experimen-
tal dataset. We report the results of our analysis in
Section 5.

4.1 Quality control guidelines
We define three qualitative categories,
“CORRECT”, “CORRECT, BUT TOO SPECIFIC”
and “INCORRECT”, as well as a set of annotation
guidelines for the evaluation of dependency
patterns. We label a relation-specific pattern as
“CORRECT” if it is grammatically and semanti-
cally correct. A pattern is grammatically correct
if there are no parsing or other preprocessing
errors, and it is semantically correct if its source
sentences express the target relation. Corre-
spondingly, we label a dependency pattern as
“INCORRECT” if it is grammatically incorrect, or
if its sentences do not express the target relation.
Typically, the annotators aim to identify one or
more of the error classes discussed in Section 5 to
decide whether a pattern is incorrect.

For deciding whether a sentence expresses a
given relation, we use the ACE annotation guide-
lines’ conceptual definition of relations and their
mentions (Doddington et al., 2004), and define the
semantics of relations based on Freebase descrip-
tions. In contrast to the ACE tasks, we also con-
sider n-ary relations in addition to binary relations.
Sentences must express the target relation explic-
itly, e.g., “Obama was awarded the Nobel Peace
Prize.” explicitly expresses the relation award
honor. We treat implicit mentions as semantically
incorrect, e.g., the previous example only implies
an award nomination.

A third feedback category, “CORRECT, BUT

TOO SPECIFIC”, was added based on our initial
analysis of the dataset, and applies to dependency
patterns mostly found in the long tail of the fre-
quency distribution. Too specific patterns, while
both grammatically and semantically correct, are
patterns that are overly complex and / or include
irrelevant parts of the sentence specific to a partic-
ular relation instance. Such patterns do not gener-
alize well, and are unlikely to be very productive
when applied to novel text.

4.2 Dataset
We apply the pattern extraction approach de-
scribed in Section 2 to create a dataset for 25 re-
lations from the domains awards, business and
personal relationships. We use Freebase as our

knowledge base, and retrieve 200K relation in-
stances as seed knowledge. We then create a text
corpus by querying Bing with the seeds as input,
and retrieving the top 100 results per query. From
these documents, we extract more than 3M sen-
tences mentioning a seed relation instance. The
resulting pattern dataset contains 1.5M unique pat-
terns. Since a manual evaluation of all these pat-
terns would be too resource-intensive, we select a
subset based on the pattern filtering algorithm pro-
posed by Moro et al. (2013).

We then sample a small set of sentences (3−5)
for each pattern, and conduct an initial pass over
the data with human annotators that judge whether
these sentences express the target relation or not.
We discard all patterns whose sentences do not ex-
press the relation. The final dataset for manual
evaluation consists of more than 8K patterns with
all their source sentences.

5 Pattern observations

Three annotators evaluated 1185 patterns for the
relations award honor (510 patterns), acquisition
(224) and marriage (451), using the guidelines de-
scribed in the previous section. Each annotator
evaluated the patterns of a single relation.3

5.1 Error classes
The annotators identified six main error classes,
which are listed in Table 1. Three of the classes re-
late to preprocessing errors (PIPE-S, PIPE-NER,
PIPE-PT), the other three encompass semantic
mistakes in patterns or source sentences (NEX-P,
NEX-S, IMP-S).

The error class PIPE-S is used for ungrammati-
cal sentences and patterns resulting from sentence
boundary detection errors. In example (1) in Ta-
ble 1, the category label tokens “Personal life” are
interpreted as relevant elements of the extracted
pattern. PIPE-NER errors refer to patterns with
arguments that are semantically or grammatically
incongruent with the ones tagged in the sentence,
as well as entity type errors. In example (2), the
title of the book has not been recognized as an en-
tity, and the lemmas “leave” and “us” are included
as lexical elements in the pattern. The category
PIPE-PT is applied to patterns derived from de-
fective dependency parse trees. In example (3),

3We used a separate relation, siblings, to establish a
shared set of evaluation principles among the annotators. In
future work, we plan to have multiple annotations per pattern,
e.g., to analyze inter-annotator agreement.

46

Error class Description Example

1 PIPE-S Sentence seg-
mentation error

Personal
::::
life

:::
On July 5, 2003, Banks

::::::::
married

sportswriter and producer Max Handelman, who had been
her boyfriend since she met him on her first day at
college, September 6, 1992. (marriage)

2 PIPE-NER NER tagging er-
ror

Rahna Reiko Rizzuto is the
:::::::
author

:::
of the

::::::
novel, Why She

::::
Left

::::
Us, which

:::
won an American Book Award

:::
in 2000. (award

honor)

3 PIPE-PT Dependency
parsing error

∗Say
:::
won a Caldecott Medal for his illustrations in

Grandfather’s Journey. (award honor)

4 NEX-P Relation is not
expressed in
pattern

Julian
::::::
joined Old Mutual in August 2000 as Group Finance

Director,
::::::
moving on to become

::::
CEO

:::
of Skandia following

its purchase by Old Mutual in February 2006. (acquisition)

5 NEX-S Relation is not
expressed in text

The 69th Annual Peabody Awards
:::::::::
ceremony will

::
be

:::::
held on

May 17 at the Waldorf-Astoria in New York City and will
be

:::::::
hosted

:::
by Diane Sawyer, the award-winning anchor of

ABCs World News. (award honor)

6 IMP-S Relation is too
implicit

The looming expiration of Lipitors patent in 2012 is a
big reason Pfizer

:::::
felt

:::::::::::
compelled to

:::
buy a

::::::::
company

:::::
like

Wyeth. (acquisition)

Table 1: Common error classes of dependency patterns for the relations marriage, acquisition and award
honor. Underlined token sequences denote relation arguments,

:::::::
concepts

:::::
with

::
a

:::::::
dashed

:::::::::
underline are

additional pattern elements.

the parser interpreted the proper name Say as a fi-
nite verb.

The category NEX-P is used for dependency
patterns that do not include any relation-relevant
content words. In example (4), the most explicit
word expressing an acquisition is the lemma “pur-
chase”. The pattern, however, extracts other parts
of the source sentence. NEX-S applies to patterns
that are based on sentences which do not express
the relation of interest. In example (5), the target
relation award honor is not expressed, instead, the
host of the ceremony is erroneously identified as
the winner of the prize. Finally, the category IMP-
S marks patterns that are derived from sentences
in which a relation is expressed merely implicitly.
Judging from the source sentence in example (6),
we cannot be entirely sure whether or not an ac-
quisition took place because “felt compelled to”
might only express a momentary mindset of the
company’s leaders that was not followed by ac-
tion.

5.2 Pattern statistics
Table 2 summarizes the distribution of correct and
incorrect dependency patterns for the three rela-
tions marriage, award honor and acquisition. We
find that between 24% and 61% of the learned de-
pendency patterns are defective, between 21% and
55% are labeled as correct. For the relation acqui-

award honor acquisition marriage

Correct 54.7% 21.0% 40.0%

Correct, but
too specific

12.4% 14.7% 29.9%

Incorrect 24.3% 60.7% 24.6%

Uncertain 8.6% 3.6% 5.5%

Table 2: Distribution of pattern categories

sition, more than 60% of the patterns are labeled as
“INCORRECT”, which is much higher than for the
other two relations. “CORRECT, BUT TOO SPE-
CIFIC” patterns make up between 12% and 30%
of the total number of patterns.

Table 3 gives details on the distribution of the
error classes for the same relations. The two pre-
dominant error classes are PIPE-NER and NEX-
S. The distribution of error classes varies signifi-
cantly between the different relations. PIPE-NER
is the category most frequently found in award
honor. Sentences in this category often men-
tion the titles of works the prize was awarded for.
If those titles are not recognized as entities by
the NER tagger, the dependency parsing fails and
parts of the title can erroneously end up in the pat-
tern. For the acquisition relation, the vast majority
of errors can be assigned to the category NEX-S.
In these cases, a relation between two or more or-

47

award honor acquisition marriage

PIPE-S 1 2 11

PIPE-NER 78 2 10

PIPE-PT 33 4 14

NEX-P 3 19 26

NEX-S 2 107 2

IMP-S 5 1 34

Other 2 1 13

Table 3: Distribution of error classes

ganizations is often expressed in the source sen-
tences, e.g., that “company X is a subsidiary of
company Y ”, but no statement is made about the
act of purchase. For the marriage relation, the
most frequent error type was IMP-S, mainly re-
sulting from sentences stating a divorce, which we
do not consider as explicit mentions of the mar-
riage relation. A final observation that can be
made from Table 3 is that 42% of the errors are
preprocessing pipeline errors.

6 Conclusions and future work

We presented PatternJudge, a linguistic annota-
tion tool for manual evaluation of dependency pat-
terns. The tool allows human experts to inspect
dependency patterns and their associated source
sentences, to categorize patterns, and to identify
error classes. The annotated patterns can be used
to create datasets that enable machine learning ap-
proaches to pattern quality estimation and rela-
tion extraction. We showed how the tool can be
used to perform a pattern error analysis on three
semantic relations. Our study indicates that tex-
tual entailment may play an important role for re-
lation extraction, since many relations are not ex-
pressed explicitly in texts. We also observe that
close interactions among semantically similar re-
lations should be reflected in the pattern discov-
ery approach. In future work, we will extend the
PatternJudge tool to provide a better interface for
defining and assigning error classes. In addition,
our annotators are currently evaluating the pattern
dataset for a larger set of semantic relations, which
will allow us to extend the initial study presented
in this work.

Acknowledgments

This research was partially supported by the
German Federal Ministry of Education and

Research (BMBF) through the projects ALL
SIDES (01IW14002) and BBDC (01IS14013E),
by the German Federal Ministry of Economics
and Energy (BMWi) through the project SDW
(01MD15010A), and by Google through a Fo-
cused Research Award granted in July 2013.

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: A Col-
laboratively Created Graph Database for Structuring
Human Knowledge. In Proc. of SIGMOD, pages
1247–1250.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie Strassel, and
Ralph M Weischedel. 2004. The Automatic Con-
tent Extraction (ACE) Program - Tasks, Data, and
Evaluation. In Proc. of LREC.

Ralph Grishman. 2012. Information Extraction: Ca-
pabilities and Challenges. Technical report, NYU
Dept. CS.

Sebastian Krause, Hong Li, Hans Uszkoreit, and Feiyu
Xu. 2012. Large-Scale Learning of Relation-
Extraction Rules with Distant Supervision from the
Web. In Proc. of ISWC, pages 263–278.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant Supervision for Relation Ex-
traction Without Labeled Data. In Proc. of ACL-
IJCNLP, pages 1003–1011.

Andrea Moro, Hong Li, Sebastian Krause, Feiyu Xu,
Roberto Navigli, and Hans Uszkoreit. 2013. Se-
mantic Rule Filtering for Web-Scale Relation Ex-
traction. In Proc. of ISWC, pages 347–362.

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Et-
zioni. 2013. Modeling Missing Data in Distant Su-
pervision for Information Extraction. TACL, 1:367–
378.

Mark Stevenson and Mark Greenwood. 2005. A se-
mantic approach to IE pattern induction. In Proc. of
ACL, pages 379–386.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
Multi-label Learning for Relation Extraction. In
Proc. of EMNLP, pages 455–465.

Hans Uszkoreit and Feiyu Xu. 2013. From Strings to
Things – Sar-Graphs: A New Type of Resource for
Connecting Knowledge and Language. In Proc. of
WS on NLP and DBpedia.

Feiyu Xu, Hans Uszkoreit, and Hong Li. 2007. A
Seed-driven Bottom-up Machine Learning Frame-
work for Extracting Relations of Various Complex-
ity. In Proc. of ACL, pages 584–591.

48

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 49–54,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

A Dual-Layer Semantic Role Labeling System

Lun-Wei Ku
Institute of Information Science

Academia Sinica, Taiwan
lwku@iis.sinica.edu.tw

Shafqat Mumtaz Virk
Institute of Information Science

Academia Sinica, Taiwan
virk.shafqat@gmail.com

Yann-Huei Lee
Institute of Information Science

Academia Sinica, Taiwan
andycyrus.gmail.com

Abstract

We describe a well-performed semantic role
labeling system that further extracts concepts
(smaller semantic expressions) from unstruc-
tured natural language sentences language in-
dependently. A dual-layer semantic role
labeling (SRL) system is built using Chinese
Treebank and Propbank data. Contextual in-
formation is incorporated while labeling the
predicate arguments to achieve better perfor-
mance. Experimental results show that the
proposed approach is superior to CoNLL 2009
best systems and comparable to the state of
the art with the advantage that it requires no
feature engineering process. Concepts are fur-
ther extracted according to templates formu-
lated by the labeled semantic roles to serve as
features in other NLP tasks to provide seman-
tically related cues and potentially help in re-
lated research problems. We also show that it
is easy to generate a different language ver-
sion of this system by actually building an
English system which performs satisfactory.

1 Introduction

Semantic roles are utilized to find concepts au-
tomatically and assure their meaningfulness. Se-
mantic role labeling is a research problem which
finds in a given sentence the predicates and their
arguments (identification), and further labels the
semantic relationship between predicates and ar-
guments, that is, their semantic roles (classifica-
tion). There are several labeling sets. Researchers
have widely adopted the semantic role labels de-
fined in Propbank (Bonial et al., 2010) like predi-
cate (PRED), numbered arguments 0 to 5 (ARG0,
ARG1, ARG2, ARG3, ARG4, ARG5), or modifier
arguments (ARGM-X); finer labels are those de-
fined in Sinica Treebank (Huang et al., 2000) like
agent, theme, target, which are labeled on each

node of the parse tree; those defined in FrameNet
(Ruppenhofer et al., 2006) are the finest but most
expressive. Each set provides semantic information.
As long as the semantic relationship between terms
derives from their semantic role labels, we are able
to determine whether they should be extracted
from the current sentence to construct a concept.

The word concept usually refers to an abstract or
general idea inferred or derived from specific in-
stances. Therefore, the extraction of concepts from
text is often defined as extracting terms that are in
some way related to one another. These terms
could be predefined by people in resources such as
ontologies, or they could be typical words in texts.
In this paper, we view concepts as the continuous
or discontinuous meaningful units in a sentence
and hence they are tightly related to semantic roles.
We propose a dual-layer semantic role labeling
system which provides extracted concepts accord-
ing to the reported labels, and then demonstrate the
functions of this system. Experimental results will
show the merit of the proposed framework.

2 Related Work

Previous studies related to this work can be divided
into two groups: semantic role labeling and con-
cept extraction. Semantic role labeling (SRL) has
sparked much interest in NLP (Shen and Lapata,
2007; Liu and Gildea, 2010). The first automatic
SRL systems were reported by Gildea and Jurafsky
in 2002 (Gildea and Jurafsky 2002); since then,
their ideas have dominated the field. In their ap-
proach, they emphasize the selection of appropriate
lexical and syntactical features for SRL, the use of
statistical classifiers and their combinations, and
ways to handle data sparseness. Many researchers
have tried to build on their work by augmenting
and/or altering the feature set (Xue 2004), by ex-
perimenting with various classification approaches
(Pradhan et al. 2004; Park and Rim 2005), and by
attempting different ways to handle data sparseness

49

(Zapirain, Agirre, and Màrquez 2007). Moreover,
some researchers have tried to extend it in novel
ways. For example, Ding and Chang (2008) used a
hierarchical feature selection strategy, while Jiang,
Li, and Ng (2005) proposed exploiting argument
interdependence, that is, the fact that the semantic
role of one argument can depend on the semantic
roles of other arguments.

Many researchers have tried to extract concepts
from texts (Gelfand et al., 1998; Hovy et al., 2009;
Villalon and Calvo, 2009; Dinh and Tamine, 2011;
Torii et al., 2011). Hovy narrowed the domain of
interest into concepts “below” a given seed term.
Villalon and Calvo extract concepts from student
essays for concept map mining, which generates a
directed relational graph of the extracted concepts
in an essay. For specific domains, biological or
medical concepts are of greatest interest to re-
searchers (Jonnalagadda et al., 2011). Two rela-
tively new and related approaches are the Concept
parser (Rajagopal et al. 2013), a part of the
SenticNet project (Cambria, Olsher, and Rajagopal
2014) and ConceptNet (Liu and Singh 2004). The
former is a tool to decompose unrestricted natural
language text to a bag of concepts, which is similar
to our work. However, in the final phase a seman-

tic knowledge base is used to express a concept in
all its different forms and their concept-parser does
not use any semantic knowledge during decompo-
sition. The latter is a semantic network based on
the Open Mind Common Sense (OMCS)
knowledge base. As it is a knowledge base, its
construction process is quite different from the
work described here of automatically extracting
concepts from sentences.

Figure 2: System Interface (Chinese example sentence: In 2010, Google company negotiated with the China gov-

ernment on the issue of results censoring, and eventually shut down the web search service.)

Syntactic Parsing

Semantic Role
Labeling

Concept
Extraction

Concept
Templates

Prop-
Bank

Output:
Concepts

Figure 1: System Framework.

Input:
Sentence

50

3 System

The proposed system includes three major com-
ponents: a syntactic parser, a semantic role la-
beler, and a concept formulation component. The
framework is shown in Figure 1. The input sen-
tence is first transformed into a syntactic parse
tree through a syntactical analysis step that al-
most all automatic semantic role labeling sys-
tems require (Johansson and Nugues 2008). Here
the Stanford parser (Klein and Manning 2003) is
utilized. Figure 2 shows the system interface.
The left part is the English system and the right
part is the Chinese system. After users input a
sentence, the system will automatically parse,
label semantic roles and report the related con-
cepts for it.

3.1 Semantic Role Labeling

To develop a SRL system, a total of 33 features
including features related to the head word relat-
ed features, target word related features, gram-
mar related features, and semantic type related
features, are collected from related work (Xue,
2008; Ding and Chang, 2008; Sun and Jurafsky
2004; Gildea and Jurafsky 2002). Then the base-
line maximum entropy system is developed using
these features (Manning and Schutze, 1999).
Two sets of data – Chinese Treebank 5.0 together
with Propbank 1.0 and Chinese Treebank 6.0
with Propbank 2.0 – are separated into the train-
ing and testing sets, and are then used to build
models to identify and classify semantic labels,
and also to evaluate the performance, respective-
ly. As Chinese data was selected for experiments,
the hypernyms of words from E-Hownet1, a Chi-
nese word ontology, are utilized as the semantic
type of words. When applying the whole system
on data in other languages, for major languages it
is not difficult to find resources to obtain hyper-
nyms. For minor languages, it is fine to just ig-
nore these features. According to our experience,
this will yield F-Score reductions of only 1% to
2%.

We further exploit argument interdependence
to enhance performance by the dual-layer
framework shown in Figure 2. Suppose for any
given predicate P in a sentence, the system has
identified the three potential arguments A1, A2,
and A3 of the predicate. Next, to predict the se-
mantic role labels of those three arguments, a
critical observation made by (Jiang, Li, and Ng

1 http://ckip.iis.sinica.edu.tw/CKIP/conceptnet.htm

2005) is that the semantic roles of arguments
may depend on each other; this phenomenon is
known as argument interdependence. A common
way to escape argument interdependence is to
adopt sequence labeling, and use the features
extracted from the arguments around the current
argument together with the features of the current
one to predict the label for the current argument.
For example, while predicting the label of argu-
ment A2, features extracted from arguments A1
and A3 are also used. Although window sizes
can be used to set the scope of this interdepend-
ence, the window-size strategy has some practi-
cal limits: the typically large feature set
necessitates the use of smaller window sizes (a
window size of [-1,1] is common). However,
small window sizes can make it impossible to
capture long dependency phenomena.

To overcome the limitations of the window-
size strategy, we use all the surrounding argu-
ments’ predicted labels – window size [-∞,∞],
as opposed to their features – to predict the label
of the current node. This also conforms to the
rule that when a role is taken by the other argu-
ment, it is less likely that the current argument is
of the same role. We implement this idea using
the dual-layer classification framework shown in
Figure 3.

In layer 1 the baseline system is used to pre-

dict the labels for identified nodes. Then in layer
2, these predicted labels of all surrounding argu-
ments (in this example, A1 and A3) together with
other features of the current node (A2) are used

Layer 1

A1 A2 A3

Features Features Features

Label
prediction

Label
prediction

Layer 2

Features +
predicted labels

Predicted label

Figure 3: SRL classification framework.

51

to predict the label of the current node. Note as
this approach is under no window size limitation,
the labels of all arguments under the same predi-
cate are taken into account. Experimental resu lts
show that this strategy works better than the
window-size strategy. Table 1 shows the system
accuracies for the single- and dual-layer frame-
works. The predicted dual-layer framework uti-
lized the SRL labels predicted in layer 1, while
the gold dual-layer framework used as features
the gold SRL labels of the surrounding argu-
ments.

System Accuracy
Ding and Chang, 2008 (state of the art) 94.68
Single-layer framework 94.60
Dual-layer framework (predicted) 94.86
Dual-layer framework (gold) 95.40

Table 1. Accuracy of SRL classification phase.

To further evaluate the performance of the
proposed system and offer comparisons, we ap-
plied it on Chinese Treebank 6.0 with Propbank
2.0 in the same way as in the CoNLL 2009 SRL-
only task data according to the information pro-
vided by the CoNLL organizers. Table 2 shows
the results of the proposed system. Table 3 fur-
ther shows the performance of the best systems
in CoNLL 2009.

 Identification Classification SRL
Precision 94.38

90.22

86.89
Recall 96.24 80.11

F-Score 95.30 83.36
Accuracy 97.92 96.25

Table 2. SRL results on Propbank 2.0.

System name Type Score
Nugus (Björkelund
et al., 2009)

Closed chal-
lenge, SRL-only

78.50
(F-Score)

Meza-Ruiz
(Meza-Ruiz and
Riedel, 2009)

Closed chal-
lenge, SRL-only

82.66
(Precision)

Täckström
(Täckström, 2009)

Closed chal-
lenge, SRL-only

79.31
(Recall)

Che
(Che et al., 2009)

Open challenge,
Joint Task

76.42
(F-Score)

Table 3. CoNLL 2009 SRL performance2.

The CoNLL 2009 task builds dependency-
based SRL systems, while the proposed system
works on the constituent-based parsing trees.
Also the settings of the proposed system are not

2 http://ufal.mff.cuni.cz/conll2009-st/results/results.php

all the same as the CoNLL 2009 SRL systems. In
CoNLL 2009, as noted in Table 5, participants
can participate in open or closed challenges, and
can choose whether they want to attempt both
syntactic and semantic labeling tasks (joint task)
or only to attempt the SRL task. The setting of
the proposed system is open challenge, SRL-only,
while researchers working on the Chinese data
selected only two other different settings: closed
challenge, SRL only and open challenge, joint
task. However, Table 5 shows that the proposed
system outperforms the CoNLL 2009 best sys-
tems in terms of precision (86.89 vs. 82.66), re-
call (80.11 vs. 79.31), and f-score (83.36 vs.
78.50). Moreover, lately, dependency-based SRL
has shown advantages over constituent-based
SRL (Johansson and Nugues, 2008); thus we ex-
pect to show better results if working on depend-
ency-based parsed data. Therefore, we believe
the proposed system is comparable or even supe-
rior to other systems.

3.2 Concept-Formulations

Once the sentence has been annotated seman-
tically, the concepts are formulated by concept
templates designed according to Propbank SRL
labels. Propbank provides semantic role labels of
two types. One type is numbered arguments
Arg0, Arg1, and so on until Arg5; the other type
is modifiers with function tags, which give addi-
tional information about when, where, or how the
event occurred. Tables 4 and 5 list the descrip-
tions of the Propbank arguments utilized for the
concept template generation. Table 6 then lists
the generated concept templates.

As shown in Table 6, the predicate and its ar-
guments are placed in various orders to build a
list of concepts according to their semantic roles.
These role combinations serve as templates
which can capture a complete and important
piece of information described in one sentence to
form a concept. Additionally, the arguments (i.e.,
the subjects and objects of the predicate) in
themselves can represent useful concepts, and for
this reason, the arguments alone are also includ-
ed in extracted concepts. For comparison, in Ta-
ble 7 the extracted concepts are listed with those
from the SenticNet concept parser.

52

Numbered
Argument

Description

Arg0 agent, causer, experiencer
Arg1 theme, patient
Arg2 instrument, benefactive, attribute
Arg3 starting point, benefactive, attribute
Arg4 ending point
Arg5 Direction

Table 4. Propbank numbered arguments.

Modifier Desc Modifier Desc
ArgM-
LOC

Location ArgM-COM Comitative

ArgM-
TMP

Time ArgM-DIR Direction

ArgM-
GOL

Goal ArgM-EXT Extent

ArgM-
MNR

Manner ArgM-NEG Negation

ArgM-
CAU

Cause ArgM-PRP Purpose

Table 5. Propbank modifier auguments.

Concept Template
1 ARG0_Pred
2 Pred_ARG1
3 Pred_ARG1_ARG2
4 Pred_ARG1_ARG2_ARG3
5 Pred_ARG1_ARG2_ARG3_ARG4
6 Pred_ARG1_ARG2_ARG3_ARG4_ARG5
7 Pred_with_ARGM-COM
8 Pred_in_ARGM-LOC
9 Pred_in_order_to_ARGM-PRP
10 Pred_in_the_direction_ARGM-DIR
11 Pred_because_ARGM-CAU
12 Pred_when_ARGM-TMP
13 Pred_ARGM-GOL
14 Pred_by_ARGM-EXT
15 Pred_ARGM-MNR
16 Pred_ARGM-NEG
17 ARGX’s
18 ARGM’s

Table 6. Concept templates.

Proposed System
a_birthday_cake, bought_Super_Market,
bought_a_birthday_cake, Super_Market, celebrat-
ed_David’s_birthday, We_bought, David’s_birthday,
We_celebrated

SenticNet Concept Parser
birthday_cake, birthday_from_market,
buy_birthday_cake, birthday_cake, birthday_david,
buy_from_market, super_market, celebrate_david

Table 7. Concepts generated by the proposed system
and the SenticNet Concept Parser.

4 Conclusion

We have presented a system to decompose a sen-
tence into a set of concepts through the proposed
well-performed semantic role labeling system
(http://doraemon.iis.sinica.edu.tw/srl-concept/),
which differs from previous related attempts. We
demonstrated that this dual-layer semantic role
labeling framework that exploits argument inter-
dependence performs slightly better than the
state of the art, and that it is relatively simple as
no feature selection or engineering processes are
required. We easily generated another English
system under the same framework, which show-
cased the language independency of the system.
In addition, it reached an F-Score 0.84, which
was considered satisfactory. In the future, we
plan to investigate how to further represent and
utilize these extracted concepts efficiently in
more NLP tasks which call for deep language
understanding.

Acknowledgement
Research of this paper was partially supported by
National Science Council, Taiwan, under the
contract NSC101-2628-E-224-001-MY3.

References
Björkelund, A., Hafdell, L., & Nugues, P. 2009. Mul-

tilingual semantic role labeling. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning: Shared Task, 43-48.

Bonial, C.; Babko-Malaya, O.; Choi, J. D.; Hwang, J.;
and Palmer, M. 2010. Propbank annotation guide-
lines. Center for Computational Language and
Edu-cation Research Institute of Cognitive Science
Uni-versity of Colorad at Boulder.

Cambria, E.; Olsher, D.; and Rajagopal, D. 2014.
Senticnet 3: A common and common-sense
knowledge base for cognition-driven sentiment
anal-ysis. In Proceedings of AAAI, 1515–1521.

Che, W., Li, Z., Li, Y., Guo, Y., Qin, B., & Liu, T.
2009. Multilingual dependency-based syntactic and
semantic parsing. In Proceedings of the Thirteenth
Conference on Computational Natural Language
Learning: Shared Task, 49-54.

Dinh, D., & Tamine, L. 2011. Biomedical concept
extraction based on combining the content-based
and word order similarities. In Proceedings of the
2011 ACM Symposium on Applied Computing,
1159-1163. ACM.

Gelfand, B., Wulfekuler, M., & Punch, W. F. 1998.
Automated concept extraction from plain text.

53

In AAAI 1998 Workshop on Text Categoriza-
tion, 13-17.

Gildea, D., and Jurafsky, D. 2002. Automatic labeling
of semantic roles. Comput. Linguist. 28(3):245–
288.

Hovy, E., Kozareva, Z., & Riloff, E. 2009. Toward
completeness in concept extraction and classifica-
tion. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Pro-
cessing: Volume 2-Volume 2, 948-957.

Huang, C. R., Chen, F. Y., Chen, K. J., Gao, Z. M., &
Chen, K. Y. (2000, October). Sinica Treebank: de-
sign criteria, annotation guidelines, and on-line in-
terface. In Proceedings of the second workshop on
Chinese language processing: held in conjunction
with the 38th Annual Meeting of the Association
for Computational Linguistics-Volume 12, 29-37.

Jiang, Z. P.; Li, J.; and Ng, H. T. 2005. Semantic ar-
gu-ment classification exploiting argument inter-
depend-ence. In Proceedings of the 19th
International Joint Conference on Artificial Intelli-
gence, IJCAI’05, 1067–1072.

Johansson, R., & Nugues, P. 2008. The effect of syn-
tactic representation on semantic role labeling. In
Proceedings of the 22nd International Conference
on Computational Linguistics-Volume 1, 393-400.

R. Johansson and P. Nugues. 2008. Dependency-
based semantic role labeling of PropBank. In Pro-
ceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing.

Jonnalagadda, S., Cohen, T., Wu, S., & Gonzalez, G.
2012. Enhancing clinical concept extraction with
distributional semantics. Journal of biomedical in-
formatics, 45(1), 129-140.

Klein, D., and Manning, C. D. 2003. Accurate unlexi-
cal-ized parsing. In Proceedings of the 41st Annual
Meeting on Association for Computational Lin-
guis-tics - Volume 1, ACL ’03, 423–430.

D. Liu and D. Gildea. 2010. Semantic role features for
machine translation. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics.

Liu, H., and Singh, P. 2004. Conceptnet: A practical
commonsense reasoning toolkit. BT
TECHNOLOGY JOURNAL 22:211–226.

Manning, Christopher D. and Schutze, Hinrich. 1999.
Foundations of statistical natural language pro-
cessing, Cambridge, Mass.: MIT Press.

Meza-Ruiz, I., & Riedel, S. 2009. Multilingual se-
mantic role labelling with markov logic.
In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning: Shared
Task, 85-90.

Park, K.-M., and Rim, H.-C. 2005. Maximum entropy
based semantic role labeling. In Proceedings of the
Ninth Conference on Computational Natural Lan-
guage Learning, CONLL ’05, 209–212.

Pradhan, S.; Ward, W.; Hacioglu, K.; and Martin, J. H.
2004. Shallow semantic parsing using support vec-
tor machines. In Proceedings of the Conference on
the Human Language Technologies and North
American Association for Computational Linguis-
tics (HLT-NAACL 2004), 233–240.

Rajagopal, D.; Cambria, E.; Olsher, D.; and Kwok, K.
2013. A graph-based approach to commonsense
concept extrac- tion and semantic similarity detec-
tion. In Proceedings of the 22Nd International Con-
ference on World Wide Web Companion,
WWW ’13 Companion, 565–570.

Ruppenhofer, J., Ellsworth, M., Petruck, M. R., John-
son, C. R., & Scheffczyk, J. (2006). FrameNet II:
Extended theory and practice.

D. Shen and M. Lapata. 2007. Using semantic roles to
improve question answering. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing and on Computational Natural
Language Learning.

Täckström, O. 2009. Multilingual semantic parsing
with a pipeline of linear classifiers. In Proceedings
of the Thirteenth Conference on Computational
Natural Language Learning: Shared Task, 103-108.

Torii, M., Wagholikar, K., & Liu, H. 2011. Using
machine learning for concept extraction on clinical
documents from multiple data sources. Journal of
the American Medical Informatics Association,
amiajnl-2011.

Villalon, J., & Calvo, R. A. 2009. Concept extraction
from student essays, towards concept map mining.
In Proceedings of Ninth IEEE International Con-
ference on Advanced Learning Technologies, 221-
225.

Xue, N. 2004. Calibrating features for semantic role
labeling. In Proceedings of EMNLP 2004, 88–94.

Xue, N. 2008. Labeling chinese predicates with
seman-tic roles. Comput. Linguist. 34(2):225–255.

Zapirain, B.; Agirre, E.; and Màrquez, L. 2007. Ub-
cupc: Sequential srl using selectional preferences:
An approach with maximum entropy markov mod-
els. In Proceedings of the 4th International Work-
shop on Semantic Evaluations, SemEval ’07, 354–
357.

54

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 55–60,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

A system for fine-grained aspect-based sentiment analysis of Chinese

Janna Lipenkova
Anacode

janna.lipenkova@anacode.de

Abstract

This paper presents a pipeline for aspect-
based sentiment analysis of Chinese texts in
the automotive domain. The input to the
pipeline is a string of Chinese characters;
the output is a set of relationships between
evaluations and their targets. The main goal
is to demonstrate how knowledge about sen-
tence structure can increase the precision,
insight value and granularity of the output.
We formulate the task of sentiment analysis
in two steps, namely unit identification and
relation extraction. In unit identification,
we identify fairly well-delimited linguistic
units which describe features, emotions and
evaluations. In relation extraction, we dis-
cover the relations between evaluations and
their “target” features.

1 Introduction

Whereas most work on sentiment analysis, and es-
pecially on less covered languages such as Chi-
nese, is based on probabilistic models and the
use of general sentiment lexica, we believe that
a holistic approach should also take into ac-
count general linguistic knowledge. On the one
hand, this allows to leverage the results of several
decades of research in theoretical linguistics. On
the other hand, the hard-coding of general prin-
ciples of language structure allows us to create a
linguistically adequate training space for further
application of probabilistic models.

In the following, we present the “bottom-up”
component of our sentiment system which builds
opinion representations by a progression along
three levels - the lexical, the phrasal and the sen-
tence level. The system has been conceptualized
manually and bootstrapped on a corpus of about 1
mio. automotive reviews with an average length
of 135 Chinese characters.1 We use a prebuilt lex-

1The reviews were crawled from popular automo-

icon with ca. 2000 entries which contains opin-
ion words, their modifiers, car features as well as
a large number of functional categories relevant
for the syntactic analysis of phrases and sentences.
The performance of the system is evaluated on a
testset of 800 annotated sentences. In practice, the
presented model is complemented by a probabilis-
tic model which performs topic and polarity clas-
sification on the sentence and the document levels;
this component will not be described below due to
space limitations.

The basic assumption on which the model
builds is that language follows rules. Many of
these rules have been extensively studied in the
linguistic literature and have been taken to a level
of abstraction which allows for a straightforward
encoding. Incorporating these rules spares us the
construction of probabilistic models for the dis-
covery of already established general knowledge
about linguistic structure. For example, it has
long been observed that Chinese phrase struc-
ture is largely head-final (Huang 1982, Li 1990,
i. a.): nominal modifiers precede their head nouns,
whereas degree and negation adverbs normally
precede the adjectives or verbs they modify. Due
to the relative rigidity of word order in Chinese
on the phrasal level, a small set of correspond-
ing phrase-level rules achieves a high coverage on
our dataset. Rules do not perform as well on sen-
tence level; nevertheless, some general observa-
tions are possible: for example, AP targets precede
their APs. These high-level observations form the
basis of a sequence classifier which determines
whether a sequence of words between two syntac-
tic phrases establishes or disrupts one of the target
relations between these phrases.

The paper is structured as follows: after a very
brief review of research on aspect-based senti-
ment analysis (henceforth ABSA), we formulate

tive sites: http://www.autohome.com.cn, http://
auto.16888.com, http://auto.qq.com.

55

our task and, specifically, present the output for-
mat of the system (Section 3). In the second step,
we briefly describe the categories used in our lex-
ical resources (Section 4). In the third step, we
describe the three levels of processing (Section 5).
Finally, we present the evaluation of our system
(Section 6).

2 Previous work

ABSA has been exploited as a refined alternative
to sentiment analysis on the sentence and the doc-
ument level: whereas the latter targets the general
sentiment or polarity of a piece of text, ABSA out-
puts a mapping from specific aspects of the dis-
cussed topic to their evaluations. Different ABSA
approaches have been exploited; thus, Popescu
and Etzioni (2005) and Kim and Hovy (2006)
present unsupervised algorithms for extracting as-
pects and determining sentiment in review text.
Ding et al. (2008) and Liu (2012) describe ap-
proaches based on rules of semantic composition
and distance metrics for the identification of rela-
tions between aspects and their opinions. Due to
the relatively fine granularity of the task, parsing-
based approaches have been proposed to capture
the aspect/sentiment relations based on sentence
structure (Jiang et al. 2011, Boiy and Moens 2009,
i. a.). Further, the SemEval-2014 task on ABSA
(Pontiki et al., 2014) has been addressed with a
number of promising approaches and also signif-
icantly contributed to a unified understanding of
ABSA.

Still, most research is focussed on the English
language; for Chinese, most approaches to senti-
ment analysis are targeted on lexicon construction
(e. g. Liu et al. 2013) or sentence/document-level
sentiment classification.2 Only few contributions
aim at a finer-grained analysis at the aspect level
(Ku et al. (2009), Su et al. (2008)).

3 Task

The goal of aspect-based sentiment analysis is
to derive the opinions of a speaker about an entity
and its features (Liu, 2012, p. 58). In our frame-
work, opinions can be subclassified into evalua-
tions and emotions. Evaluations express how the
author evaluates a specific feature (e. g. good, ex-
pensive), whereas emotions express how the au-

2Cf. Proceedings of the evaluation task on polarity anal-
ysis organized by the Professional Committee of Information
Retrieval (中文倾向性分析评测委员会) 2008 - 2014.

thor feels about a specific feature (e. g. to please,
angry).

We formulate the task in two stages - the iden-
tification of syntactic units and the extraction of
relations between the syntactic units. Thus, given
an opinion statement on a specific product, we
“translate” the statement into a set of (feature, <
evaluation|emotion >) pairs in two processing
steps:

1. Build three sets of syntactic units F (fea-
tures), EV (evaluations) and EM (emo-
tions). For convenience, we will use E =
EM ∪ EV in cases where the evalua-
tion/emotion distinction is not relevant.

2. For each e ∈ E, find whether it has an opin-
ion target f ∈ F .

A word is in place about the semantic orga-
nization of evaluations and emotions in our sys-
tem. It has long been observed that many evalu-
ation words come with implicit features; for ex-
ample, the evaluation beautiful implicitly contains
the feature VisualAppearance. In order to preserve
this meaning, we adopt a scalar representation of
evaluations (cf. Kennedy and McNally (2005) for
a linguistic analysis of scalar expressions): eval-
uations are represented as pairs of a feature and
a numerical value which “maps” the evaluation
to some point on the feature scale [-3, 3]. Thus,
beautiful gets the representation (VisualAppear-
ance, 2), whereas ugly gets the representation (Vi-
sualAppearance, -2). Similarly, emotions are also
represented as pairs of the emotion concept and a
numerical value representing the intensity of the
emotion (e. g. angry: (Anger, 2)).

The final mapping goes from sequences of fea-
tures to numerical evaluations. In a feature se-
quence [f1, f2 . . . fn], features are ordered by the
subfeature relation, such that fi (with i > 0) is a
subfeature of fi−1. Consider the following feature
expression:

(1) 方向盘
steering.wheel

的
DE

指针
indicator

the indicator of the steering wheel

Our representation is [SteeringWheel, Indica-
tor], whereby Indicator is interpreted as a subfea-
ture of SteeringWheel.

Further, implicit features that are contained in
associated evaluations are also “moved” into the
feature sequence:

56

(2) 方向盘
steering.wheel

的
DE

指针
indicator

很
very

精准。
precise

The indicator of the steering wheel is very
precise.

This sentence contains the evaluation ‘precise’.
According to the above description, it is decom-
posed into a feature (Precision) and a positive eval-
uation. The feature is moved into the feature se-
quence. The resulting mapping is as follows:

(3) [SteeringWheel, Indicator, Precision] →
+2

Thus, instead of limiting ourselves to entities
and restricted sets of their immediate features, we
adapt a “higher-order” view and allow a hierarchi-
cal feature sequence of arbitrary depth. This struc-
ture seamlessly integrates implicit features and
flexibly captures any granularity that is intended
by the author of the text. At the same time, the
value of the evaluation is reduced to a single nu-
merical value, which allows for a straightforward
aggregation of the final results.

4 Lexical basis

Out lexical resources contain functional and se-
mantic categories. Members of “functional” cat-
egories (e. g. conjunctions, phrase-final markers)
are only relevant for the syntactic analysis. Se-
mantic categories are relevant for the interpreta-
tion of opinions. The top-level semantic categories
are:
• Features, e. g. 外观 (‘look’), 座椅 (‘seat’),
颜色 (‘color’)

• Evaluations:

– with implicit features, e. g. 好看
(‘beautiful’ → VisualAppearance), 便
宜 (‘cheap’→ Price)

– without implicit features, e. g. 不错
(‘not bad’), 一般 (‘ordinary’), 还可以
(‘OK’)

• Emotions, e. g. 赞美 (‘admire’), 烦人 (‘an-
noying’)

• Degree adverbs and negation words, e. g. 非
常 (‘very’),稍微 (‘a little bit’),不 (‘not’)

Each of these categories is in turn subclassified
into more fine-grained classes which capture in-
formation about the linguistic use of the subclass
members.

5 Processing steps

Figure illustrates the in- and output, the three
processing steps as well as the resources involved
in these steps.
5.1 Preprocessing

We use the third-party tool jieba3 for word seg-
mentation and POS tagging; both steps are cus-
tomized in order to achieve a better performance
on domain- and task-specific data. Specifically,
the dictionary provided by the tool is inter-
sected with a user-specified dictionary. This user-
specified dictionary contains all words from our
lexical resources. The user-added words are anno-
tated with customized POS tags, such as ‘F’ for
feature, ‘EV’ for evaluation etc. The following
two examples depict the same sentence as output
by jieba without and with customization:

(4) a. original jieba output without cus-
tomization:

后排/vn
rear.row

空间/n
space

已经/d
already

做/v
make

得/ud
DE

很/d
very

不错/a
not.bad

了/ul
PFV

。/x

The rear space is already quite not
bad.

b. after customization:

后排空间/F
rear.space

已经/d
already

做/v
make

得/ud
DE

很/D
very

不错/EV
not.bad

了/ul
PFV

。/x

The rear space is already quite not
bad.

Thus, we see that the two words 后排 (‘rear
row’) and空间 (‘space’) are merged into one word
in the customized output since this combination
occurs frequently in automotive texts and has a
quasi-lexicalized meaning; the resulting word gets
our custom POS tag ‘F’ (feature). Further, the
POS tag of不错 is changed from the original jieba
tag ‘a’ to the custom tag ‘EV’ (evaluation).

5.2 Unit identification

In the next step, we identify phrasal units corre-
sponding to features, evaluations, emotions. We
use a phrase rule grammar which is based on reg-
ular expressions involving the POS tags of the

3https://github.com/fxsjy/jieba

57

Figure 1: Overall architecture of the system

Figure 2: Phrasal analysis of the sentence后排空间已经做得很不错了。

words. Figure 2 shows the parsed version of ex-
ample (4b).

In the following, we present some of the most
common phrase structures for features and evalu-
ations/emotions that are used in our system.

Feature phrases Besides simple NPs consisting
only of one feature word, the most frequent types
of feature phrases are phrases with nominal mod-
ifiers, coordinated NPs and NPs with pronominal
modifiers:

(5) NP modifier:

座椅
seat

的
DE

材料
material

the material of the seats

(6) 它
it
的
DE

设计
design

its design

(7) 前排
front.row

（跟/和）
(and)

后排
rear.row

the front and the rear row

Evaluation and emotion chunks The class of
evaluations consists of adjectives, whereas the
class of emotions consists both of adjectives and

verbs. However, evaluations and emotions get a
unified treatment at the unit level, since Chinese
stative verbs behave similarly to adjectives: they
can also be modified by degree adverbs, used in
comparative constructions etc.

Besides simple lexical units, the following are
the most frequent phrase types for the E class:

(8) a. Verb or adjective preceded by nega-
tion or degree adverb:
很
very

难受
difficult.to.bear

very difficult to bear
b. Adjective followed by degree adverb:
小
small

了
PFV

点
a.bit

a bit small

Evaluations can be coordinated in various ways;
for example, coordination can be expressed by
simple juxtaposition, with a comma or in the 又
E1又 E2 construction:

(9) a. juxtaposition / punctuation:
精准
precise

(，)
(,)
灵活
flexible

precise and flexible

58

b. 又 E1又 E2:
又
CONJ

精准
precise

又
CONJ

灵活
flexible

both precise and flexible

Besides, evaluations are often expressed by so-
called “possessed features”: the evaluation value
is derived from the “amount” to which a feature is
possessed by the discussed entity:

(10) 没
NEG

有
have

活力
vigor

not vigorous

5.3 Relation extraction
After identifying the syntactic units of interest, we
proceed with identifying sentence-level relations
between these units. In the literature, there are
two major approaches to the identification of rela-
tions between evaluations and their targets. On the
one hand, some authors recur to parsing and iden-
tify evaluation targets based on dependency rela-
tions (Wu et al. 2009, Jiang et al. 2011, i. a.). On
the other hand, distance metrics can be used (Ding
et al., 2008; Liu, 2012). Since we want to avoid the
overhead of full-fledged syntactic parsing, but also
want to improve the accuracy of simple distance
metrics, we develop a sequence classifier which
determines whether a given sequence of words be-
tween a feature and an evaluation/emotion phrase
indicates a target relation.

The two semantic relations of interest are the
causer and the theme relation. Additionally, the
system analyzes a third non-semantic relation –
the topic – which provides relevant discourse-
structural information on the overall aspect dis-
cussed in a sentence.

The causer relation The causer relation is a
fairly well-delimited relation which describes the
causer of some state of event. In our model, it
is applied to emotions caused by specific features.
In the most basic cases, the causer is expressed as
subject of one of the causative verbs (让,令 etc.):

(11) 动力
power

让
CAUS

我
me
非常
very

失望。
desperate

The power really makes me desperate.

The theme relation The theme relation is ex-
pressed differently for evaluations and emotions.
In the case of evaluations, it can be realized as the
single argument of an AP or the nominal head of
an adjectival modifier:

(12) a. Single argument of an AP:
设计
design

特别
particularly

时尚。
fashionable

The design is particularly fashionable.
b. Nominal head of an adjectival modi-

fier:
特别
particularly

时尚
fashionable

的
DE

设计
design

a particularly fashionable design

With respect to emotions, the theme relation is
only relevant for verbs; the feature targets of ad-
jectives are covered by the causer relation. Thus,
themes can be expressed as (possibly topicalized)
objects of emotion verbs:

(13) a. Object in canonical postverbal posi-
tion:
我
me
很
very

喜欢
like

它
it
的
DE

设计。
design

I like its design a lot.
b. Topicalized object:
设计
design

很
very

喜欢
like

，
,

...

...
The design, I like it a lot, ...

5.4 Relation extraction

In the above examples, relations hold between ad-
joined constituents and can thus be easily recog-
nized. However, in many cases, several words oc-
cur between the evaluation/emotion and its target:

(14) 后排空间
rear.row

已经
space

做
already

得
make

很
DE

不错
very

了。
not.bad PFV

The rear space is already quite not bad.

From our corpus, we bootstrap the most fre-
quent sequences that occur between themes and
emotions/evaluations, emotions and themes as
well as causers and emotions. We then apply a
simple classifier for the classification of unseen se-
quences.

6 Evaluation

The system is evaluated on a testset of 800 sen-
tences annotated for feature, evaluation and emo-
tion phrases and for relations between them. The
annotation was carried out according to previously
developed annotation guidelines; we worked with

59

Precision Recall
F-phrases 87.43% 85.37%
EV-phrases 89.21 % 84.29%
EM-phrases 88.56% 85.32%

Table 1: Results of unit identification

Precision Recall
F-EV relations - theme 89.2% 87.33%
F-EM relations - theme 84.01% 83.10%
F-EM relations - causer 86.49% 87.90%

Table 2: Results of relation extraction

two independent annotators - a native Chinese stu-
dent without specialized linguistic knowledge and
a non-native linguist with very good mastery of
the Chinese language. They proceeded in three
steps: at the phrase level, the total F-score of inter-
annotator agreement was 91.3%. The diverging
items were discussed with a third team member
to create a unified phrase-level annotation. The re-
viewed corpus was then annotated for relations be-
tween opinion and their targets; in this step, inter-
annotator agreement reached 93.4%.

Table 1 shows the results achieved in unit iden-
tification; table 2 shows the results achieved for
relation extraction on the test set with finalized an-
notation of F/EV/EM phrases.
7 Outlook

We have shown that the use of a prebuilt lexicon
together with the application of general language
rules allows to achieve a considerable accuracy in
ABSA for Chinese. Currently, the presented sys-
tem is being extended with a number of more com-
plex sentence-level relations, specifically compar-
ative structures and modal operators. Further,

References

Boiy, Erik and Moens, Marie-Francine. 2009. A
machine learning approach to sentiment analy-
sis in multilingual Web texts. Inf. Retr. 12(5),
526–558.

Ding, Xiaowen, Liu, Bing and Yu, Philip S. 2008.
A Holistic Lexicon-based Approach to Opinion
Mining. In Proceedings of WSDM’08, WSDM
’08, pages 231–240.

Huang, James C.-T. 1982. Logical relations
in Chinese and the theory of grammar.
Ph. D.thesis, MIT, Massachusetts.

Jiang, Long, Yu, Mo, Zhou, Ming, Liu, Xiaohua
and Zhao, Tiejun. 2011. Target-dependent Twit-
ter Sentiment Classification. In Proceedings of
ACL’11 - Volume 1, pages 151–160.

Kennedy, Christopher and McNally, Louise. 2005.
Scale structure, degree modification, and the se-
mantics of gradable predicates. Language 81,
345 – 381.

Kim, Soo-Min and Hovy, Eduard. 2006. Extract-
ing Opinions, Opinion Holders, and Topics Ex-
pressed in Online News Media Text. In Pro-
ceedings of the Workshop on Sentiment and
Subjectivity in Text, SST ’06, pages 1–8.

Ku, Lunwei, Huang, Tinghao and Chen, Hsinhsi.
2009. Using Morphological and Syntactic
Structures for Chinese Opinion Analysis. In
Proceedings of EMNLP’09, pages 1260–1269.

Li, Audrey Yen-Hui. 1990. Order and Con-
stituency in Mandarin Chinese. Studies in Natu-
ral Language and Linguistic Theory, Dordrecht:
Kluwer Academic Publishers.

Liu, Bing. 2012. Sentiment Analysis and Opinion
Mining.

Liu, Lizhen, Lei, Mengyun and Wang, Hanshi.
2013. Combining Domain-Specific Sentiment
Lexicon with Hownet for Chinese Sentiment
Analysis. Journal of Computers 8(4).

Pontiki, Maria, Galanis, Dimitris, Pavlopoulos,
John, Papageorgiou, Harris, Androutsopoulos,
Ion and Manandhar, Suresh. 2014. SemEval-
2014 Task 4: Aspect Based Sentiment Analy-
sis. In Proceedings of the SemEval’14, pages
27–35, Dublin, Ireland: ACL and Dublin City
University.

Popescu, Ana Maria and Etzioni, Oren. 2005. Ex-
tracting Product Features and Opinions from
Reviews. In Proceedings of HLT & EMNLP’05,
pages 339–346, Stroudsburg, USA.

Su, Qi, Xu, Xinying, Guo, Honglei, Guo, Zhili,
Wu, Xian, Zhang, Xiaoxun, Swen, Bin and Su,
Zhong. 2008. Hidden Sentiment Association in
Chinese Web Opinion Mining. In Proceedings
of WWW’08.

Wu, Yuanbin, Zhang, Qi, Huang, Xuanjing and
Wu, Lide. 2009. Phrase Dependency Parsing for
Opinion Mining. In Proceedings of EMNLP’09,
pages 1533–1541, Stroudsburg, USA.

60

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 61–66,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

Plug Latent Structures and Play Coreference Resolution

Sebastian Martschat, Patrick Claus and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH

Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

(sebastian.martschat|patrick.claus|michael.strube)@h-its.org

Abstract

We present cort, a modular toolkit for de-
vising, implementing, comparing and an-
alyzing approaches to coreference resolu-
tion. The toolkit allows for a unified rep-
resentation of popular coreference reso-
lution approaches by making explicit the
structures they operate on. Several of the
implemented approaches achieve state-of-
the-art performance.

1 Introduction

Coreference resolution is the task of determining
which mentions in a text refer to the same en-
tity. Machine learning approaches to coreference
resolution range from simple binary classification
models on mention pairs (Soon et al., 2001) to
complex structured prediction approaches (Durrett
and Klein, 2013; Fernandes et al., 2014).

In this paper, we present a toolkit that imple-
ments a framework that unifies these approaches:
in the framework, we obtain a unified representa-
tion of many coreference approaches by making
explicit the latent structures they operate on.

Our toolkit provides an interface for defining
structures for coreference resolution, which we
use to implement several popular approaches. An
evaluation of the approaches on CoNLL shared
task data (Pradhan et al., 2012) shows that they
obtain state-of-the-art results. The toolkit also can
perform end-to-end coreference resolution.

We implemented this functionality on top of the
coreference resolution error analysis toolkit cort
(Martschat et al., 2015). Hence, this toolkit now
provides functionality for devising, implementing,
comparing and analyzing approaches to corefer-
ence resolution. cort is released as open source1

and is available from the Python Package Index2.
1http://smartschat.de/software
2http://pypi.python.org/pypi. Install it via

pip install cort.

2 A Framework for Coreference
Resolution

In this section we briefly describe a structured pre-
diction framework for coreference resolution.

2.1 Motivation

The popular mention pair approach (Soon et al.,
2001; Ng and Cardie, 2002) operates on a list of
mention pairs. Each mention pair is considered in-
dividually for learning and prediction. In contrast,
antecedent tree models (Yu and Joachims, 2009;
Fernandes et al., 2014; Björkelund and Kuhn,
2014) operate on a tree which encodes all anaphor-
antecedent decisions in a document.

Conceptually, both approaches have in common
that the structures they employ are not annotated
in the data (in coreference resolution, the annota-
tion consists of a mapping of mentions to entity
identifiers). Hence, we can view both approaches
as instantiations of a generic structured prediction
approach with latent variables.

2.2 Setting

Our aim is to learn a prediction function f that,
given an input document x ∈ X , predicts a pair
(h, z) ∈ H×Z . h is the (unobserved) latent struc-
ture encoding the coreference relations between
mentions in x. z is the mapping of mentions to
entity identifiers (which is observed in the training
data). Usually, z is obtained from h by taking the
transitive closure over coreference decisions en-
coded in h. H and Z are the spaces containing
all such structures and mappings.

2.3 Representation

For a document x ∈ X , we write Mx =
{m1, . . . ,mn} for the mentions in x. Follow-
ing previous work (Chang et al., 2012; Fernandes
et al., 2014), we make use of a dummy mention
which we denote as m0. If m0 is predicted as the

61

antecedent of a mention mi, we consider mi non-
anaphoric. We define M0

x = {m0} ∪Mx.
Inspired by previous work (Bengtson and Roth,

2008; Fernandes et al., 2014; Martschat and
Strube, 2014), we adopt a graph-based represen-
tation of the latent structures h ∈ H. In particular,
we express structures by labeled directed graphs
with vertex set M0

x .

m0

m1

m2

m3

m4

m5

Figure 1: Latent structure underlying the mention
ranking and the antecedent tree approach. The
black nodes and arcs represent one substructure
for the mention ranking approach.

Figure 1 shows a structure underlying the men-
tion ranking and the antecedent tree approach.
An arc between two mentions signals coreference.
For antecedent trees (Fernandes et al., 2014), the
whole structure is considered, while for mention
ranking (Denis and Baldridge, 2008; Chang et
al., 2012) only the antecedent decision for one
anaphor is examined. This can be expressed via
an appropriate segmentation into subgraphs which
we refer to as substructures. One such substruc-
ture encoding the antecedent decision for m3 is
colored black in the figure.

Via arc labels we can express additional infor-
mation. For example, mention pair models (Soon
et al., 2001) distinguish between positive and neg-
ative instances. This can be modeled by labeling
arcs with appropriate labels, such as + and −.

2.4 Inference and Learning

As is common in natural language processing, we
model the prediction of (h, z) via a linear model.
That is,

f(x) = fθ(x) = arg max
(h,z)∈H×Z

〈θ, φ(x, h, z)〉,

where θ ∈ Rd is a parameter vector and φ : X ×
H × Z → Rd is a joint feature representation
for inputs and outputs. When employing substruc-
tures, one maximization problem has to be solved

for each substructure (instead of one maximization
problem for the whole structure).

To learn the parameter vector θ ∈ Rd from
training data, we employ a latent structured per-
ceptron (Sun et al., 2009) with cost-augmented
inference (Crammer et al., 2006) and averaging
(Collins, 2002).

3 Implementation

We now describe our implementation of the frame-
work presented in the previous section.

3.1 Aims
By expressing approaches in the framework, re-
searchers can quickly devise, implement, com-
pare and analyze approaches for coreference res-
olution. To facilitate development, it should be as
easy as possible to define a coreference resolution
approach. We first describe the general architec-
ture of our toolkit before giving a detailed descrip-
tion of how to implement specific coreference res-
olution approaches.

3.2 Architecture
The toolkit is implemented in Python. It can pro-
cess raw text and data conforming to the format of
the CoNLL-2012 shared task on coreference res-
olution (Pradhan et al., 2012). The toolkit is or-
ganized in four modules: the preprocessing
module contains functionality for processing raw
text, the core module provides mention extrac-
tion and computation of mention properties, the
analysis module contains error analysis meth-
ods, and the coreference module implements
the framework described in the previous section.

3.2.1 preprocessing

By making use of NLTK3, this module provides
classes and functions for performing the prepro-
cessing tasks necessary for mention extraction
and coreference resolution: tokenization, sentence
splitting, parsing and named entity recognition.

3.2.2 core

We employ a rule-based mention extractor, which
also computes a rich set of mention attributes, in-
cluding tokens, head, part-of-speech tags, named
entity tags, gender, number, semantic class, gram-
matical function and mention type. These at-
tributes, from which features are computed, can
be extended easily.

3http://www.nltk.org/

62

cort visualization: wsj_0174_part_000

1. ORTEGA ENDED a truce with the Contras and said elections were

threatened .

2. The Nicaraguan president , citing attacks by the U.S. backed

rebels , suspended a 19 month old cease fire and accused Bush

of `` promoting death . ''

3. While he reaffirmed support for the country 's Feb. 25 elections ,

Ortega indicated that renewed U.S. military aid to the Contras could

thwart the balloting .

4. He said U.S. assistance should be used to demobilize the rebels .

5. A White House spokesman condemned the truce suspension as ``

deplorable '' but brushed off talk of renewing military funding for the

insurgents .

6. The Contra military command , in a statement from Honduras , said

Sandinista troops had launched a major offensive against the rebel

forces .

7. East German leader Krenz called the protests in his country a ``

good sign , '' saying that many of those marching for democratic

freedoms were showing support for `` the renovation for socialism . ''

8. The Communist Party chief , in Moscow for talks with Soviet officials ,

also said East Germany would follow Gorbachev 's restructuring plans

.

9. Thousands of East Germans fled to Czechoslovakia after the East Berlin

government lifted travel restrictions .

10. The ban on crossborder movement was imposed last month after a

massive exodus of emigres to West Germany .

11. Also , a Communist official for the first time said the future of the Berlin

Documents

wsj_0174_part_000

wsj_2278_part_000

wsj_2400_part_000

wsj_2401_part_000

wsj_2402_part_000

wsj_2403_part_000

wsj_2404_part_000

Errors (45)
Precision (16)
NAM: 5
NOM: 10
PRO: 1

Recall (29)
NAM: 6
NOM: 21
PRO: 2

Reference Entities

ORTEGA
truce

Contras

elections
suspended
Bush
White House
leader Krenz

System Entities

ORTEGA

Contras

elections
president

rebels

Bush
country
balloting

Recall

Recall

Recall

Recall

Figure 2: Visualization of errors.

3.2.3 analysis

To support system development, this module
implements the error analysis framework of
Martschat and Strube (2014). Users can extract,
analyze and visualize recall and precision errors
of the systems they are working on. Figure 2
shows a screenshot of the visualization. A more
detailed description can be found in Martschat et
al. (2015).

3.2.4 coreference

This module provides features for coreference
resolution and implements the machine learning
framework described in the previous section.

We implemented a rich set of features employed
in previous work (Ng and Cardie, 2002; Bengtson
and Roth, 2008; Björkelund and Kuhn, 2014), in-
cluding lexical, rule-based and semantic features.
The feature set can be extended by the user.

The module provides a structured latent percep-
tron implementation and contains classes that im-
plement the workflows for training and prediction.
As its main feature, it provides an interface for
defining coreference resolution approaches. We
already implemented various approaches (see Sec-
tion 4).

3.3 Defining Approaches

The toolkit provides a simple interface for devis-
ing coreference resolution approaches via struc-
tures. The user just needs to specify two func-
tions: an instance extractor, which defines the

Listing 1 Instance extraction for the mention rank-
ing model with latent antecedents.
def extract_substructures(doc):
substructures = []

iterate over mentions
for i, ana in enumerate(

doc.system_mentions):
ana_arcs = []

iterate in reversed order over
candidate antecedents
for ante in sorted(

doc.system_mentions[:i],
reverse=True):

ana_arcs.append((ana, ante))

substructures.append(ana_arcs)

return substructures

Listing 2 Decoder for the mention ranking model
with latent antecedents.
class RankingPerceptron(

perceptrons.Perceptron):
def argmax(self, substructure,

arc_information):
best_arc, best_arc_score, \
best_cons_arc, best_cons_arc_score, \
consistent = self.find_best_arcs(

substructure, arc_information)

return ([best_arc], [],
[best_arc_score],
[best_cons_arc], [],
[best_cons_arc_score],
consistent)

search space for the optimal (sub)structures, and
a decoder, which, given a parameter vector, finds
optimal (sub)structures. The toolkit then performs
training and prediction using these user-specified
functions. The user can further customize the ap-
proach by defining cost functions to be used dur-
ing cost-augmented inference, and clustering al-
gorithms to extract coreference chains from latent
structures, such as closest-first (Soon et al., 2001)
or best-first (Ng and Cardie, 2002).

In the remainder of this section, we present an
example implementation of the mention ranking
model with latent antecedents (Chang et al., 2012)
in our toolkit.

3.3.1 Instance Extractors
The instance extractor receives a document as in-
put and defines the search space for the maximiza-
tion problem to be solved by the decoder. To do
so, it needs to output the segmentation of the la-

63

Listing 3 Cost function for the mention ranking
model with latent antecedents.
def cost_based_on_consistency(arc):

ana, ante = arc

consistent = \
ana.decision_is_consistent(ante)

false new
if not consistent and \

ante.is_dummy():
return 2

wrong link
elif not consistent:

return 1
correct
else:
return 0

tent structure for one document into substructures,
and the candidate arcs for each substructure.

Listing 1 shows source code of the instance ex-
tractor for the mention ranking model with latent
antecedents. In this model, each antecedent de-
cision for a mention corresponds to one substruc-
ture. Therefore, the extractor iterates over all men-
tions. For each mention, arcs to all preceding men-
tions are extracted and stored as candidate arcs for
one substructure.

3.3.2 Decoders
The decoder solves the maximization problems
for obtaining the highest-scoring latent substruc-
tures consistent with the gold annotation, and the
highest-scoring cost-augmented latent substruc-
tures.

Listing 2 shows source code of a decoder for the
mention ranking model with latent antecedents.
The input to the decoder is a substructure, which
is a set of arcs, and a mapping from arcs to infor-
mation about arcs, such as features or costs. The
output is a tuple containing
• a list of arcs that constitute the highest-

scoring substructure, together with their la-
bels (if any) and scores,
• the same for the highest-scoring substructure

consistent with the gold annotation,
• the information whether the highest-scoring

substructure is consistent with the gold anno-
tation.

To obtain this prediction, we invoke the aux-
iliary function self.find best arcs. This
function searches through a set of arcs to find the
overall highest-scoring arc and the overall highest-
scoring arc consistent with the gold annotation.

Furthermore, it also outputs the scores of these
arcs according to the model, and whether the pre-
diction of the best arc is consistent with the gold
annotation.

For the mention ranking model, we let the func-
tion search through all candidate arcs for a sub-
structure, since these represent the antecedent de-
cision for one anaphor. Note that the mention
ranking model does not use any labels.

The update of the parameter vector is handled
by our implementation of the structured percep-
tron.

3.3.3 Cost Functions
Cost functions allow to bias the learner towards
specific substructures, which leads to a large mar-
gin approach. For the mention ranking model, we
employ a cost function that assigns a higher cost to
erroneously determining anaphoricity than to se-
lecting a wrong link, similar to the cost functions
employed by Durrett and Klein (2013) and Fer-
nandes et al. (2014). The source code is displayed
in Listing 3.

3.3.4 Clustering Algorithms
The mention ranking model selects one antecedent
for each anaphor, therefore there is no need to
cluster antecedent decisions. Our toolkit provides
clustering algorithms commonly used for men-
tion pair models, such as closest-first (Soon et al.,
2001) or best-first (Ng and Cardie, 2002).

3.4 Running cort

cort can be used as a Python library, but also pro-
vides two command line tools cort-train and
cort-predict.

4 Evaluation

We implemented a mention pair model with best-
first clustering (Ng and Cardie, 2002), the mention
ranking model with closest (Denis and Baldridge,
2008) and latent (Chang et al., 2012) antecedents,
and antecedent trees (Fernandes et al., 2014).
Only slight modifications of the source code dis-
played in Listings 1 and 2 were necessary to im-
plement these approaches. For the ranking models
and antecedent trees we use the cost function de-
scribed in Listing 3.

We evaluate the models on the English test data
of the CoNLL-2012 shared task on multilingual
coreference resolution (Pradhan et al., 2012). We
use the reference implementation of the CoNLL

64

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Average F1

CoNLL-2012 English test data

Fernandes et al. (2014) 65.83 75.91 70.51 51.55 65.19 57.58 50.82 57.28 53.86 60.65
Björkelund and Kuhn (2014) 67.46 74.30 70.72 54.96 62.71 58.58 52.27 59.40 55.61 61.63

Mention Pair 67.16 71.48 69.25 51.97 60.55 55.93 51.02 51.89 51.45 58.88
Ranking: Closest 67.96 76.61 72.03 54.07 64.98 59.03 51.45 59.02 54.97 62.01
Ranking: Latent 68.13 76.72 72.17 54.22 66.12 59.58 52.33 59.47 55.67 62.47
Antecedent Trees 65.34 78.12 71.16 50.23 67.36 57.54 49.76 58.43 53.75 60.82

Table 1: Results of different systems and models on CoNLL-2012 English test data. Models below the
dashed lines are implemented in our toolkit.

scorer (Pradhan et al., 2014), which computes
the average of the evaluation metrics MUC (Vi-
lain et al., 1995), B3, (Bagga and Baldwin, 1998)
and CEAFe (Luo, 2005). The models are trained
on the concatenation of training and development
data.

The evaluation of the models is shown in Table
1. To put the numbers into context, we compare
with Fernandes et al. (2014), the winning system
of the CoNLL-2012 shared task, and the state-of-
the-art system of Björkelund and Kuhn (2014).

The mention pair model performs decently,
while the antecedent tree model exhibits perfor-
mance comparable to Fernandes et al. (2014), who
use a very similar model. The ranking models out-
perform Björkelund and Kuhn (2014), obtaining
state-of-the-art performance.

5 Related Work

Many researchers on coreference resolution re-
lease an implementation of the coreference model
described in their paper (Lee et al., 2013; Durrett
and Klein, 2013; Björkelund and Kuhn, 2014, in-
ter alia). However, these implementations imple-
ment only one approach following one paradigm
(such as mention ranking or antecedent trees).

Similarly to cort, research toolkits such as
BART (Versley et al., 2008) or Reconcile (Stoy-
anov et al., 2009) provide a framework to im-
plement and compare coreference resolution ap-
proaches. In contrast to these toolkits, we make
the latent structure underlying coreference ap-
proaches explicit, which facilitates development
of new approaches and renders the development
more transparent. Furthermore, we provide a
generic and customizable learning algorithm.

6 Conclusions

We presented an implementation of a frame-
work for coreference resolution that represents ap-
proaches to coreference resolution by the struc-
tures they operate on. In the implementation we
placed emphasis on facilitating the definition of
new models in the framework.

The presented toolkit cort can process raw text
and CoNLL shared task data. It achieves state-of-
the-art performance on the shared task data.

The framework and toolkit presented in this pa-
per help researchers to devise, analyze and com-
pare representations for coreference resolution.

Acknowledgements

We thank Benjamin Heinzerling for helpful com-
ments on drafts of this paper. This work has been
funded by the Klaus Tschira Foundation, Ger-
many. The first author has been supported by a
HITS Ph.D. scholarship.

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In Proceedings
of the 1st International Conference on Language
Resources and Evaluation, Granada, Spain, 28–30
May 1998, pages 563–566.

Eric Bengtson and Dan Roth. 2008. Understanding
the value of features for coreference resolution. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, Waikiki,
Honolulu, Hawaii, 25–27 October 2008, pages 294–
303.

Anders Björkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolu-
tion with latent antecedents and non-local features.

65

In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), Baltimore, Md., 22–27 June 2014,
pages 47–57.

Kai-Wei Chang, Rajhans Samdani, Alla Rozovskaya,
Mark Sammons, and Dan Roth. 2012. Illinois-
Coref: The UI system in the CoNLL-2012 shared
task. In Proceedings of the Shared Task of the
16th Conference on Computational Natural Lan-
guage Learning, Jeju Island, Korea, 12–14 July
2012, pages 113–117.

Michael Collins. 2002. Discriminative training meth-
ods for Hidden Markov Models: Theory and experi-
ments with perceptron algorithms. In Proceedings
of the 2002 Conference on Empirical Methods in
Natural Language Processing, Philadelphia, Penn.,
6–7 July 2002, pages 1–8.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. Journal of Machine
Learning Research, 7:551–585.

Pascal Denis and Jason Baldridge. 2008. Specialized
models and ranking for coreference resolution. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, Waikiki,
Honolulu, Hawaii, 25–27 October 2008, pages 660–
669.

Greg Durrett and Dan Klein. 2013. Easy victories
and uphill battles in coreference resolution. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, Seattle, Wash.,
18–21 October 2013, pages 1971–1982.

Eraldo Fernandes, Cı́cero dos Santos, and Ruy Milidiú.
2014. Latent trees for coreference resolution. Com-
putational Linguistics, 40(4):801–835.

Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. 2013. Deterministic coreference resolu-
tion based on entity-centric, precision-ranked rules.
Computational Linguistics, 39(4):885–916.

Xiaoqiang Luo. 2005. On coreference resolution
performance metrics. In Proceedings of the Hu-
man Language Technology Conference and the 2005
Conference on Empirical Methods in Natural Lan-
guage Processing, Vancouver, B.C., Canada, 6–8
October 2005, pages 25–32.

Sebastian Martschat and Michael Strube. 2014. Recall
error analysis for coreference resolution. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, Doha, Qatar,
25–29 October 2014, pages 2070–2081.

Sebastian Martschat, Thierry Göckel, and Michael
Strube. 2015. Analyzing and visualizing corefer-
ence resolution errors. In Proceedings of the 2015
Conference of the North American Chapter of the

Association for Computational Linguistics: Demon-
strations, Denver, Col., 31 May – 5 June 2015, pages
6–10.

Vincent Ng and Claire Cardie. 2002. Improving ma-
chine learning approaches to coreference resolution.
In Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, Philadel-
phia, Penn., 7–12 July 2002, pages 104–111.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Proceedings
of the Shared Task of the 16th Conference on Com-
putational Natural Language Learning, Jeju Island,
Korea, 12–14 July 2012, pages 1–40.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted men-
tions: A reference implementation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), Baltimore, Md., 22–27 June 2014, pages 30–
35.

Wee Meng Soon, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544.

Veselin Stoyanov, Claire Cardie, Nathan Gilbert, Ellen
Riloff, David Buttler, and David Hysom. 2009.
Reconcile: A coreference resolution research plat-
form. Technical report, Cornell University.

Xu Sun, Takuya Matsuzaki, Daisuke Okanohara, and
Jun’ichi Tsujii. 2009. Latent variable perceptron al-
gorithm for structured classification. In Proceedings
of the 21th International Joint Conference on Artifi-
cial Intelligence, Pasadena, Cal., 14–17 July 2009,
pages 1236–1242.

Yannick Versley, Simone Paolo Ponzetto, Massimo
Poesio, Vladimir Eidelman, Alan Jern, Jason Smith,
Xiaofeng Yang, and Alessandro Moschitti. 2008.
BART: A modular toolkit for coreference resolu-
tion. In Companion Volume to the Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics, Columbus, Ohio, 15–20 June
2008, pages 9–12.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th Message Understanding Conference
(MUC-6), pages 45–52, San Mateo, Cal. Morgan
Kaufmann.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural SVMs with latent variables. In
Proceedings of the 26th International Conference on
Machine Learning, Montréal, Québec, Canada, 14–
18 June 2009, pages 1169–1176.

66

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 67–72,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

SCHNÄPPER: A Web Toolkit for Exploratory Relation Extraction

Thilo Michael and Alan Akbik
Technische Universität Berlin
Einsteinufer 17, 10587 Berlin

{thilo.michael,alan.akbik}@tu-berlin.de

Abstract

We present SCHNÄPPER, a web toolkit for
Exploratory Relation Extraction (ERE).
The tool allows users to identify relations
of interest in a very large text corpus in an
exploratory and highly interactive fashion.
With this tool, we demonstrate the ease-
of-use and intuitive nature of ERE, as well
as its applicability to large corpora. We
show how users can formulate exploratory,
natural language-like pattern queries that
return relation instances. We also show
how automatically computed suggestions
are used to guide the exploration process.
Finally, we demonstrate how users create
extractors with SCHNÄPPER once a rela-
tion of interest is identified.

1 Introduction

Relation Extraction (RE) is the task of extract-
ing instances of semantic relations between enti-
ties in unstructured data such as natural language
text. Common examples are the BORNIN relation-
ship between a person and its birthplace, or the
CHILDOF relation between a parent and its child.
A principal challenge in RE is how to build high
quality extractors for a given set of relations at
minimal effort.

One line of approaches to RE are rule-based,
where users manually define rule-sets consisting
of extraction patterns that if observed point to in-
stances of a relation. Advantages associated with
rule-based RE are a high level of direct control
over the extraction process: Ideally, rule-writers
build interpretable and maintainable rule-sets, en-
abling both the extension and error analysis of
rule-based extractors (Chiticariu et al., 2013). In-
deed, in a number of recent works, rule-based
RE approaches have been found to outperform
previous machine-learning based state-of-the-art

systems, for tasks such as temporal expression
detection (Strötgen and Gertz, 2010) and Ope-
nIE (Del Corro and Gemulla, 2013).
Exploratory search for relations. Recently, in
(Akbik et al., 2014), we introduced the paradigm
of Exploratory Relation Extraction (ERE). We ar-
gued that workflows and tooling can be developed
in such a way as to enable an interactive and open
ended search for relations. With ERE, relations
therefore do not need to be precisely defined in
advance. Rather, users can start a process of ex-
ploration for interesting relations even if their in-
formation needs are only vaguely defined.

We outlined key ideas in order to enable the
exploratory workflow: First, extraction patterns
should be very easy to define and quick to test,
much in the same way as exploratory keyword
queries in a web search engine (Marchionini,
2006). Second, the exploration process should
be guided through suggestions computed from
the available data and previous user interactions.
Third, there should be a high level of interactivity.
Appropriate tooling is therefore required.
Contributions. With this demo, we present
SCHNÄPPER, a web-based tool for ERE that
demonstrates the incremental, data-guided work-
flow introduced in (Akbik et al., 2014). The demo
is intended to underline a central claim of ERE,
which is that non-experts can use it to easily ex-
plore a corpus for relational information and build
extractors. Additionally, by using a large portion
of the CLUEWEB091 corpus as dataset, we aim to
highlight the applicability of such an approach to
very large datasets.
Paper outline. We first give a quick overview over
the ERE workflow in Section 2. We then present
SCHNÄPPER, our web interface (Section 3) and
walk through an example workflow with the tool.
We then briefly give an overview over related work
and give an outlook of possible future additions to

1http://www.lemurproject.org/clueweb09/index.php

67

Pattern Suggestions

[X] launched from [Y]

[X] arrive at [Y]

[X] built by [Y]

Y_Type Suggestions

Organization

Location

Celestrial_Object

1. Launch Initial Query

Initial Query

X_Type Spacecraft

Y_Type

Pattern

Index

2. Select from Suggestions

Updated Suggestions

[X] mission to [Y]

[X] orbit [Y]

[X] fly by [Y]

select Upda

[X]

[X]

Updated Selection

X_Type Spacecraft

Y_Type Celestrial_Object

Pattern [X] arrive at [Y]

3. Interact

unselect

Figure 1: Illustration of the Exploratory Relation Extraction example workflow discussed in Section 2.2.

the toolkit and the method itself.

2 Exploratory Relation Extraction

We demonstrate an approach to finding binary re-
lations in text that has been proposed in (Akbik et
al., 2014). Each relation holds between two enti-
ties: a subject and an object entity. Users explore
a corpus for information by selecting and compos-
ing extraction patterns.

2.1 Pattern Language
Extraction patterns consist of two components:
1. Dependency subtrees. The first component
is the lexico-syntactic pattern that connects two
entities in a sentence. Here, we allow arbitrary
subtrees in a sentence’s dependency tree, as long
as they span two entities of interest. To gener-
alize the patterns, they are stemmed and the two
entities are replaced by the placeholders “[X]
and [Y]”. Examples of subtree patterns are “[X]
and [Y] married” and “[X] ’s father
[Y]”2. However, since any subtree is a possible
pattern, many subtrees with less obvious meanings
are also possible; in the end, it is up to the user to
make the decision which patterns are relevant and
which are not.
2. Entity type restrictions Optionally, patterns
may be further restricted to match only entities of
certain fine-grained types, such as PERSON, LO-
CATION, LANGUAGE or MOVIE. The type restric-
tions may be set individually for each subject and
object entities. Since the subject is replaced with

2For the purpose of readability, we do not display the deep
syntactic information from the subtrees. Instead, we only
show the lexical portion of the patterns. Here, some verbs,
such as participles and gerunds, are not stemmed for read-
ability purposes.

the placeholder [X] in a pattern, its restriction is
referred to as X Type, while the object restriction
is referred to as Y Type.
Preemptive pattern extraction. Following
the idea of preemptive Information Extrac-
tion (Shinyama and Sekine, 2006), we pre-extract
and store all subtrees and entity types from a given
corpus for each sentence with at least two named
entities. This allows not only fast retrieval of
matching entity pairs for a given set of subtrees
and type restrictions, but also allows us to com-
pute pattern correlations over the entire dataset for
the presently selected setup. In the next section,
we show how fast retrieval and pattern correlations
are used to aid the exploration process.

2.2 Example Workflow

We illustrate the exploration process with an ex-
ample workflow, the first steps of which are de-
picted in Figure 1. Assume that our user is inter-
ested in relations that involve “spacecraft”, but is
unsure of what types of relations may be found for
such entities in the given corpus.
Initial query (1). The user starts by issuing an ini-
tial query that is strongly underspecified: By set-
ting X Type to SPACECRAFT and leaving the Pat-
tern and Y Type fields in the query unspecified, the
user searches for all sentences that contain at least
one entity of the desired type. At this point, there
are no other restrictions to the query with regards
to patterns or object entity types.
Explore by reacting to suggestions (2). After is-
suing the query, the system responds with both a
list of sentences that match the query (not illus-
trated in Figure 1) and well as, more importantly,
suggestions for patterns and object entity type re-

68

strictions that correlate with the user query.
The user can now choose from the suggestions:

For instance, by selecting the object type LOCA-
TION and the pattern “[X] launched from
[Y]”, the user may direct the exploration process
towards relations that indicate locations (cities,
countries, sites) from which a spacecraft was
launched. Similarly, by choosing ORGANIZATION

as object type and “[X] built by [Y]” as
pattern, the user may select organizations (con-
tractors, space agencies) that constructed or de-
signed spacecraft as the focus of interest.

In the example shown in Figure 1, the user in-
stead selects the object type CELESTIALOBJECT

and the pattern “[X] arrive at [Y]”. This
directs the search towards relations that indicate
spacecraft missions to celestial objects.
User interactions (3). This user interaction up-
dates both the query as well as the suggestions
for patterns and restrictions. Now pattern sug-
gestions are more specific to the previous selec-
tion; For instance, by selecting either the pattern
“[X] orbit [Y]” or “[X] fly by [Y]”,
the user can specify relations for spacecraft that
have achieved orbit around celestial objects, or
have made flybys. By following a process of
querying, inspecting results, selecting and unse-
lecting subtrees and restrictions, the user can in-
teractively explore the given corpus for relations
of interest. Once an interesting relation is iden-
tified, the user utilizes the same approach to build
an extractor by compiling a list of relevant patterns
from the suggestions. Typically, the more patterns
a user selects, the higher the recall of the created
extractor will be.
Store extractor. When the user has identified an
interesting relation and selected a list of relevant
patterns, she can export the extraction results (i.e.
all relation instances found by the extractor). The
user can also save the extractor and provide a de-
scriptive name for the relation for possible later
reuse.

3 Web Demonstration

We now present SCHNÄPPER3, our web toolkit for
Exploratory Relation Extraction.

3The tool was named after the Petroicidae famliy of birds,
which in German are called Schnäpper. This name stems
from the verb schnappen (Schmitthenner, 1837), which trans-
lates as “to grab” or “to catch”. We found this fitting since
the tool is used to “grab” or “catch” information.

3.1 Web Interface

In order to make the use of SCHNÄPPER as
straightforward as possible, the user interface is
clearly structured into four panels that fit onto one
screen. The top half of the screen consists of three
panels in which the user can select patterns and en-
tity type restrictions. The bottom half of the screen
is the result panel which displays a sample of ex-
traction results for the currently selected patterns
and entity type restrictions. See Figure 2 for the
screen and a breakdown of the panels, which we
explain in more detail in the following:

Pattern panel (1) Of the three panels in the up-
per half of the screen, the pattern panel assumes
the center stage. Here, the user can enter keywords
in the search field to find appropriate patterns. If
at least one user interaction has already been made
(e.g. one pattern or type restriction selected), a list
of pattern suggestions is presented in gray. Sin-
gle clicking on a pattern suggestion gives a small
number of example sentences and entity pairs for
which this pattern holds (this is illustrated in field
(6) in Figure 2). Double-clicking on a pattern adds
it to the extractor; it is then highlighted blue and
suggestions as well as the result panel are updated
to reflect the selection. By double-clicking on a
selected pattern, users may remove it again from
the selection.

Entity type restriction panels (2) Extractors
may also have entity type restrictions which re-
strict lexico-syntactic patterns to only apply to en-
tities of certain types. The top right and top left
panels are used to define restrictions for the sub-
ject and object of a binary relation respectively.
Here, users have a choice between three differ-
ent ways of selecting entity type restrictions. The
first and default option is to use FREEBASE entity
types (Bollacker et al., 2008). I.e. the user can
select the subject of a relation to be only of the
FREEBASE type SPACECRAFT, ORGANIZATION

or CELESTIALOBJECT.
The user can also restrict a relation to one spe-

cific entity. For instance, by restricting the object
of a BORNIN relation to be the country “Finland”,
the extractor will only find persons born in Fin-
land.

Finally, the user can restrict entities to those
found with a previously created extractor. Users
can embed extractors in this way to find more
complex relations. For instance, an extractor that

69

12 2

3

4

6

5

Figure 2: Screen capture of the SCHNÄPPER tool showing the pattern panel (1) with an activated pattern
showing a list of example sentences (6), the entity type restriction panels (2) and the result panel (3).
The permalink button (4) and the download button (5) are located at the bottom.

finds “Persons born in Finland” may be used to re-
strict the subject entity of another extractor. The
other extractor can then find a relation between
“Persons born in Finland” and, for example, en-
tities of type BUILDING (“Buildings designed by
persons from Finland”).

Similar to the pattern panel, double-clicking is
used to select or unselect type restrictions. Upon
each interaction, the suggestions as well as the re-
sult panel are updated to reflect the current selec-
tion.

Result panel (3) The lower half of the screen is
the result panel which lists a set of entity pairs that
are found with the presently selected patterns and
restrictions. Each entity pair is displayed along
with the sentence that matches the pattern. By
clicking the magnifying glass symbol next to an
entity pair, more details are shown, including the
entity pair’s FREEBASE ids and a list of sentences
that match the selected patterns.

Storing and exporting extractors After finish-
ing building an extractor, users can export the
setup as a JSON by clicking the download button
in the lower right corner of the screen (see field
(5) in Figure 2). This exports the selected patterns

and restrictions, together with a result list of entity
pairs found with the extractor. In addition, users
can generate a “permalink” by clicking the button
in the lower left corner of the screen (see field (4)
in Figure 2). This allows users to generate links to
created extractors and share them electronically.

3.2 Example Usage

We now briefly give an example of using the tool.
Assume a user is interested in a relation between
persons and the companies they founded.

There are several entry points the user may
choose from. For instance, the user might search
for appropriate entity types in the X Type and
Y Type panels. Another option is to start by look-
ing for appropriate patterns. For this, the user can
use the search box in the pattern panel (1) to search
for the general term “found”. This results in a
list of patterns being displayed, which includes the
pattern “[X] found [Y]”. By single-clicking
on it, the user can see a list of sentences that in-
clude this pattern. This is illustrated in field (6) in
Figure 2.

The user activates the pattern by double-
clicking it. He sees the output of the extractor
in the result panel (3) as well as patterns and en-

70

tity types that are suggested based on the current
selection. Scanning through the result panel, the
user finds that while many matching sentences do
indeed express the desired relation (like “Pierre
Omidyar founded eBay”), some others do not
(“Snape found Sirius Black”).

The tool however also presents three sets of sug-
gestions that the user can use to refine the pat-
terns. For instance, for both X Type and Y Type a
ranked list of suggestions highlighted gray appears
(2). As illustrated in Figure 2, it suggests PER-
SON as X Type and ORGANIZATION as Y Type.
The user can affirm suggestions by double click-
ing on them. When selecting ORGANIZATION as
Y Type, the result panel is updated to reflect the
most recent changes. Scanning through the results
the user sees that the extraction quality has greatly
improved as there are far fewer false positives in
the list.

The user may now try to further improve the ex-
tractor by selecting more specific patterns. The
tool suggests the pattern “[X] be founder
of [Y]”, which more accurately describes the
relation the user wants to extract. Again by single-
clicking on the suggestion, the user can see exam-
ple sentences that match this pattern, as well as the
selected entity type restrictions. Double-clicking
on the pattern adds it to the extractor, which now
consists of two patterns. With multiple patterns
selected, the tool is now able to suggest patterns
more accurately, offering patterns such as “[Y]
founded by [X]”, “[X] start [Y]” and
“[X] co-found [Y]”. By selecting them and
implicitly rejecting those suggestions that do not
reflect the desired relation (like the correlated
patterns “[X] president of [Y]” or “[X]
CEO of [Y]”), the user incrementally creates
an extractor.

After multiple iterations of selecting suggested
patterns and entity type restrictions the user is able
to download the results of the extractor by using
the download button (5) at the bottom of the page.

3.3 Implementation Details

We use CLUEWEB09 as corpus and make use of
FACC1 annotations (Gabrilovich et al., 2013) to
determine entity mentions and their FREEBASE

types. We extract all English sentences that con-
tain at least 2 FREEBASE entities, yielding over
160 million sentences. We then parse these sen-
tences using the CLEARNLP pipeline (Choi and

McCallum, 2013) and preemptively generate all
subtrees for all entity pairs in all sentences. To-
gether with information on the entity types, we
store all information in a Lucene index for fast re-
trieval.

3.4 Hands-on Demonstration

We plan a hands-on demonstration in which
users work with SCHNÄPPER to explore the
CLUEWEB09 corpus for relations of interest. Our
purpose is twofold: One the one hand we would
like to make the case for the simplicity and in-
tuitive nature of the proposed approach. One the
other hand, we would like to gather feedback from
the NLP community for possible future improve-
ments to the approach. In particular some of the
more advanced features such as embedding extrac-
tors within other extractors may be interesting to
discuss in a hands-on demo4.

4 Previous Work

Recent work in the field of rule-based RE has in-
vestigated workflows and tooling to facilitate the
creation of extractors. (Li et al., 2012) presented a
wizard-like approach to guide users in the process
of building extractors. In (Akbik et al., 2013), we
presented an example-driven workflow that allows
even users who are unfamiliar with NLP to write
extractors using lexico-syntactic patterns over de-
pendency trees. Similarly, (Grishman and He,
2014) create a toolkit for persons who are experts
in a domain of interest, but not in NLP. Users cre-
ate extractors for pre-defined entities and relations
by seeding example instances in a semi-supervised
fashion. (Gupta and Manning, 2014) use a similar
bootstrapping approach and create a tool for vi-
sualizing learned patterns for diagnostic purposes.
Finally, (Freedman et al., 2011) focus on reduc-
ing effort in a user-driven process by including el-
ements from active learning and bootstrapping, but
target their tool at NLP experts.

Unlike the approach presented with this demo,
these approaches are mostly intended for tradi-
tional RE in which relations of interest are spec-
ified in advance. With this demo, we instead sup-
port an exploratory workflow in which relations
of interest may be discovered through user inter-
actions with available data at little effort.

4The tool is also publicly available online. It can be
reached through Alan Akbik’s web page.

71

5 Outlook

While SCHNÄPPER is currently focused on binary
relations only, we are investigating the application
of comparable workflows at the entity level. Ide-
ally, we would like to be able to create extractors
that find named entities of custom types and em-
bed them into custom relation extractors. While,
as the demo shows, it is already possible to em-
bed extractors into other extractors, more research
is required fully develop the process of creating
entity extractors, which possibly includes develop-
ing a different pattern language for the entity level.
With more extensive capabilities of creating cus-
tom entity extractors, such tooling could conceiv-
ably be used to use the approach for knowledge
base population tasks (Surdeanu and Ji, 2014).
The approach could be also used to quickly cre-
ate custom knowledge bases for specialized topics
such as the biomedical domain (Hunter and Co-
hen, 2006). Another point of interest is that, since
the tooling is Web-based, collaborative aspects of
creating custom knowledge bases can be investi-
gated in this context.

References
Alan Akbik, Oresti Konomi, and Michail Melnikov.

2013. Propminer: A workflow for interactive infor-
mation extraction and exploration using dependency
trees. In ACL System Demonstrations. Association
for Computational Linguistics.

Alan Akbik, Thilo Michael, and Christoph Boden.
2014. Exploratory relation extraction in large text
corpora. In COLING 2014, 25th International Con-
ference on Computational Linguistics, Proceedings
of the Conference: Technical Papers, August 23-29,
2014, Dublin, Ireland, pages 2087–2096.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. ACM.

Laura Chiticariu, Yunyao Li, and Frederick R Reiss.
2013. Rule-based information extraction is dead!
long live rule-based information extraction systems!
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
827–832.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics.

Luciano Del Corro and Rainer Gemulla. 2013.
Clausie: clause-based open information extraction.
In Proceedings of the 22nd international conference
on World Wide Web, pages 355–366. International
World Wide Web Conferences Steering Committee.

Marjorie Freedman, Lance Ramshaw, Elizabeth
Boschee, Ryan Gabbard, Gary Kratkiewicz, Nico-
las Ward, and Ralph Weischedel. 2011. Extreme
extraction: machine reading in a week. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1437–1446. Asso-
ciation for Computational Linguistics.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. FACC1: freebase anno-
tation of ClueWeb corpora, version 1 (release date
2013-06-26, format version 1, correction level 0).

Ralph Grishman and Yifan He. 2014. An informa-
tion extraction customizer. In Text, Speech and Dia-
logue, pages 3–10. Springer.

Sonal Gupta and Christopher D Manning. 2014.
Spied: Stanford pattern-based information extrac-
tion and diagnostics. Sponsor: Idibon, page 38.

Lawrence Hunter and K Bretonnel Cohen. 2006.
Biomedical language processing: what’s beyond
pubmed? Molecular cell, 21(5):589–594.

Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick R
Reiss, and Arnaldo Carreno-fuentes. 2012. Wizie: a
best practices guided development environment for
information extraction. In Proceedings of the ACL
2012 System Demonstrations, pages 109–114. As-
sociation for Computational Linguistics.

Gary Marchionini. 2006. Exploratory search: from
finding to understanding. Communications of the
ACM, 49(4):41–46.

Friedrich Schmitthenner. 1837. Kurzes deutsches
Wörterbuch für Etymologie, Synonymik und Or-
thographie. Jonghaus.

Yusuke Shinyama and Satoshi Sekine. 2006. Preemp-
tive information extraction using unrestricted rela-
tion discovery. In Proceedings of the main confer-
ence on Human Language Technology Conference
of the North American Chapter of the Association of
Computational Linguistics, pages 304–311. Associ-
ation for Computational Linguistics.

Jannik Strötgen and Michael Gertz. 2010. Heideltime:
High quality rule-based extraction and normaliza-
tion of temporal expressions. In Proceedings of the
5th International Workshop on Semantic Evaluation,
pages 321–324. Association for Computational Lin-
guistics.

Mihai Surdeanu and Heng Ji. 2014. Overview of the
english slot filling track at the tac2014 knowledge
base population evaluation. In Proc. Text Analysis
Conference (TAC2014).

72

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 73–78,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

OMWEdit - The Integrated Open Multilingual Wordnet Editing System

Luís Morgado da Costa and Francis Bond
Linguistics and Mulitingual Studies
Nanyang Technological University

Singapore
{luis.passos.morgado@gmail.com, bond@ieee.org}

Abstract
Wordnets play a central role in many nat-
ural language processing tasks. This pa-
per introduces a multilingual editing sys-
tem for the Open Multilingual Wordnet
(OMW: Bond and Foster, 2013). Word-
net development, like most lexicographic
tasks, is slow and expensive. Moving
away from the original Princeton Word-
net (Fellbaum, 1998) development work-
flow, wordnet creation and expansion has
increasingly been shifting towards an au-
tomated and/or interactive system facili-
tated task. In the particular case of human
edition/expansion of wordnets, a few sys-
tems have been developed to aid the lexi-
cographers’ work. Unfortunately, most of
these tools have either restricted licenses,
or have been designed with a particular
language in mind. We present a web-
based system that is capable of multilin-
gual browsing and editing for any of the
hundreds of languages made available by
the OMW. All tools and guidelines are
freely available under an open license.

1 Introduction

Lexical semantic resources, such as wordnets
(WNs), play a central role in many Natural Lan-
guage Processing (NLP) tasks. Word Sense Dis-
ambiguation (WSD), for example, relies heavily
on existing lexical semantic resources. Likewise,
many other unsolved problems of NLP (e.g. Ma-
chine Translation, Q&A Systems) rely on WSD
and, consequently, indirectly, rely also on the ex-
istence of resources like WNs.
This explains why substantial resources have

been employed in the development of high quality
lexical semantic resources. The Princeton Word-
net (PWN: Fellbaum, 1998) pioneered the devel-
opment of such a resource for English. Following

its steps, many other projects followed PWN into
building similar resources for different languages.
The lexicographic work-flow for these early

projects included hand-typing linked complex data
structures in electronic text files. The result was a
huge net of concepts, senses and definitions linked
through a variety of relations. This kind of work is
ultimately very time consuming and prone to mis-
takes. The direct manipulation of text files makes
it extremely easy to unintentionally violate the data
syntax. In recent times, the creation and expansion
of these resources has been increasingly shifting
into an automated and/or interactive system facili-
tated task. Simple and intuitive user interfaces can
help to both speed-up and to immediately check
for inconsistencies in the data (e.g. relatedness to
nonexistent keys, reduplicated information, typos
or omission of minimal required information). Us-
ing modern relational databases and web-serviced
interactive platforms has also allowed for remote
and parallel collaboration, as well as effective jour-
naling systems.
As the coverage of dictionaries is never com-

plete, WNs are in constant development. Even
should the main lexicon of a language be de-
scribed, as languages evolve, new words and
senses appear, while old senses fade away. For this
reason, maintaining aWN is a demanding task that
should be facilitated in every possible way.
In this paper we present a web-based system de-

signed to exploit the OMWmultilingual structure,
allowing a multilingual editing environment (e.g.
allow multilingual lexicographers to edit multiple
languages at the same time), to allow remote par-
allel access to the editing environment, requiring
minimal to no technical knowledge from the lexi-
cographers side to install/run the editing interface,
and to facilitate the management overhead of man-
taining a WN.1
The system has been tested by the developers
1http://compling.hss.ntu.edu.sg/omw/

73

Figure 1: OMW Browsing / Language Selection

and ten annotators (linguistics students) for over 10
months, who made feature requests and gave feed-
back during the development. The lexicographic
work was done in parallel with the semantic anno-
tation of a portion of the NTUMultilingual Corpus
(NTU-MC: Tan and Bond, 2012) in (Mandarin)
Chinese, English, Indonesian and Japanese (Bond
et al., 2015).
The remainder of this paper is arranged as fol-

lows. In Section 2 we discuss related work, in-
cluding the OMW and other similar tools avail-
able. The main functionality of our system are de-
scribed in Section 3. Section 4 will summarize and
point to our current and future work.

2 Related Work

2.1 The Open Multilingual Wordnet (OMW)
The OMW is a combination of open-licenced
wordnets, along with data extracted from Wik-
tionary and the Unicode Common Locale Data
Repository. In total, OMW has over 2 million
senses for over 100 thousand concepts, linking
over 1.4 million words in hundreds of languages
(Bond and Foster, 2013). It is used as a source
of data for projects such as BabelNet (Navigli
and Ponzetto, 2012) and Google translate. OMW
uses the basic structure of the Princeton Word-

net (PWN: Fellbaum, 1998) to pivot other lan-
guages around PWN3.0 synset IDs. Even though
it is a single resource, data from each language
and project is available separately, respecting their
individual licenses. Figure 1 shows the language
selection menu that allows browsing this resource
as a monolingual or a multilingual resource. The
OMW is also fully integrated with the tools cur-
rently in use for the development of the NTU
Multilingual Corpus (Tan and Bond, 2012). Even
though the specifics of this integration go beyond
the scope of this paper, it is important to note that
most of the development that tested this tool was
according to the needs of the semantic annotation
of the NTU-MC.

2.2 Other Available Systems
Building and expanding large lexical semantic re-
sources is not an easy task. More importantly,
many realized early on that building a WN is not
a simple translation task (e.g., Vossen, 1998a).
Being able to modify its hierarchy and creating
new concepts is important when expressing indi-
vidual languages semantic hierarchies. Still, due to
the lack of resources, manyWN projects bootstrap
themselves by translating the PWN. However, as
individual projects grow, they tend to move away
from the inherited English concept hierarchy. This
is the moment when systems to support easy ma-
nipulation and expansion of their WNs are needed.
Among the available systems we can find Vis-

Dic (Horák et al., 2004) (later developed into DE-
BVisDic, Horák et al., 2006), used for the devel-
opment of BalkaNet (Tufis et al., 2004), plWord-
NetApp (succeeded by WordNetLoom (Piasecki
et al., 2013)) used for the construction of the Polish
Wordnet (Derwojedowa et al., 2008), GernEdiT,
the GermaNet editing tool (Henrich and Hinrichs,
2010), KUI (Sornlertlamvanich et al., 2008, used
in the Asian Wordnet) and Polaris (Louw, 1998)
used in the development of EuroWordnet (Vossen,
1998b).
Out of the above mentioned, we excluded Po-

laris as not being released. Even though GernEdiT
seemed well designed, it was mainly developed
for a monolingual environment and a restrictive
license (i.e. it does not allow redistribution or
commercial use). WordNetLoom, the successor
of plWordNetApp, develops an interesting editing
mode based directly on the WN hierarchy graph,
but the fact that it was not offered as a web-service
limited our interest. VisDic was originally devel-

74

oped in response to Polaris commercial licence,
but the direct manipulation of XML limited its use-
fulness when compared to the original work-flow
of direct manipulation of text files. DEBVisDic
was later developed on top of VisDic, enhacing it
many ways. It can be served as a web applica-
tion and it supports the development of multiple
link wordnets. Unfortunately, while experiment-
ing with it, we found that its installation and user
experience was not intuitive. Its development and
usability is strongly dependent on Mozilla’s Fire-
fox, making any further development less appeal-
ing. And, most importantly, its license also re-
stricts use of the tool to noncommercial, nonprofit
internal research purposes only. KUI was open
source, but only contained functionality for adding
lemmas, not making changes to the wordnet struc-
ture. We decided we had enough motivation to
start the development of a new tool.

3 System Overview and Architecture

OMWEdit follows a simple yet powerful web-
based architecture. It is built on an SQLite
database, allowing fast querying and reliable stor-
age. It is fully tested for Firefox, Chrome and
Safari browsers. Its main focus is on semi-
automation and consistency checking of the WN
development work, supporting the lexicographer’s
work. In this section we discuss the OMWEdit’s
main functionality.

3.1 Browsing and Authentication

TheOMWcan be browsed either monolingually or
multilingually. Figure 1 shows how languages can
be filtered through the navigation interface. Fil-
tering languages is an important feature for both
browsing and editing since many concepts have
data for over 100 languages. This amount of infor-
mation can be overwhelming, especially within the
edition interface. The OMW interface also inte-
grates an authenticationmenu. As guests, users are
free to browse through the resource. Once logged
in (provided they are given access), a user can ac-
cess the editing mode. All changes committed are
immediately available for further browsing, edit-
ing and usage by linked tools (i.e. the OMW is cur-
rently linked to a set of corpus annotation tools).

3.2 Creating and Editing Concepts

The lexicographic work centers around editing ex-
isting concepts and adding new concepts, senses

or relations to the WN. For this reason, our system
has been optimized for these two tasks.
Our system integrates the lexical, concept and

relation levels in a single semi-automated process.
Most of the above mentioned systems sustain a
separate development between lexical entries and
concepts (e.g. in order to be linked to a con-
cept, a lexical unit has to be previously created as
a separate entity). Contrary to this practice, the
OMWEdit has a fully automated lexical manage-
ment — e.g. the creation, linking, unlinking, cor-
rection and deletion of lexical entries is fully auto-
mated behind the concept creation/edition screen.
In order to add a lemma to a concept, for example,
a lexicographer has simply to type the word form
in the appropriate field of creation/editing concept
view. The system then verifies if a new lexical en-
try needs to be created. In the event that the lexical
entry already exists, its ID is automatically fetched
and bound to the concept. Otherwise, a new lexical
entry is created and linked to the concept ID. Like-
wise, correcting an existing lexical entry within a
concept will trigger a similar process. The sys-
tem checks if a lexical entry that matches the cor-
rected version already exists, or if needs to be cre-
ated. The link between the previously corrected
lexical unit is dropped and a new link is created for
the newly corrected form. Lexical entries that are
not linked to any concept are periodically removed
from the database.
Similar processes are put in practice for themain

components of a concept. We currently allow to
edit/add lemmas, definitions, examples and synset
relations. The web interface was designed to be
intuitive and as automated as possible, in order to
shield the lexicographer’s work to include check-
ing. The editing interfaces include quick guide-
lines that summarize the workflow of that partic-
ular task. Typos are avoided by either checking
inputs with regular expressions or through the use
of closed selection lists (see Figure 2). The inputs
are processed for further consistency before being
written in the database (e.g. white-space and punc-
tuation stripping).
Fields such as definitions, examples and lem-

mas are associated with languages. Most of our
lexicographers are, at least, bilingual. Having
the possibility of creating multilingual concepts is
a single submission is, therefore, most efficient.
The languages displayed and available when cre-
ating/editing a concept are constrained by the se-

75

Figure 2: Adding a new concept

lected browsing languages, as seen in Figure 1. It
is especially important to be able to constrain the
languages in the editing mode, since too much in-
formation quickly becomes hard to manage.
The creation of a new synset has been optimized

to fall under one of three categories. Named Enti-
ties have a quick creation setting where only min-
imal information is required (not shown) – as this
system knows where to place them in the hierar-
chy. The creation of new concepts can also be done
from scratch (Figure 2), or through the selection
of a linked concept. In this case, the information
available for the linked concept is displayed and
some information is copied across into the creation
form for further edition.
The tool has a link to a multiple lexicon

search, where the lexicographers can simultane-
ously query multiple lexicons for different lan-
guages (e.g. wiktionary, JMDict for Japanese, CC-
edict for Chinese and so on). This makes it easy to
check the meanings of words without relying too
much on a single source.
Other consistency checks are enforced by the

system. For example, when creating new entries,
the minimal information required to constitute a
concept (name, pos, definition in English, link to
existing synset, at least one lemma) is enforced by
the interface, making it impossible to unwittingly
create an ill-formed entry.

3.3 Journaling and Reporting System
Although the wordnets are stored in a relational
database, they can easily be exported as other stan-
dard formats such as Wordnet LMF (Vossen et al.,
2013) or plain text triples.
The WN development is done directly into this

database. All editable tables are associated with
triggers that record every change committed to the
database, along with the authorship and the times-
tamp of the event. By keeping the metadata in a
separate table, we ensure that the wordnet itself
does not get unwieldy. Both manual and scripted
manipulation of a data is dated and signed. Indi-
vidual lexicographers have to go through an online
login system to be able to see the editing interface.
The authorship of scripted manipulation of data is
often the name of the script — this allows us to
keep track of what was changed when. The ease
of manipulation of the data by scripts is important
to the development — it is easy to develop new
data as a separate project and import it when it is
ready.

This careful database journaling keeps a
tractable history of all the changes in the OWN.
This information allows a better management of
the lexicographers’ workflow, and also a better
control of the quality of data that is inserted. Man-
agement of the lexicographic work is facilitated by
a reporting interface that displays the rate/progress
of each contributor’s work (Figure 3). This in-
terface allows the coordinators to adjudicate and
revert any changes they deem fit, to assert the
work pace of individual contributors and also to
judge the quality of the lexicographer’s work. This
interface also provides some consistency checks
to the quality of the information contained in the
synset, for example lack of senses or definitions,
and how often it appears in the corpus.

76

Figure 3: Reporting Interface (extract of list)

4 Summary and Future Work

We have described the architecture and main func-
tionality of the OMWEdit. Considering its short
development history, our system has proved itself
an increasingly stable and useful tool for the ex-
pansion of a few major Wordnet projects. Our
web-based system architecture has proved itself
ideal for a medium to large scale lexicographic
team, regardless of the location of each member.
During the development of this system, we were
able to confirm an increase in the speed of the lex-
icographer’s workflow. The managing overhead,
such as maintaining consistency and quality of the
introduced changes has also become a much easier
task to accomplish.
Nevertheless, we are aware that the nature of

this kind of system is always open ended, and we
hope to keep supporting and developing it further.
We are aware of some shortcomings and have a list
of ongoing planned development of future imple-
mentation. This list includes (but is not restricted
to):

• the ability to change and/or add lexical rela-
tions and verb frames

• the ability to easily comment on entries and
watch entries for changes

• the ability to express all relations (both lexical
and between concepts) by language— allow-
ing to move away from only using the hierar-
chy given by the PWN

• the ability to seed a new concept by copying a
similar concept (with all its internal structure
and relations)

• the ability to do a live check for similarity
scores in definitions, accounting for probable
matching/mergeable concepts

• further development of the reporting interface

• the development of a graphic component to
help visualizing the best placement of a new
concept in the hierarchy

• Also, considering our multilingual context, to
further develop our support for multilingual
users by translating the user interface.

Even though our system was developed with the
goal of expanding and correcting wordnets, we be-
lieve that our system can also be used to help cre-
ate new wordnets that use the PWN hierarchy as
their backbone. Though the hierarchical relations
are still currently imposed by the PWN, we have
abolished the limitation to a fixed concept inven-
tory by allowing the creation of new concepts.
Although the tool is far from perfect, we encour-

age existing and new projects to use the OMW
and OMWEdit as a platform to for their WN de-
velopment. Furthermore, we intend to feedback
the changes committed to the individual word-
net projects: the Princeton Wordnet (Fellbaum,
1998), the Japanese Wordnet (Isahara et al., 2008),
the Wordnet Bahasa (Nurril Hirfana et al. 2011)
and the Chinese Open Wordnet (Wang and Bond,
2013), respectively, so that changes committed to
the OMW can be incorporated to the original WN
projects.

Acknowledgments

This research was supported in part by the MOE
Tier 2 grant That’s what you meant: a Rich Rep-
resentation for Manipulation of Meaning (MOE
ARC41/13) and Fuji-Xerox Co. Ltd (Joint Re-
search on Multilingual Semantic Analysis). We
would also like to thank our lexicographers for
their feedback during the system’s development.

References

Francis Bond, Luís Morgado da Costa, and
Tuấn Anh Lê. 2015. IMI — a multilingual se-
mantic annotation environment. In ACL-2015
System Demonstrations. (this volume).

77

Francis Bond and Ryan Foster. 2013. Linking
and extending an open multilingual wordnet.
In 51st Annual Meeting of the Association for
Computational Linguistics: ACL-2013, pages
1352–1362. Sofia. URL http://aclweb.
org/anthology/P13-1133.

Magdalena Derwojedowa, Maciej Piasecki,
Stanisław Szpakowicz, Magdalena Zaw-
isławska, and Bartosz Broda. 2008. Words,
concepts and relations in the construction of
polish wordnet. In Proceedings of the Global
WordNet Conference, Seged, Hungary, pages
162–177.

Christine Fellbaum, editor. 1998. WordNet: An
Electronic Lexical Database. MIT Press.

Verena Henrich and Erhard W Hinrichs. 2010.
Gernedit-the germanet editing tool. InACL (Sys-
tem Demonstrations), pages 19–24.

Aleš Horák, Karel Pala, Adam Rambousek, Mar-
tin Povolnỳ, et al. 2006. Debvisdic–first version
of new client-server wordnet browsing and edit-
ing tool. In Proceedings of the Third Interna-
tional Wordnet Conference (GWC-06), Jeju Is-
land, Korea.

Aleš Horák, Pavel Smrž, et al. 2004. Visdic–
wordnet browsing and editing tool. In Pro-
ceedings of the Second International WordNet
Conference–GWC, pages 136–141.

Hitoshi Isahara, Francis Bond, Kiyotaka Uchi-
moto, Masao Utiyama, and Kyoko Kanzaki.
2008. Development of the Japanese WordNet.
In Sixth International conference on Language
Resources and Evaluation (LREC 2008). Mar-
rakech.

Michael Louw. 1998. Polaris user’s guide. Eu-
roWordNet (LE-4003), Deliverable D023D024.

Nurril Hirfana Mohamed Noor, Suerya Sapuan,
and Francis Bond. 2011. Creating the open
Wordnet Bahasa. In Proceedings of the 25th Pa-
cific Asia Conference on Language, Information
and Computation (PACLIC 25), pages 258–267.
Singapore.

RobertoNavigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evalu-
ation and application of a wide-coverage mul-
tilingual semantic network. Artificial Intelli-
gence, 193:217–250.

Maciej Piasecki, Michał Marcińczuk, Radosław
Ramocki, and Marek Maziarz. 2013. Word-

netloom: a wordnet development system in-
tegrating form-based and graph-based perspec-
tives. International Journal of Data Mining,
Modelling and Management, 5(3):210–232.

Virach Sornlertlamvanich, Thatsanee Charoen-
porn, Kergrit Robkop, and Hitoshi Isahara.
2008. KUI: Self-organizing multi-lingual word-
net construction tool. In Attila Tanács, Dóra
Csendes, Veronika Vincze, Christiane Fellbaum,
and Piek Vossen, editors, 4th Global Word-
net Conference: GWC-2008, pages 417–427.
Szeged, Hungary.

Liling Tan and Francis Bond. 2012. Building and
annotating the linguistically diverse NTU-MC
(NTU-multilingual corpus). International Jour-
nal of Asian Language Processing, 22(4):161–
174.

Dan Tufis, Dan Cristea, and Sofia Stamou. 2004.
Balkanet: Aims, methods, results and perspec-
tives. a general overview. Romanian Journal of
Information science and technology, 7(1-2):9–
43.

Piek Vossen, editor. 1998a. Euro WordNet.
Kluwer.

Piek Vossen. 1998b. A multilingual database with
lexical semantic networks. Springer.

Piek Vossen, Claudia Soria, and Monica Mona-
chini. 2013. LMF - lexical markup frame-
work. In Gil Francopoulo, editor, LMF - Lexical
Markup Framework, chapter 4. ISTE Ltd + John
Wiley & sons, Inc.

Shan Wang and Francis Bond. 2013. Building the
Chinese Open Wordnet (COW): Starting from
core synsets. In Proceedings of the 11th Work-
shop on Asian Language Resources, a Workshop
at IJCNLP-2013, pages 10–18. Nagoya.

78

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 79–84,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

SACRY: Syntax-based Automatic Crossword puzzle Resolution sYstem

Gianni Barlacchi†, Massimo Nicosia† and Alessandro Moschitti
†Dept. of Computer Science and Information Engineering, University of Trento

38123 Povo (TN), Italy
ALT, Qatar Computing Research Institute, Hamad Bin Khalifa University

5825 Doha, Qatar
{gianni.barlacchi, m.nicosia, amoschitti}@gmail.com

Abstract
In this paper, we present our Crossword
Puzzle Resolution System (SACRY),
which exploits syntactic structures for
clue reranking and answer extraction.
SACRY uses a database (DB) contain-
ing previously solved CPs in order to
generate the list of candidate answers.
Additionally, it uses innovative features,
such as the answer position in the rank
and aggregated information such as the
min, max and average clue reranking
scores. Our system is based on WebCrow,
one of the most advanced systems for
automatic crossword puzzle resolution.
Our extensive experiments over our two
million clue dataset show that our ap-
proach highly improves the quality of the
answer list, enabling the achievement of
unprecedented results on the complete CP
resolution tasks, i.e., accuracy of 99.17%.

1 Introduction
Crossword Puzzles (CPs) are the most famous lan-
guage games played around the world. The auto-
matic resolution of CPs is an open challenge for
the artificial intelligence (AI) community, which
mainly employs AI techniques for filling the puz-
zle grid with candidate answers. Basic approaches
try to optimize the overall probability of correctly
filling the grid by exploiting the likelihood of each
candidate answer, while satisfying the grid con-
straints.

Previous work (Ernandes et al., 2005) clearly
suggests that providing the solver with an accurate
list of answer candidates is an important step for
the CP resolution task. These can be retrieved us-
ing (i) the Web, (ii) Wikipedia, (iii) dictionaries or
lexical databases like WordNet or, (iv) most im-
portantly, recuperated from the DBs of previously
solved CP. Indeed, CPs are often created reusing

the same clues of past CPs, and thus querying the
DB with the target clue allows for recuperating the
same (or similar) clues of the target one. It is in-
teresting to note that, for this purpose, all previous
automatic CP solvers use standard DB techniques,
e.g., SQL Full-Text query. Existing systems for
automatic CP resolution, such as Proverb (Littman
et al., 2002) and Dr. Fill (Ginsberg, 2011), use sev-
eral different modules for generating candidate an-
swer lists. These are merged and used for defining
a Constraint Satisfaction Problem, resolved by the
CP solver.

Our CP system, SACRY, is based on innovative
QA methods for answering CP clues. We employ
(i) state-of-the-art IR techniques to retrieve the
correct answer by querying the DB of previously
solved CPs, (ii) learning to rank methods based
on syntactic structure of clues and structural ker-
nels to improve the ranking of clues that can po-
tentially contain the answers and (iii) an aggrega-
tion algorithm for generating the final list contain-
ing unique candidate answers. We implemented
a specific module based on these approaches and
we plugged it into an automatic CP solver, namely
WebCrow (Ernandes et al., 2005). The latter is
one of the best systems for CP resolution and it
has been kindly made available by the authors.

We tested our models on a dataset containing
more than two million clues and their associated
answers. This dataset is an interesting resource
that we will make available to the research com-
munity. It can be used for tasks such as: (i) simi-
lar clue retrieval/reranking, which focuses on im-
proving the rank of clues ci retrieved by a search
engine, and (ii) answer reranking, which targets
the list of aci , i.e., their aggregated clues. We
tested SACRY on an end-to-end task by solving
ten crossword puzzles provided by two of the most
famous CP editors from The New York Times and
the Washington Post. SACRY obtained an impres-
sive CP resolution accuracy of 99.17%.

79

Figure 1: The architecture of WebCrow

In the reminder of this paper, Sec. 2 introduces
WebCrow and its architecture. Our models for
similar clues retrieval and answers reranking are
described in Sec. 3 while Sec. 4 illustrates our ex-
periments. Finally, the conclusions and directions
for future work are presented in Sec. 5.

2 The WebCrow Architecture
Our approaches can be used to generate accurate
candidate lists that CP solvers can exploit to im-
prove their overall accuracy. Therefore, the qual-
ity of our methods can be also implicitly evalu-
ated on the final resolution task. For this purpose,
we use an existing CP solver, namely WebCrow,
which is rather modular and accurate and it has
been kindly made available by the authors. Its
architecture is illustrated in Figure 1. In the fol-
lowing, we briefly introduce the database module
of WebCrow, which is the one that we substituted
with ours.

WebCrow’s solving process can be divided in
two phases. In the first phase, the input list of
clues activate a set of answer search modules,
which produce several lists of possible solutions
for each clue. These lists are then merged by a
specific Merger component, which uses the con-
fidence values of the lists and the probability that
a candidate in a list is correct. Eventually, a sin-
gle list of answers with their associated probabil-
ities is built for each input clue. In the second
phase WebCrow fills the crossword grid by solving
a constraint-satisfaction problem. WebCrow se-
lects a single answer from each merged list of can-
didates, trying to satisfy the imposed constraints.
The goal of this phase is to find an admissible so-
lution that maximizes the number of correctly in-

serted words. It is done using an adapted version
of the WA* algorithm (Pohl, 1970) for CP resolu-
tion.

2.1 CrossWord Database module (CWDB)
Gathering clues contained in previously published
CPs is essential for solving new puzzles. A large
portion of clues in new CPs has usually already ap-
peared in the past. Clues may share similar word-
ing or may be restated in a very different way.
Therefore, it is important to identify the clues that
have the same answer. WebCrow uses three differ-
ent modules to retrieve clues identical or similar
to a given clue from the database: the CWDB-
EXACT module, which retrieves DB clues that
match exactly with a target clue, and weights them
by the frequency they have in the clue collec-
tion. The CWDB-PARTIAL module, which uses
the MySQL’s partial matching function, query ex-
pansion and positional term distances to compute
clue-similarity scores, along with the Full-Text
search functions. The CWDB-DICTIO module,
which simply returns the full list of words of cor-
rect length, ranked by their number of occurrences
in the initial list.

We outperform the previous approach by apply-
ing learning-to-rank algorithms based on SVMs
and tree kernels on clue lists generated by state-
of-the-art passage retrieval systems.

3 Crossword Puzzle Database (CPDB)
Module

WebCrow creates answer lists by retrieving clues
from the DB of previously solved crosswords.
It simply uses the classical SQL operators and
full-text search. We instead index the DB clues
and their answers with the open source search
engine Lucene (McCandless et al., 2010), using
the state-of-the-art BM25 retrieval model. This
alone significantly improves the quality of the re-
trieved clue list, which is further refined by apply-
ing reranking. The latter consists in promoting the
clues that potentially have the same answer of the
query clue.

We designed a relatively complex pipeline
shown in Fig. 2. We build a training set using
some training clues for querying our search en-
gine, which retrieves correct and incorrect can-
didates from the indexed clues. At classification
time, the new clues are used as a search query and
the retrieved similar candidate are reranked by our
models. The next sections show our approach for
building rerankers that can exploit structures for

80

solving the ineffectiveness of the simple word rep-
resentation.

3.1 Reranking framework based on Kernels
The basic architecture of our reranking framework
is relatively simple: it uses a standard preference
kernel reranking approach and is similar to the one
proposed in (Severyn and Moschitti, 2012) for QA
tasks. However, we modeled different kernels suit-
able for clue retrieval.

The framework takes a query clue and retrieves
a list of related candidate clues using a search en-
gine (applied to the CPDB), according to some
similarity criteria. Then, the query and the can-
didates are processed by an NLP pipeline. Our
pipeline is built on top of the UIMA framework
(Ferrucci and Lally, 2004) and contains many text
analysis components. The components used for
our specific tasks are: the tokenizer1, sentence
detector1, lemmatizer1, part-of-speech (POS) tag-
ger1 and chunker2.

The annotations produced by these standard
processors are input to our components that extract
structures as well as traditional features for rep-
resenting clues. This representation is employed
to train kernel-based rerankers for reordering the
candidate lists provided by a search engine. Since
the syntactic parsing accuracy can impact the qual-
ity of our structures and consequently the accuracy
of our learning to rank algorithms, we preferred to
use shallow syntactic trees over full syntactic rep-
resentations.

In the reranker we used the Partial Tree Kernel
(PTK) (Moschitti, 2006). Given an input tree, it
generates all possible connected tree fragments,
e.g., sibling nodes can also be separated and be
part of different tree fragments. In other words, a
fragment (which is a feature) is any possible tree
path, from whose nodes other tree paths can de-
part. Thus, it can generate a very rich feature space
resulting in higher generalization ability.

We combined the structural features with other
traditional ones. We used the following groups:

iKernels features (iK), which include similarity
features and kernels applied intra-pairs, i.e., be-
tween the query and the retrieved clues:
– Syntactic similarities, i.e., cosine similarity mea-
sures computed on n-grams (with n = 1, 2, 3, 4) of

1http://nlp.stanford.edu/software/
corenlp.shtml

2http://cogcomp.cs.illinois.edu/page/
software_view/13

word lemmas and part-of-speech tags.
– Kernel similarities, i.e., string kernels and tree
kernels applied to structural representations.

DKPro Similarity (DKP), which defines features
used in the Semantic Textual Similarity (STS)
challenge. These are encoded by the UKP Lab
(Bär et al., 2013):
– Longest common substring measure and Longest
common subsequence measure. They determine
the length of the longest substring shared by two
text segments.
– Running-Karp-Rabin Greedy String Tiling. It
provides a similarity between two sentences by
counting the number of shuffles in their subparts.
– Resnik similarity. The WordNet hierarchy is
used to compute a measure of semantic related-
ness between concepts expressed in the text.
The aggregation algorithm in (Mihalcea et al.,
2006) is applied to extend the measure from words
to sentences.
– Explicit Semantic Analysis (ESA) similarity
(Gabrilovich and Markovitch, 2007), which rep-
resents documents as weighted vectors of con-
cepts learned from Wikipedia, WordNet and Wik-
tionary.
– Lexical Substitution (Biemann, 2013). A super-
vised word sense disambiguation system is used to
substitute a wide selection of high-frequency En-
glish nouns with generalizations. Resnik and ESA
features are computed on the transformed text.

WebCrow features (WC), which are the similar-
ity measures computed on the clue pairs by We-
bCrow (using the Levenshtein distance) and the
Search Engine score.

Kernels for reranking, given a query clue qc and
two retrieved clues c1, c2, we can rank them by
using a reranking model, namely (RR). It uses
two pairs P = 〈p1

q , p
2
q〉 and P ′ = 〈p1

q′ , p2
q′〉,

the member of each pair are clues from the
same list generated by q and q′, respectively.
In this case, we use the kernel, KRR(P, P ′) =
PTK(〈q, c1〉, 〈q′, c′1〉)+PTK(〈q, c2〉, 〈q′, c′2〉)−
PTK(〈q, c1〉, 〈q′, c′2〉) − PTK(〈q, c2〉, 〈q′, c′1〉),
which corresponds to the scalar product between
the vectors,

(
φ(p1

q) − φ(p2
q)
) · (φ(p1

q′) − φ(p2
q′)
)
,

in the fragment vector space generated by PTK.

3.2 Learning to rank aggregated answers
Groups of similar clues retrieved from the search
engine can be associated with the same answers.
Since each clue receives a score from the reranker,
a strategy to combine the scores is needed. We

81

Figure 2: The architecture of our system

aim at aggregating clues associated with the same
answer and building meaningful features for such
groups. For this purpose, we train an SVMrank

with each candidate answer aci represented with
features derived from all the clues ci associated
with such answer, i.e., we aggregate them using
standard operators such as average, min. and max.

We model an answer a using its set of clues
Ca = {ci : aci = a} in SVMrank. The feature
vector associated with a must contains informa-
tion from all c ∈ Ca. Thus, we designed novel
aggregated features that we call AVG: (i) we av-
erage the feature values used for each clue by the
first reranker, i.e., those described in Sec. 3.1 as
well as the scores produced by the clue reranker.
More specifically, we compute their sum, average,
maximum and minimum values. (ii) We also add
the term frequency of the answer word in CPDB.

Additionally, we model the occurrences of the
answer instance in the list by means of positional
features: we use n features, where n is the size
of our candidate list (e.g., 10). Each feature cor-
responds to the positions of each candidate and it
is set to the reranker score if ci ∈ Ca (i.e., for
the target answer candidate) and 0 otherwise. We
call such features (POS). For example, if an an-
swer candidate is associated with clues appearing
at positions 1 and 3 of the list, Feature 1 and Fea-
ture 3 will be set to the score calculated from the
reranker. We take into account the similarity be-
tween the answer candidate and the input clues
using a set of features, derived from word embed-
dings (Mikolov et al., 2013). These features con-
sider (i) the similarities between the clues in a pair,
(ii) the target clue and the candidate answer and
(iii) the candidate clue and the candidate answer.
They are computed summing the embedding vec-
tors of words and computing the cosine similarity.
This way we produce some evidence of semantic
relatedness. We call such features (W2V).

3.3 Generating probabilities for the solver
After the aggregation and reranking steps we have
a set of unique candidate answers ordered by their

reranking scores. Using the latter in WebCrow
generally produces a decrease of its accuracy since
it expects probabilities (or values ranging from 0
to 1). The summed votes or the scores produced
by the reranker can have a wider range and can
also be negative. Therefore, we apply logistic re-
gression (LGR) to learn a mapping between the
reranking scores and values ranging from 0 to 1.

4 Experiments
In our experiments we compare our approach with
WebCrow both on ranking candidate answers and
on the end-to-end CP resolution.

4.1 Database of previously resolved CPs
The most commonly used databases of clues con-
tain both single clues taken from various cross-
words (Ginsberg, 2011) and entire crossword puz-
zle (Ernandes et al., 2008). They refer to relatively
clean pairs of clue/answer and other crossword re-
lated information such as date of the clue, name
of the CP editor and difficulty of the clue (e.g.,
clues taken from the CPs published on The Sunday
newspaper are the most difficult). Unfortunately,
they are not publicly available.

Therefore, we compiled a crossword corpus
combining (i) CP downloaded from the Web3 and
(ii) the clue database provided by Otsys4. We re-
moved duplicates, fill-in-the-blank clues (which
are better solved by using other strategies) and
clues representing anagrams or linguistic games.
We collected over 6.3 millions of clues, published
by many different American editors. Although
this is a very rich database, it contains many du-
plicates and non-standard clues, which introduce
significant noise in the dataset. For this reason we
created a compressed dataset of 2,131,034 unique
and standard clues, with associated answers. It ex-
cludes the fill-in-the-blank clues mentioned above.

4.2 Experimental Setup
To train our models, we adopted SVM-light-TK5,
which enables the use of the Partial Tree Kernel
(PTK) (Moschitti, 2006) in SVM-light (Joachims,
2002), with default parameters. We applied a
polynomial kernel of degree 3 to the explicit fea-
ture vectors (FV). To measure the impact of the
rerankers as well as the CWDB module, we used
well-known metrics for assessing the accuracy of

3http://www.crosswordgiant.com
4http://www.otsys.com/clue
5http://disi.unitn.it/moschitti/

Tree-Kernel.htm

82

QA and retrieval systems, i.e.: Recall at differ-
ent ranks (R@1, 5, 20, 50, 100), Mean Reciprocal
Rank (MRR) and Mean Average Precision (MAP).
R@1 is the percentage of questions with a cor-
rect answer ranked at the first position. MRR is
computed as follows: MRR = 1

|Q|
∑|Q|

q=1
1

rank(q) ,
where rank(q) is the position of the first correct
answer in the candidate list. For a set of queries
Q, MAP is the mean over the average precision
scores for each query: 1

Q

∑Q
q=1AveP (q).

To measure the complete CP resolution task, we
use the accuracy over the entire words filling a CP
grid (one wrong letter causes the entire definition
to be incorrect).

4.3 Clue reranking experiments
Given an input clue BM25 retrieves a list of 100
clues. On the latter, we tested our different mod-
els for clue reranking. For space constraints, we
only report a short summary of our experiments:
kernel-based rerankers combined with traditional
features (PTK+FV) relatively improve standard IR
by 16%. This is an interesting result as in (Barlac-
chi et al., 2014), the authors showed that standard
IR greatly improves on the DB methods for clue
retrieval, i.e., they showed that BM25 relatively
improves on SQL by about 40% in MRR.

4.4 Answer aggregation and reranking
Reranking clues is just the first step as the solver
must be fed with the list of unique answers. Thus,
we first used our best model (i.e., PTK+FV) for
clue reranking to score the answers of a separate
set, i.e., our answer reranking training set. Then,
we used these scores to train an additional reranker
for aggregating identical answers. The aggrega-
tion module merges clues sharing the same answer
into a single instance.

Tab. 1 shows the results for several answer
reranking models tested on a development set: the
first row shows the accuracy of the answer list pro-
duces by WebCrow. The second row reports the
accuracy of our model using a simple voting strat-
egy, i.e., the score of the clue reranker is used
as a vote for the target candidate answer. The
third row applies Logistic Regression (LGR) to
transform the SVM reranking scores in probabili-
ties. It uses Lucene score for the candidate answer
as well as the max and min scores of the entire
list. From the fourth column, the answer reranker
is trained using SVMrank using FV, AVG, POS,
W2V and some of their combinations. We note
that: (i) voting the answers using the raw score im-

Models MRR R@1 R@5 R@10 R@20 R@50 R@80

WebCrow 39.12 31.51 47.37 54.38 58.60 63.34 64.06
Raw voting 41.84 33.0 52.9 58.7 62.7 66.6 67.5
LGR voting 43.66 35 53.7 59.3 63.4 67.4 67.7

SVMrank

AVG 43.5 35.3 53.5 59.4 63.9 67.4 67.7
AVG+POS 44.1 36.3 53.6 58.9 63.9 67.4 67.6
AVG+W2V 43.2 35 53.3 58.8 63.9 67.4 67.7
AVG+POS+FV 44.4 36.7 54.2 60 64.3 67.4 67.7
AVG+FV+W2V 44.1 35.8 54.4 60 64.4 67.4 67.7
AVG+POS+

FV+W2V 44.6 36.8 54.2 59.8 64.4 67.4 67.7

Table 1: Answer reranking on the dev. set.

proves WebCrow but the probabilities computed
by LGR perform much better, i.e., about 2 per-
cent points better than Raw voting and 4.5 points
better than WebCrow; (ii) the SVMrank aggrega-
tion model can provide another additional point,
when positional features and standard feature vec-
tors are used along with aggregated and W2C fea-
tures. (iii) The overall relative improvement of
14% over WebCrow is promising for improving
the end-to-end CP resolution task.

4.5 Evaluation of the CP resolution
In order to test the effectiveness of our method,
we evaluated the resolution of full CP. We selected
five crosswords from The New York Times newspa-
per and other five from the Washington Post. Fig. 3
shows the average resolution accuracy over the
ten CP of the original WebCrow compared to We-
bCrow using our reranked lists. We ran the solver
by providing it with lists of different size. We
note that our model consistently outperforms We-
bCrow. This means that the lists of candidate an-
swers generated by our models help the solver,
which in turn fills the grid with higher accuracy.
In particular, our CP system achieves an average
accuracy of 99.17%, which makes it competitive
with international CP resolution challenges.

Additionally, WebCrow achieves the highest ac-
curacy when uses the largest candidate lists (both
original or reranked) but a large list size negatively
impacts on the speed of the solver, which in a
CP competition is critical to beat the other com-
petitors (if participants obtain the same score, the
solving time decides who is ranked first). Thus,
our approach also provide a speedup as the best
accuracy is reached for just 50 candidates (in con-
trast with the 100 candidates needed by the origi-
nal WebCrow).

5 Final Remarks
In this paper, we describe our system SACRY
for automatic CP resolution. It is based on

83

96.5

97.0

97.5

98.0

98.5

99.0

25 50 75 100
Number of candidates

A
vg

. a
cc

ur
ac

y
in

 s
ol

vi
ng

 C
P

s

WebCrow
Reranker

Figure 3: Average accuracy over 10 CPs.

modeling rerankers for clue retrieval from DBs.
SACRY achieves a higher accuracy than We-
bCrow. SACRY uses rerankers based on SVMs
and structural kernels, where the latter are applied
to robust shallow syntactic structures. Our struc-
tural models applied to clue reranking enable us
to learn clue paraphrasing by exploiting relational
syntactic structures representing pairs of clues.

We collected the biggest clue dataset ever,
which can be also used for QA tasks since it is
composed by pairs of clue/answer. The dataset
includes 2,131,034 unique pairs of clue/answers,
which we are going to make available to the re-
search community. The experiments show that our
methods improve the quality of the lists generated
by WebCrow by 14% in MRR. When used in We-
bCrow solver with its best setting, its resolution er-
ror relatively decreases by 50%, achieving almost
a perfect resolution accuracy, i.e., 99.17%. In the
future, we would like to release the solver to allow
researchers to contribute to the project and make
the system even more competitive.

Acknowledgments
This work has been supported by the EC project
CogNet, 671625 (H2020-ICT-2014-2, Research
and Innovation action). This research is part of
the Interactive sYstems for Answer Search (IYAS)
project, conducted by the Arabic Language Tech-
nologies (ALT) group at Qatar Computing Re-
search Institute (QCRI) within the Hamad Bin
Khalifa University and Qatar Foundation.

References
Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2013.

Dkpro similarity: An open source framework for
text similarity. In Proceedings of ACL (System
Demonstrations).

Gianni Barlacchi, Massimo Nicosia, and Alessandro

Moschitti. 2014. Learning to rank answer candi-
dates for automatic resolution of crossword puzzles.
In Proceedings of CoNLL.

Chris Biemann. 2013. Creating a system for lexi-
cal substitutions from scratch using crowdsourcing.
Lang. Resour. Eval., 47(1):97–122, March.

Marco Ernandes, Giovanni Angelini, and Marco Gori.
2005. Webcrow: A web-based system for crossword
solving. In In Proc. of AAAI 05, pages 1412–1417.
Menlo Park, Calif., AAAI Press.

Marco Ernandes, Giovanni Angelini, and Marco Gori.
2008. A web-based agent challenges human experts
on crosswords. AI Magazine, 29(1).

David Ferrucci and Adam Lally. 2004. Uima: An
architectural approach to unstructured information
processing in the corporate research environment.
Nat. Lang. Eng., 10(3-4):327–348, September.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of
IJCAI.

Matthew L. Ginsberg. 2011. Dr.fill: Crosswords and
an implemented solver for singly weighted csps. J.
Artif. Int. Res., 42(1):851–886, September.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of ACM
SIGKDD, New York, NY, USA. ACM.

Michael L. Littman, Greg A. Keim, and Noam Shazeer.
2002. A probabilistic approach to solving crossword
puzzles. Artificial Intelligence, 134(12):23 – 55.

Michael McCandless, Erik Hatcher, and Otis Gospod-
netic. 2010. Lucene in Action, Second Edition:
Covers Apache Lucene 3.0. Manning Publications
Co., Greenwich, CT, USA.

Rada Mihalcea, Courtney Corley, and Carlo Strappa-
rava. 2006. Corpus-based and knowledge-based
measures of text semantic similarity. In Proceedings
AAAI.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In ECML, pages 318–329.

Ira Pohl. 1970. Heuristic search viewed as path finding
in a graph. Artificial Intelligence, 1(34):193 – 204.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of
answer re-ranking. In Proceedings of ACM SIGIR,
New York, NY, USA.

84

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 85–90,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

LEXenstein: A Framework for Lexical Simplification

Gustavo Henrique Paetzold and Lucia Specia
Department of Computer Science

University of Sheffield, UK
{ghpaetzold1,l.specia}@sheffield.ac.uk

Abstract

Lexical Simplification consists in replac-
ing complex words in a text with sim-
pler alternatives. We introduce LEXen-
stein, the first open source framework for
Lexical Simplification. It covers all ma-
jor stages of the process and allows for
easy benchmarking of various approaches.
We test the tool’s performance and report
comparisons on different datasets against
the state of the art approaches. The re-
sults show that combining the novel Sub-
stitution Selection and Substitution Rank-
ing approaches introduced in LEXenstein
is the most effective approach to Lexical
Simplification.

1 Introduction

The goal of a Lexical Simplification (LS) ap-
proach is to replace complex words and expres-
sions in a given text, often a sentence, with sim-
pler alternatives of equivalent meaning in context.
Although very intuitive, this is a challenging task
since the substitutions must preserve both the orig-
inal meaning and the grammaticality of the sen-
tence being simplified.

The LS task has been gaining significant atten-
tion since the late 1990’s, thanks to the positive
influence of the early work presented by (Devlin
and Tait, 1998) and (Carroll et al., 1999). More re-
cently, the LS task at SemEval-2012 (Specia et al.,
2012) has given LS wider visibility. Participants
had the opportunity to compare their approaches
in the task of ranking candidate substitutions, all
of which were already known to fit the context,
according to their “simplicity”.

Despite its growth in popularity, the inexistence
of tools to support the process and help researchers
to build upon has been hampering progress in the
area. We were only able to find one tool for LS: a

set of scripts designed for the training and testing
of ranking models provided by (Jauhar and Spe-
cia, 2012)1. However, they cover only one step
of the process. In an effort to tackle this issue,
we present LEXenstein: a framework for Lexical
Simplification development and benchmarking.

LEXenstein is an easy-to-use framework that
provides simplified access to many approaches
for several sub-tasks of the LS pipeline, which
is illustrated in Figure 1. Its current version in-
cludes methods for the three main sub-tasks in
the pipeline: Substitution Generation, Substitution
Selection and Substitution Ranking.

Figure 1: Lexical Simplification Pipeline

LEXenstein was devised to facilitate per-
formance comparisons among various LS ap-
proaches, as well as the creation of new strategies
for LS. In the following Sections we present LEX-
enstein’s components (Section 2) and discuss the
results of several experiments conducted with the
tool (Section 3).

2 System Overview

LEXenstein is a Python library that provides sev-
eral approaches for sub-tasks in LS. To increase
its flexibility, the library is structured in six mod-
ules: Substitution Generation, Substitution Selec-
tion, Substitution Ranking, Feature Estimation,
Evaluation and Text Adorning. In the following
Sections, we describe them in more detail.

1https://github.com/sjauhar/simplex

85

2.1 Substitution Generation

We define Substitution Generation (SG) as the task
of producing candidate substitutions for complex
words, which is normally done regardless of the
context of the complex word. Previous work com-
monly addresses this task by querying general do-
main thesauri such as WordNet (Fellbaum, 1998),
or domain specific ones such as UMLS (Boden-
reider, 2004). Examples of work resorting to this
strategy are (Devlin and Tait, 1998) and (Carroll
et al., 1999). Recent work focuses on learning
substitutions from sentence-aligned parallel cor-
pora of complex-simple texts (Paetzold and Spe-
cia, 2013; Horn et al., 2014).

LEXenstein’s SG module offers support for five
approaches. All approaches use LEXenstein’s
Text Adorning module to create substitutions for
all possible inflections of verbs and nouns. Each
approach is represented by one of the following
Python classes:

KauchakGenerator (Horn et al., 2014) Auto-
matically extracts substitutions from parallel cor-
pora. It requires a set of tagged parallel sentences
and the word alignments between them in Pharaoh
format (Och and Ney, 2000). It produces a dictio-
nary of complex-to-simple substitutions filtered by
the criteria described in (Horn et al., 2014).

BiranGenerator (Biran et al., 2011) Filters
substitutions based on the Cartesian product be-
tween vocabularies of complex and simple words.
It requires vocabularies of complex and simple
words, as well as two language models trained
over complex and simple corpora. It produces a
dictionary linking words to a set of synonyms and
hypernyms filtered by the criteria described in (Bi-
ran et al., 2011).

YamamotoGenerator (Kajiwara et al., 2013)
Extracts substitutions from dictionary definitions
of complex words. It requires an API key for the
Merriam Dictionary2, which can be obtained for
free. It produces a dictionary linking words in the
Merriam Dictionary and WordNet to words with
the same Part-of-Speech (POS) tag in its entries’
definitions and examples of usage.

MerriamGenerator Extracts a dictionary link-
ing words to their synonyms, as listed in the Mer-
riam Thesaurus. It requires an API key.

2http://www.dictionaryapi.com/

WordnetGenerator Extracts a dictionary link-
ing words to their synonyms, as listed in WordNet.

2.2 Substitution Selection

Substitution Selection (SS) is the task of selecting
which substitutions – from a given list – can re-
place a complex word in a given sentence with-
out altering its meaning. Most work addresses
this task referring to the context of the complex
word by employing Word Sense Disambiguation
(WSD) approaches (Sedding and Kazakov, 2004;
Nunes et al., 2013), or by discarding substitutions
which do not share the same POS tag of the target
complex word (Kajiwara et al., 2013; Paetzold and
Specia, 2013).

LEXenstein’s SS module provides access to
three approaches. All approaches require as input
a dictionary of substitutions generated by a given
approach and a dataset in the VICTOR format (as
in Victor Frankenstein (Shelley, 2007)). As out-
put, they produce a set of selected substitutions for
each entry in the VICTOR dataset. The VICTOR
format is structured as illustrated in Example 1,
where Si is the ith sentence in the dataset, wi a
target complex word in the hith position of Si, cj

i

a substitution candidate and rj
i its simplicity rank-

ing. Each bracketed component is separated by a
tabulation marker. 〈S1〉 〈w1〉 〈h1〉

〈
r11:c1

1

〉· · ·〈rn1 :cn
1 〉

...
〈Sm〉 〈wm〉 〈hm〉

〈
r1m:c1

m

〉· · ·〈rnm:cn
m〉

 (1)

LEXenstein includes two resources for train-
ing/testing in the VICTOR format: the LexMTurk
(Horn et al., 2014) and the SemEval corpus (Spe-
cia et al., 2012). Each approach in the SS mod-
ule is represented by one of the following Python
classes:

WSDSelector Allows for the user to use one
among various classic WSD approaches in SS. It
requires the PyWSD (Tan, 2014) module to be in-
stalled, which includes the approaches presented
by (Lesk, 1986) and (Wu and Palmer, 1994), as
well as baselines such as random and first senses.

BiranSelector (Biran et al., 2011) Employs a
strategy in which a word co-occurrence model is
used to determine which substitutions have mean-
ing similar to that of a target complex word. It
requires a plain text file with each line in the for-
mat specified in Example 2, where 〈wi〉 is a word,

86

〈
cj
i

〉
a co-occurring word and

〈
f j

i

〉
its frequency

of occurrence.

〈wi〉
〈
c0
i

〉
:
〈
f0

i

〉 · · · 〈cn
i 〉 :〈fn

i 〉 (2)

Each component in the format in 2 must be
separated by a tabulation marker. Given such a
model, the approach filters all substitutions which
are estimated to be more complex than the tar-
get word, and also those for which the distance
between their co-occurrence vector and the target
sentence’s vector is higher than a threshold set by
the user.

WordVectorSelector Employs a novel strategy,
in which a word vector model is used to deter-
mine which substitutions have the closest mean-
ing to that of the sentence being simplified. It
requires a binary word vector model produced by
Word2Vec3, and can be configured in many ways.
It retrieves a user-defined percentage of the substi-
tutions, which are ranked with respect to the co-
sine distance between their word vector and the
sum of some or all of the sentences’ words, de-
pending on the settings defined by the user.

2.3 Substitution Ranking

Substitution Ranking (SR) is the task of ranking a
set of selected substitutions for a target complex
word with respect to their simplicity. Approaches
vary from simple word length and frequency-
based measures (Devlin and Tait, 1998; Carroll et
al., 1998; Carroll et al., 1999; Biran et al., 2011)
to more sophisticated linear combinations of scor-
ing functions (Jauhar and Specia, 2012), as well as
machine learning-based approaches (Horn et al.,
2014).

LEXenstein’s SR module provides access to
three approaches. All approaches receive as in-
put datasets in the VICTOR format, which can be
either training/testing datasets already containing
only valid substitutions in context, or datasets gen-
erated with (potentially noisy) substitutions by a
given SS approach. They also require as input a
FeatureEstimator object to calculate feature values
describing the candidate substitutes. More details
on the FeatureEstimator class are provided in Sec-
tion 2.4. Each approach in the SR module is rep-
resented by one of the following Python classes:

3https://code.google.com/p/word2vec/

MetricRanker Employs a simple ranking strat-
egy based on the values of a single feature pro-
vided by the user. By configuring the input Fea-
tureEstimator object, the user can calculate values
of several features for the candidates in a given
dataset and easily rank the candidates according
to each of these features.

SVMRanker (Joachims, 2002) Use Support
Vector Machines in a setup that minimises a loss
function with respect to a ranking model. This
strategy is the one employed in the LS experiments
of (Horn et al., 2014), yielding promising results.
The user needs to provide a path to their SVM-
Rank installation, as well as SVM-related configu-
rations, such as the kernel type and parameter val-
ues for C, epsilon, etc.

BoundaryRanker Employs a novel strategy, in
which ranking is framed as a binary classification
task. During training, this approach assigns the la-
bel 1 to all candidates of rank 1 ≥ r ≥ p, where
p is a range set by the user, and 0 to the remain-
ing candidates. It then trains a stochastic descent
linear classifier based on the features specified in
the FeatureEstimator object. During testing, can-
didate substitutions are ranked based on how far
from 0 they are. This ranker allows the user to
provide several parameters during training, such
as loss function and penalty type.

2.4 Feature Estimation
LEXenstein’s Feature Estimation module allows
the calculation of several features for LS-related
tasks. Its class FeatureEstimator allows the user
to select and configure many features commonly
used by LS approaches.

The FeatureEstimator object can be used either
for the creation of LEXenstein’s rankers, or in
stand-alone setups. For the latter, the class pro-
vides a function called calculateFeatures, which
produces a matrix MxN containing M feature
values for each of the N substitution candidates
listed in the dataset. Each of the 11 features sup-
ported must be configured individually. They can
be grouped in four categories:

Lexicon-oriented: Binary features which re-
ceive value 1 if a candidate appears in a given vo-
cabulary, and 0 otherwise.

Morphological: Features that exploit morpho-
logical characteristics of substitutions, such as
word length and number of syllables.

87

Collocational: N-gram probabilities of the form
P
(
Sh−l

h−1 c Sh+r
h+1

)
, where c is a candidate substi-

tution in the hth position in sentence S, and Sh−l
h−1

and Sh+r
h+1 are n-grams of size l and r, respectively.

Sense-oriented: Several features which are re-
lated to the meaning of a candidate substitution
such as number of senses, lemmas, synonyms, hy-
pernyms, hyponyms and maximum and minimum
distances among all of its senses.

2.5 Evaluation

Since one of the goals of LEXenstein is to facili-
tate the benchmarking LS approaches, it is crucial
that it provides evaluation methods. This module
includes functions for the evaluation of all sub-
tasks, both individually and in combination. It
contains four Python classes:

GeneratorEvaluator: Provides evaluation met-
rics for SG methods. It requires a gold-standard
in the VICTOR format and a set of generated sub-
stitutions. It returns the Potential, Precision and
F-measure, where Potential is the proportion of in-
stances for which at least one of the substitutions
generated is present in the gold-standard, Preci-
sion the proportion of generated instances which
are present in the gold-standard, and F-measure
their harmonic mean.

SelectorEvaluator: Provides evaluation metrics
for SS methods. It requires a gold-standard in
the VICTOR format and a set of selected substi-
tutions. It returns the Potential, Precision and F-
measure of the SS approach, as defined above.

RankerEvaluator: Provides evaluation metrics
for SR methods. It requires a gold-standard in the
VICTOR format and a set of ranked substitutions.
It returns the TRank-at-1:3 and Recall-at-1:3 met-
rics (Specia et al., 2012), where Trank-at-i is the
proportion of instances for which a candidate of
gold-rank r ≤ i was ranked first, and Recall-at-i
the proportion of candidates of gold-rank r ≤ i
that are ranked in positions p ≤ i.

PipelineEvaluator: Provides evaluation metrics
for the entire LS pipeline. It requires as input
a gold-standard in the VICTOR format and a set
of ranked substitutions which have been gener-
ated and selected by a given set of approaches. It
returns the approaches’ Precision, Accuracy and

Change Proportion, where Precision is the pro-
portion of instances for which the highest ranking
substitution is not the target complex word itself
and is in the gold-standard, Accuracy is the pro-
portion of instances for which the highest ranking
substitution is in the gold-standard, and Change
Proportion is the proportion of instances for which
the highest ranking substitution is not the target
complex word itself.

2.6 Text Adorning
This approach provides a Python interface to the
Morph Adorner Toolkit (Paetzold, 2015), a set
of Java tools that facilitates the access to Morph
Adorner’s functionalities. The class provides easy
access to word lemmatisation, word stemming,
syllable splitting, noun inflection, verb tensing and
verb conjugation.

2.7 Resources
LEXenstein also provides a wide array of re-
sources for the user to explore in benchmarking
tasks. Among them are the aforementioned LexM-
turk and SemEval corpora in the VICTOR format,
lists of stop and basic words, as well as language
models and lexica built over Wikipedia and Sim-
ple Wikipedia.

3 Experiments

In this Section, we discuss the results obtained in
four benchmarking experiments.

3.1 Substitution Generation
In this experiment we evaluate all SG approaches
in LEXenstein. For the KauchakGenerator, we
use the corpus provided by (Kauchak, 2013), com-
posed of 150, 569 complex-to-simple parallel sen-
tences, parsed by the Stanford Parser (Klein and
Manning, 1965). From the the same corpus, we
build the required vocabularies and language mod-
els for the BiranGenerator. We used the LexMturk
dataset as the gold-standard (Horn et al., 2014),
which is composed by 500 sentences, each with
a single target complex word and 50 substitutions
suggested by turkers. The results are presented in
Table 1.

The results in Table 1 show that the method of
(Horn et al., 2014) yields the best F-Measure re-
sults, although combining the output of all gener-
ation methods yields the highest Potential. This
shows that using parallel corpora to generate sub-
stitution candidates for complex words can be a

88

Approach Pot. Prec. F
Kauchak 0.830 0.155 0.262
Wordnet 0.608 0.109 0.184
Biran 0.630 0.102 0.175
Merriam 0.540 0.067 0.120
Yamamoto 0.504 0.054 0.098
All 0.976 0.066 0.124

Table 1: SG benchmarking results

more efficient strategy than querying dictionaries
and databases. We must, however, keep in mind
that the sentences that compose the LexMturk cor-
pus were extracted from Wikipedia, which is the
same corpus from which the KauchakGenerator
learns substitutions.

3.2 Substitution Selection
Here we evaluate of all SS approaches in LEX-
enstein. For the BiranSelector, we trained a co-
occurrence model over a corpus of 6+ billion
words extracted from the various sources sug-
gested in the Word2Vec documentation4, the same
sources over which the word vector model re-
quired by the WordVectorSelector was trained. In
order to summarise the results, we present the
scores obtained only with the best performing con-
figurations of each approach. The LexMturk cor-
pus is used as the gold-standard, and the initial set
of substitutions is the one produced by all SG ap-
proaches combined. The results are presented in
Table 2.

Approach Pot. Prec. F Size
Word Vec. 0.768 0.219 0.341 3, 042
Biran 0.508 0.078 0.136 9, 680
First 0.176 0.045 0.072 2, 471
Lesk 0.246 0.041 0.070 4, 716
Random 0.082 0.023 0.035 2, 046
Wu-Pa 0.038 0.013 0.020 1, 749
No Sel. 0.976 0.066 0.124 26, 516

Table 2: SS benchmarking results

“Size” in Table 2 represents the total number of
substitutions selected for all test instances. The
results in Table 2 show that our novel word vector
approach outperforms all others in F-Measure by a
considerable margin, including the method of not
performing selection at all. Note that not perform-
ing selection allows for Potential to be higher, but

4https://code.google.com/p/word2vec/

yields very poor Precision.

3.3 Substitution Ranking
In Table 3 we present the results of the evaluation
of several SR approaches. We trained the SVM-
Ranker with features similar to the ones used in
(Horn et al., 2014), and the BoundaryRanker with
a set of 10 features selected through univariate
feature selection. We compare these approaches
to three baseline Metric Rankers, which use the
word’s frequency in Simple Wikipedia, its length
or its number of senses. The SemEval corpus is
used as the gold-standard so that we can compare
our results with the best one obtained at SemEval-
2012 (Jauhar and Specia, 2012) (SemEval, in Ta-
ble 3).

Approach TR-1 Rec-1 Rec-2 Rec-3
Boundary 0.655 0.608 0.602 0.663
SVM 0.486 0.451 0.502 0.592
Freq. 0.226 0.220 0.236 0.300
Length 0.180 0.175 0.200 0.261
Senses 0.130 0.126 0.161 0.223
SemEval 0.602 0.575 0.689 0.769

Table 3: SR benchmarking results

The novel Boundary ranking approach outper-
forms all other approaches in both TRank-at-1
and Recall-at-1 by a considerable margin, but it
is worse than the best SemEval-2012 approach in
terms of Recall-at-2 and 3. This however reveals
not a limitation but a strength of our approach:
since the Boundary ranker focuses on placing the
best substitution in the highest rank, it becomes
more effective at doing so as opposed to at pro-
ducing a full ranking for all candidates.

3.4 Round-Trip Evaluation
In this experiment we evaluate the performance of
different combinations of SS and SR approaches
in selecting suitable substitutions for complex
words from the ones produced by all generators
combined. Rankers and selectors are configured
in the same way as they were in the experiments
in Sections 3.3 and 3.2. The gold-standard used is
LexMturk, and the performance metric used is the
combination’s Precision: the proportion of times
in which the candidate ranked highest is not the
target complex word itself and belongs to the gold-
standard list. Results are shown in Table 4.

The results show that combining the Word-
VectorSelector with the BoundaryRanker yields

89

No Sel. Word Vector Biran
Boundary 0.342 0.550 0.197
SVM 0.108 0.219 0.003
Freq. 0.114 0.501 0.096
Length 0.120 0.408 0.092
Senses 0.214 0.448 0.122

Table 4: Round-trip benchmarking results

the highest performance in the pipeline evalua-
tion. Interestingly, the SVMRanker, which per-
formed very well in the individual evaluation of
Section 3.3, was outperformed by all three base-
lines in this experiment.

4 Final Remarks

We have presented LEXenstein, a framework for
Lexical Simplification distributed under the per-
missive BSD license. It provides a wide arrange
of useful resources and tools for the task, such
as feature estimators, text adorners, and various
approaches for Substitution Generation, Selection
and Ranking. These include methods from pre-
vious work, as well as novel approaches. LEX-
enstein’s modular structure also allows for one to
easily add new approaches to it.

We have conducted evaluation experiments in-
cluding various LS approaches in the literature.
Our results show that the novel approaches intro-
duced in this paper outperform those from previ-
ous work. In the future, we intend to incorporate in
LEXenstein approaches for Complex Word Iden-
tification, as well as more approaches for the re-
maining tasks of the usual LS pipeline.

The tool can be downloaded from: http://
ghpaetzold.github.io/LEXenstein/.

References
O. Biran, S. Brody, and N. Elhadad. 2011. Putting it

Simply: a Context-Aware Approach to Lexical Sim-
plification. The 49th Annual Meeting of the ACL.

O. Bodenreider. 2004. The unified medical language
system (umls): integrating biomedical terminology.
Nucleic acids research.

J. Carroll, G. Minnen, Y. Canning, S. Devlin, and
J. Tait. 1998. Practical simplification of english
newspaper text to assist aphasic readers. In The 15th
AAAI.

J. Carroll, G. Minnen, D. Pearce, Y. Canning, S. De-
vlin, and J. Tait. 1999. Simplifying Text for Lan-
guage Impaired Readers. The 9th EACL.

S. Devlin and J. Tait. 1998. The use of a psy-
cholinguistic database in the simplification of text
for aphasic readers. Linguistic Databases.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. Bradford Books.

C. Horn, C. Manduca, and D. Kauchak. 2014. Learn-
ing a Lexical Simplifier Using Wikipedia. The 52nd
Annual Meeting of the ACL.

S.K. Jauhar and L. Specia. 2012. UOW-SHEF:
SimpLex–lexical simplicity ranking based on con-
textual and psycholinguistic features. The 1st *SEM.

T. Joachims. 2002. Optimizing search engines using
clickthrough data. In The 8th ACM.

T. Kajiwara, H. Matsumoto, and K. Yamamoto. 2013.
Selecting Proper Lexical Paraphrase for Children.

D. Kauchak. 2013. Improving Text Simplification
Language Modeling Using Unsimplified Text Data.
The 51st Annual Meeting of the ACL.

D. Klein and C.D. Manning. 1965. Accurate Unlexi-
calized Parsing. In The 41st Annual Meeting of ACL.

M. Lesk. 1986. Automatic sense disambiguation us-
ing machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In The 5th SIGDOC.

B.P. Nunes, R. Kawase, P. Siehndel, M.A. Casanova,
and S. Dietze. 2013. As Simple as It Gets - A Sen-
tence Simplifier for Different Learning Levels and
Contexts. IEEE 13th ICALT.

F.J. Och and H. Ney. 2000. Improved statistical align-
ment models. In The 38th Annual Meeting of the
ACL.

G.H. Paetzold and L. Specia. 2013. Text simplification
as tree transduction. In The 9th STIL.

G.H. Paetzold. 2015. Morph adorner
toolkit: Morph adorner made simple.
http://ghpaetzold.github.io/MorphAdornerToolkit/.

J. Sedding and D. Kazakov. 2004. Wordnet-based text
document clustering. In The 3rd ROMAND.

M. Shelley. 2007. Frankenstein. Pearson Education.

L. Specia, S.K. Jauhar, and R. Mihalcea. 2012.
Semeval-2012 task 1: English lexical simplification.
In The 1st *SEM.

L. Tan. 2014. Pywsd: Python implementa-
tions of word sense disambiguation technologies.
https://github.com/alvations/pywsd.

Z. Wu and M. Palmer. 1994. Verbs semantics and lex-
ical selection. In The 32nd Annual Meeting of ACL.

90

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 91–96,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

Sharing annotations better: RESTful Open Annotation

Sampo Pyysalo1 Jorge Campos2 Juan Miguel Cejuela2 Filip Ginter1

Kai Hakala1 Chen Li3 Pontus Stenetorp4 Lars Juhl Jensen5

1 University of Turku, Finland, 2 tagtog, Germany,
3 Massachusetts Institute of Technology, United States,

4 University of Tokyo, Japan, 5 University of Copenhagen, Denmark
sampo@pyysalo.net jorge@tagtog.net juanmi@tagtog.net

filip.ginter@utu.fi kai.hakala@utu.fi cli@csail.mit.edu
p.stenetorp@cs.ucl.ac.uk lars.juhl.jensen@cpr.ku.dk

Abstract

Annotations are increasingly created and
shared online and connected with web re-
sources such as databases of real-world
entities. Recent collaborative efforts to
provide interoperability between online
annotation tools and resources have intro-
duced the Open Annotation (OA) model,
a general framework for representing an-
notations based on web standards. Build-
ing on the OA model, we propose to share
annotations over a minimal web inter-
face that conforms to the Representational
State Transfer architectural style and uses
the JSON for Linking Data representation
(JSON-LD). We introduce tools support-
ing this approach and apply it to several
existing annotation clients and servers,
demonstrating direct interoperability be-
tween tools and resources that were pre-
viously unable to exchange information.
The specification and tools are available
from http://restoa.github.io/.

1 Introduction

Annotation is an important task in many fields
ranging from historical and literary study to exper-
imental sciences including biology. The value of
annotations is closely associated with the ability to
share them. The web has become instrumental to
information sharing, and there has thus been much
interest in web-based tools and repositories for the
creation, collaborative editing and sharing of an-
notations. Unfortunately, design and implemen-
tation differences have resulted in poor interoper-
ability, raising barriers to communication and in-
troducing costs from the need to convert between

data models, formats, and protocols to bridge dif-
ferent systems.

To fully interoperate, annotation tools and re-
sources must agree at least on a way to name and
refer to things, an abstract data model, a format
capturing that model, and a communication proto-
col. Here, we suggest a web application program-
ming interface (API) that resolves these questions
by building upon web standards and best practices,
namely Linked Data principles (Bizer et al., 2009),
the Open Annotation data model (Bradshaw et al.,
2013) and its serialization as JSON-LD (Sporny
et al., 2014), and a minimal HTTP-based proto-
col adhering to the Representational State Trans-
fer (REST) architectural style (Fielding and Tay-
lor, 2002). By implementing support for the API
in a variety of independently developed annotation
tools and resources, we demonstrate that this ap-
proach enables interoperability and novel ways of
combining previously isolated methods.

2 Design

We aim to define a minimal web API for shar-
ing annotations that conforms closely to relevant
standards and best practices. This should reduce
implementation effort and ensure generality and
compatibility with related efforts (Section 5). We
next briefly discuss the components of our design.

Linked Data. We use representations based on
the Resource Description Framework (RDF) stan-
dards for modeling data on the web, following
the best practice of using HTTP uniform resource
identifiers (URIs), which provide useful informa-
tion when dereferenced (Bizer et al., 2009).

Open Annotation. We describe text annotations
according to the OA draft W3C standard1, which

1http://www.openannotation.org/

91

body target

“related”

example.org/annotations/1example.org/annotations/1

www.w3.orgwww.w3.orgen.wikipedia.org/wiki/W3Cen.wikipedia.org/wiki/W3C

Figure 1: OA model example. The annotation ex-
presses that the W3C Wikipedia article is related
to the W3C homepage. The three resources are all
in different domains, and the ”related” relation is
not represented explicitly.

is an RDF-based graph representation compati-
ble with linguistic annotation formalisms such as
LAF/GrAF (Ide and Suderman, 2007; Verspoor
and Livingston, 2012). At its most basic level, the
OA model differentiates between three key com-
ponents: annotation, body, and target, where the
annotation expresses that the body is related to the
target of the annotation (Figure 1). The body can
carry arbitrarily complex embedded data.

JSON-LD was recently accepted as a standard
RDF serialization format (Sporny et al., 2014) and
is the recommended serialization of OA. Every
JSON-LD document is both a JSON document and
a representation of RDF data. Figure 2 shows
an example of a simple annotation using the OA
JSON-LD representation.2

{
"@id": "/annotations/1",
"@type": "oa:Annotation",
"target": "/documents/1#char=0,10",
"body": "Person"

}

Figure 2: Example annotation in JSON-LD for-
mat.

RESTful architecture We define a resource-
oriented API that uses HTTP verbs to manipulate
resources (Table 1). The API provides hypermedia
controls in data using JSON-LD and established
link relations, in conformance with best practices
for RESTful APIs (Fielding and Taylor, 2002).

The API defines just two types of resources: an
annotation and a collection of annotations. The
former is defined according to the core OA spec-
ification. While there are no formal standards for
the representation of collections in RESTful APIs,

2The OA JSON-LD @context is understood to be ac-
tive. Relative URLs are interpreted with respect to the HTTP
request base.

Verb Resource Action
GET Annotation Read annotation
GET Collection Read all annotations
PUT Annotation Update annotation
DELETE Annotation Delete annotation
POST Collection Create annotation

Table 1: HTTP verbs, resources, and actions.
Read-only services support only the two GET re-
quests.

the basic collection pattern is well established. We
specify a simple implementation, drawing on rel-
evant draft standards such as Collection+JSON3

and Hydra4.

3 Reference Implementation

To support the development, testing and integra-
tion of RESTful OA API implementations, we
have created a reference server and client as well
as tools for format conversion and validation.

3.1 OA Store

The OA Store is a reference implementation of
persistent, server-side annotation storage that al-
lows clients to create, read, update and delete an-
notations using the API. The store uses MongoDB,
which is well suited to the task as it is a document-
oriented, schema-free database that natively sup-
ports JSON for communication. The API is imple-
mented using the Python Eve framework, which is
specifically oriented towards RESTful web APIs
using JSON and is thus easily adapted to support
OA JSON-LD.

3.2 OA Explorer

The OA Explorer is a reference client that provides
an HTML interface for navigating and visualizing
the contents of any compatible store (Figure 3).
The service first prompts the user for a store URL
and then provides the user with a dynamically gen-
erated view of the contents of the store, which it
discovers using the API. OA Explorer is imple-
mented in Python using the Flask microframework
for web development.

3http://amundsen.com/media-types/
collection/

4http://www.hydra-cg.com/spec/latest/
core/

92

Figure 3: OA Explorer shown visualizing annotations from the CRAFT corpus (Bada et al., 2012) con-
verted to OA and served from the OA Store.

3.3 Format conversion

The OA Adapter is middleware that we created
for sharing Open Annotation data. The software
implements both the client and server sides of the
API and a variety of conversions to and from dif-
ferent serializations of the OA model and related
formats using the OA JSON-LD serialization as
the pivot format. This allows the OA Adapter
to operate transparently between a client and a
server, providing on-the-fly conversions of client
requests from representations favored by the client
into ones favored by the server, and vice versa for
server responses. Standard HTTP content negotia-
tion is used to select the best supported representa-
tions. The adapter implements full support for all
standard RDF serializations: JSON-LD, N-Triples
and N-Quads, Notation3, RDF/XML, TriG, TriX,
and Turtle. With the exception of named graphs
for serializations that do not support them, conver-
sion between these representations is guaranteed
to preserve all information.

In addition to the general, reversible format
translation services provided by the OA Adapter,
we provide scripts for offline conversion of vari-
ous annotation file formats into the OA JSON-LD
format to allow existing datasets to be imported
into OA stores. The following are currently sup-
ported: Penn Treebank format (including PTB II
PAS) (Marcus et al., 1994), a number of variants
of CoNLL formats, including CoNLL-U,5 Know-
tator XML (Ogren, 2006), and the standoff format
used by the BRAT annotation tool (Stenetorp et al.,
2012). We also provide supporting tools for im-
porting files with OA JSON-LD data to a store and
exporting to files over the RESTful OA API.

5http://universaldependencies.github.
io/docs/

3.4 Validation

OA JSON-LD data can be validated on three lev-
els: 1) whether the data is syntactically well-
formed JSON, 2) whether it conforms to the
JSON-LD specification, and 3) whether the ab-
stract information content fulfills the OA data
model. The first two can be accomplished using
any one of the available libraries that implement
the full JSON-LD syntax and API specifications.6

To facilitate also validation of conformity to the
OA data model, we define the core model of the
OA standard using JSON Schema (Galiegue and
Zyp, 2013). The JSON Schema community has
provided tools in various programming languages
for validating JSON against a JSON Schema. The
schema we defined is capable of validating data for
compliance against JSON-LD and OA Core at the
same time. Complementing this support for data
validation, we are also developing a standalone
tool for testing web services for conformance to
the RESTful OA API specification.

4 Adaptation of Existing Tools

In addition to creating reference implementations,
we have adapted two previously introduced web-
based annotation tools to support the API. We
further demonstrate the scope and scalability of
the framework on several publicly available mass-
scale datasets from the biomedical domain, show-
ing how annotations on millions of documents
can be transparently linked across well-established
database services and to non-textual resources
such as gene and protein databases.

6http://json-ld.org

93

Figure 4: BRAT showing Czech dependency annotations from the Universal Dependencies corpus
(http://universaldependencies.github.io/docs/).

Figure 5: tagtog showing entity annotations for a full-text document from PubMed Central.

4.1 BRAT

The brat rapid annotation tool (BRAT) is an open-
source web-based annotation tool that supports a
wide range of text annotation tasks (Stenetorp et
al., 2012). It provides intuitive visualization of
text-bound and relational annotations and allows
for annotations to be created and edited using a
drag-and-drop interface (Figure 4). The server is
a web service implemented in Python, whereas
the client is a browser-based application written in
JavaScript. For annotation storage, the server uses
a file-based back-end with a stand-off file format7.

The original client and server implement a cus-
tom communication protocol, leading to tight cou-
pling between the two. We rewrote the client
and server communication components to use OA
JSON-LD and the RESTful API as an alternative
to the native format and protocol, thus enabling
both components to communicate also with other
clients and servers.

7http://brat.nlplab.org/standoff.html

4.2 tagtog

The tagtog web-based annotation system is de-
signed to combine manual and automatic annota-
tions to accurately and efficiently mark up full-text
articles (Cejuela et al., 2014). The system was
originally developed with a focus on annotating
biological entities and concepts such as genes and
Gene Ontology terms. The web interface is im-
plemented in JavaScript using the Play framework
with Scala. The system is centered on the concept
of user projects, each of which holds a corpus of
annotated documents.

To make tagtog interoperable with other REST-
ful OA clients and servers, we made two major
implementation changes. First, the server can now
serve annotations in OA JSON-LD format, thus
allowing them to be viewed by other clients. Sec-
ond, the tagtog interface can visualize and edit OA
JSON annotations from other OA stores, without
a backing tagtog project. Figure 5 shows a sample
document annotated in tagtog.

94

4.3 Biomedical entity recognition resources

We implemented the API for four large-scale
databases of biomedical entity mentions. The
COMPARTMENTS database integrates evidence
on protein subcellular localization (Binder et al.,
2014), and TISSUES and DISEASES similarly in-
tegrate evidence on tissue expression and disease-
associations of human genes, respectively (Santos
et al., 2015; Pletscher-Frankild et al., 2015). All
three resources include a text mining component
based on the highly efficient NER engine used
also for detection of species names and names of
other taxa in the ORGANISMS database (Pafilis et
al., 2014). Together, these databases contain over
123M mentions of genes/proteins, cellular compo-
nents, tissues and cell lines, disease terms and tax-
onomic identifiers. This dataset is regularly pre-
computed for the entire Medline corpus, which
currently consists of more than 24M abstracts and
3B tokens.

To make this large collection of automatic an-
notations available as OA JSON-LD, we defined
the annotations of each abstract to be a separate
(sub)collection of a document resource, accessible
using URL patterns of the form http://.../
document/{docid}/annotations/. The
web services were implemented as part of the
Python framework common to all four databases.
They query a PostgreSQL back-end for text and
annotations, which are formatted as OA JSON-LD
using the standard Python json module.

4.4 EVEX

The EVEX database is a collection of events from
the molecular biology domain obtained by pro-
cessing the entire collection of PubMed articles
and PubMed Central Open Access full-text arti-
cles (Van Landeghem et al., 2013), together con-
stituting a corpus of nearly 6B tokens. In to-
tal, EVEX contains 40M individual events among
77M entity mentions. The events are of 24 dif-
ferent types (e.g. POSITIVE REGULATION, PHOS-
PHORYLATION) and the participants are primar-
ily genes and proteins. Where possible, the entity
mentions are grounded to their corresponding En-
trez Gene database identifiers.

The event structures consist of entity mentions,
trigger phrases expressing events, and typed
relations identifying the roles that the entities play
in the events. All of this data is accessible through
a newly implemented EVEX API compliant with

the OA JSON-LD format. Every document is de-
fined as a separate annotation collection following
the approach described in Section 4.3. The EVEX
web service is written in Python using the Django
web framework. Data are stored in a MySQL
database and the OA JSON-LD interface uses the
standard Python json module for formatting.

5 Related work

Our approach builds directly on the OA data
model (Bradshaw et al., 2013), which harmonizes
the earlier Open Annotation Collaboration (Hasl-
hofer et al., 2011) and Annotation Ontology Ini-
tiative (Ciccarese et al., 2011) efforts and is cur-
rently developed further under the auspices of the
W3C Web Annotation WG.8 Approaches build-
ing on RESTful architectures and JSON-LD are
also being pursued by the Linguistic Data Con-
sortium (Wright, 2014) and the Language Appli-
cation Grid (Ide et al., 2014), among others. A
number of annotation stores following similar pro-
tocols have also been released recently, includ-
ing Lorestore (Hunter and Gerber, 2012), PubAn-
notation (Kim and Wang, 2012), the Annotator.js
store9, and NYU annotations10.

6 Conclusions and future work

We have proposed to share annotations using a
minimal RESTful interface for Open Annotation
data in JSON-LD. We introduced reference im-
plementations of a server, client, validation and
conversion tools, and demonstrated the integra-
tion of several independently developed annota-
tion tools and resources using the API. In future
work, we will continue to develop the API speci-
fication further in collaboration with the relevant
standardization efforts and interested parties us-
ing a fully open process. We will focus in par-
ticular on modular extensions to the specification
for supporting search, tagging, and bulk modifica-
tions. We will also continue to develop and ex-
tend the tools, with emphasis on reversible con-
versions between OA JSON-LD and major re-
lated formats. Except for tagtog, a commercial
tool, all of the tools and resources introduced in
this study are available under open licenses from
http://restoa.github.io/.

8http://www.w3.org/annotation/
9http://annotateit.org/

10http://annotations.dlib.nyu.edu/home/

95

Acknowledgments

This work was in part funded by the Novo
Nordisk Foundation Center for Protein Research
[NNF14CC0001], by the National Institutes of
Health [U54 CA189205-01], by JSPS KAKENHI
[13F03041], and by Quanta Computer Inc.

References
Michael Bada, Miriam Eckert, Donald Evans, Kristin

Garcia, Krista Shipley, Dmitry Sitnikov, William A
Baumgartner, K Bretonnel Cohen, Karin Verspoor,
Judith A Blake, et al. 2012. Concept annotation in
the craft corpus. BMC bioinformatics, 13(1):161.

Janos X Binder, Sune Pletscher-Frankild, Kalliopi
Tsafou, Christian Stolte, Sean I O’Donoghue, Rein-
hard Schneider, and Lars Juhl Jensen. 2014. COM-
PARTMENTS: unification and visualization of pro-
tein subcellular localization evidence. Database,
2014:bau012.

Christian Bizer, Tom Heath, and Tim BernersLee.
2009. Linked Data the story so far. International
Journal on Semantic Web & Information Systems.

Shannon Bradshaw, Dan Brickley, Leyla Jael
Garca Castro, Timothy Clark, Timothy Cole,
Phil Desenne, Anna Gerber, Antoine Isaac, Jacob
Jett, Thomas Habing, et al. 2013. Open annotation
data model (community draft).

Juan Miguel Cejuela, Peter McQuilton, Laura Ponting,
Steven J Marygold, Raymund Stefancsik, Gillian H
Millburn, Burkhard Rost, et al. 2014. tagtog:
interactive and text-mining-assisted annotation of
gene mentions in PLOS full-text articles. Database,
2014:bau033.

Paolo Ciccarese, Marco Ocana, Leyla Jael Garcia-
Castro, Sudeshna Das, and Tim Clark. 2011. An
open annotation ontology for science on web 3.0. J.
Biomedical Semantics, 2(S-2):S4.

Roy T Fielding and Richard N Taylor. 2002. Prin-
cipled design of the modern web architecture.
ACM Transactions on Internet Technology (TOIT),
2(2):115–150.

Francis Galiegue and Kris Zyp. 2013. JSON Schema:
Core definitions and terminology. Internet Engi-
neering Task Force (IETF).

Bernhard Haslhofer, Rainer Simon, Robert Sander-
son, and Herbert Van de Sompel. 2011. The
open annotation collaboration (oac) model. In Proc.
MMWeb’11, pages 5–9.

Jane Hunter and Anna Gerber. 2012. Towards anno-
topiaenabling the semantic interoperability of web-
based annotations. Future Internet, 4(3):788–806.

Nancy Ide and Keith Suderman. 2007. Graf: A graph-
based format for linguistic annotations. In Proc.
LAW’07, pages 1–8.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric
Nyberg, Denise DiPersio, Chunqi Shi, Keith Su-
derman, Marc Verhagen, Di Wang, and Jonathan
Wright. 2014. The language application grid. Proc.
LREC’14.

Jin-Dong Kim and Yue Wang. 2012. Pubannotation: a
persistent and sharable corpus and annotation repos-
itory. In Proc. BioNLP’12, pages 202–205.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The penn treebank: annotating
predicate argument structure. In Proc. HLT, pages
114–119.

Philip V Ogren. 2006. Knowtator: a protégé plug-
in for annotated corpus construction. In Proc. HLT-
NAACL’06 demos, pages 273–275.

Evangelos Pafilis, Sune Pletscher-Frankild, Lucia
Fanini, Sarah Faulwetter, Christina Pavloudi,
Aikaterini Vasileiadou, Christos Arvanitidis, and
Lars Juhl Jensen. 2014. The SPECIES and OR-
GANISMS resources for fast and accurate identi-
fication of taxonomic names in text. PLoS ONE,
8:e65390.

Sune Pletscher-Frankild, Albert Palleja, Kalliopi
Tsafou, Janos X Binder, and Lars Juhl Jensen. 2015.
DISEASES: Text mining and data integration of
disease-gene associations. Methods, 74:83–89.

Alberto Santos, Kalliopi Tsafou, Christian Stolte,
Sune Pletscher-Frankild, Sean I O’Donoghue, and
Lars Juhl Jensen. 2015. Comprehensive compari-
son of large-scale tissue expression datasets. PeerJ.

Manu Sporny, Dave Longley, Gregg Kellogg, Markus
Lanthaler, and Niklas Lindström. 2014. JSON-LD
1.0: A JSON-based serialization for linked data.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proc. ACL’12 demos, pages 102–
107.

Sofie Van Landeghem, Jari Björne, Chih-Hsuan Wei,
Kai Hakala, Sampo Pyysalo, Sophia Ananiadou,
Hung-Yu Kao, Zhiyong Lu, Tapio Salakoski, Yves
Van de Peer, et al. 2013. Large-scale event extrac-
tion from literature with multi-level gene normaliza-
tion. PLoS ONE, 8(4):e55814.

Karin Verspoor and Kevin Livingston. 2012. Towards
adaptation of linguistic annotations to scholarly an-
notation formalisms on the semantic web. In Proc.
LAW’12, pages 75–84.

Jonathan Wright. 2014. Restful annotation and effi-
cient collaboration. In Proc. LREC’14.

96

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 97–102,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

A Data Sharing and Annotation Service Infrastructure

Abstract

This paper reports on and demonstrates

META-SHARE/QT21, a prototype im-

plementation of a data sharing and an-

notation service platform, which was

based on the META-SHARE infrastruc-

ture. META-SHARE, which has been

designed for sharing datasets and tools,

is enhanced with a processing layer for

annotating textual content with appro-

priate NLP services that are documented

with the appropriate metadata. In

META-SHARE/QT21 pre-defined pro-

cessing workflows are offered to the us-

ers; each workflow is a pipeline of

atomic NLP services/tools (e.g. sen-

tence splitting, part-of-speech tagging).

Currently, workflows for annotating

monolingual and bilingual resources of

various formats are provided (e.g.

XCES, TXT, TMX). From the legal

framework point of view, a simple op-

erational model is adopted by which on-

ly openly licensed datasets can be

processed by openly licensed services.

1 Introduction

Language technology research and development

relies on the deployment of appropriate resources

and processing services more than ever before.

However, the resources and services landscape is

unorganized and highly fragmented (Soria et al.,

2012). Recently, initiatives like CLARIN (Wit-

tenburg et al., 2010), Language Grid (Ishida,

2011), Panacea (Poch and Bel, 2011), LAPPS

Grid (Ide et al., 2014) have been launched aim-

ing at improving discoverability and accessibility

of resources and services, as well as their lawful

re-use and direct deployment in modern compu-

tational environments. In this paper, we present

META-SHARE/QT21, a prototype implementa-

tion of a linguistic data infrastructure enhanced

with linguistic processing services, thus bringing

language datasets and processing services to-

gether in a unified platform. META-

SHARE/QT21 builds upon and extends META-

SHARE (Piperidis, 2012). Section 2 briefly in-

troduces the basics of META-SHARE, the un-

derlying data model and the supporting software

implementation. Section 3 elaborates on the op-

erations of the new language processing layer

and Section 4 presents the assumptions of the

current implementation. Finally, in section 5 we

conclude and present directions of future work.

2 META-SHARE design and repository

META-SHARE is designed as a network of dis-

tributed repositories of language data, tools and

web services, documented with high-quality

metadata, aggregated in central inventories al-

lowing for uniform search and access to re-

sources and services. Language resources and

services are documented with the META-

SHARE metadata schema (Gavrilidou et al.,

2012)
1
 which builds upon previous initiatives

(Broeder et al., 2010), including elements, most

of which are linked to ISOCat Data Categories
1
,

as well as relations (e.g. is_part_of,

is_annotation_of) used to describe and link re-

sources that are included in the META-SHARE

repository.

Every resource in META-SHARE is primari-

ly assigned to one of the network's repositories,

implementing the notion of a master copy of a

resource, with the member maintaining the re-

pository undertaking its curation. Metadata rec-

ords are harvested and stored in the META-

SHARE central servers, which maintain an in-

ventory including metadata of all resources

available in the distributed network. META-

SHARE users, depending on their role, are able

to create a user profile, log-in, browse and search

1 ISO 12620, http://www.isocat.org.

Stelios Piperidis, Dimitrios Galanis, Juli Bakagianni, Sokratis Sofianopoulos

Institute for Language and Speech Processing, Athena R.C., Athens, Greece

{spip, galanisd, julibak, s_sofian}@ilsp.gr

97

Figure 1: Dynamically generating annotation

levels relevant to a dataset.

Figure 2: Presenting the processing services rele-

vant to the annotation level chosen by the user.

the repository, download resources, upload and

document resources etc. All META-SHARE

software is open source
2
, released under a BSD

licence and available at the GitHub repository
3
.

3 Enhancing META-SHARE with anno-

tation services

For the purposes of infrastructural projects where

META-SHARE was to be used as the language

resource sharing platform, notably the CLARIN

EL national language infrastructure
4
, its func-

tionalities have been extended by providing a

mechanism for processing language datasets with

appropriate natural language services. The moti-

vation behind this extension is twofold: a) to

make language processing services accessible to

and usable by a wide range of users (e.g. lin-

guists, lexicographers, social sciences and digital

humanities researchers), relieving them from the

burden of the technical details of running the

tools or services, and b) to bring these tools and

services together in a unified platform and facili-

tate their combination with language datasets,

thus paving the way towards the organic growth

of the data infrastructure.

Language processing tools are documented

with the appropriate metadata in the enhanced

2 The META-SHARE software has been developed using

the Django framework, a Python-based web framework,

PostgreSQL database and Apache web server. META-

SHARE comes with a pre-configured Apache Solr server

used to index the META-SHARE database for browsing

and searching.
3 https://github.com/metashare/META-SHARE
4 http://www.clarin.gr/, http://inventory.clarin.gr

repository version (META-SHARE/QT21)
5
, and

are provided as web services through the lan-

guage processing (LP) layer. The LP layer has

been implemented in Java, based on the Apache

Camel framework
6
, an open-source project that

provides libraries, which enable the easy integra-

tion of different technologies and the creation of

data processing workflows
7
. For example, Camel

offers ready-to-use components/connectors for a)

reading the files of a directory b) split-

ting/aggregating their contents (e.g. txt or XML)

into chunks c) forwarding the chunks to data

processors d) writing final results to disk.

In the typical scenario that we propose to

demonstrate, when a registered META-

SHARE/QT21 user selects to process a resource,

a list of all available annotation levels (Figure 1)

is provided. Then all the available tools/services

that correspond to the chosen level are presented

(Figure 2). Annotation services can be atomic or

composite (a.k.a. workflows) and include: to-

kenization, sentence splitting, POS tagging,

lemmatization, dependency parsing, named enti-

ty recognition, and parallel text alignment. As

soon as the user selects a service (Figure 2), the

META-SHARE/QT21 application consults its

database. If the user requests to process a dataset

with a specific service, and this dataset has al-

ready been processed by the specific service,

then the system will forward the user to the pro-

cessed dataset that has been created and stored in

the repository.

5 http://qt21.metashare.ilsp.gr/
6 http://camel.apache.org/
7 The implemented LP layer is bundled as a web application

and can be deployed in a standard java-based web container.

98

Figure 3: Describing/uploading user-owned datasets

Otherwise, META-SHARE/QT21 sends the

user request to the LP layer. When the LP gets

the request, it starts to process the specified re-

source by invoking the appropriate tools; when it

finishes it notifies the META-SHARE/QT21 ap-

plication so that the result of the processing is

added to the META-SHARE/QT21 repository

along with appropriate metadata. Finally, the

META-SHARE/QT21 application sends the user

an email with the link to the newly created re-

source. LP’s workflows are implemented based

on a variety of natural language processing ser-

vices. These services run either within the LP

application environment (loc), or they are ac-

cessed via services (rmt). Currently, OpenNLP
8

services (loc) are deployed for English, German

and Portuguese, Panacea-DCU
9
 services (rmt)

for English, LX-Center/University of Lisbon
10

services (rmt) for Portuguese, Heart of Gold

(HoG) services
11

 (rmt) for German, ILSP NLP
12

services (loc) for Greek, and HunAlign (Varga et

al., 2005) text alignment services for aligning

parallel corpora at sentence level (loc).

Each set of workflows forms an acyclic di-

rected graph (tree) where each node corresponds

to a processing service/tool (e.g. Figure 4). The

8 https://opennlp.apache.org/
9 http://www.panacea-lr.eu
10 http://lxcenter.di.fc.ul.pt/tools/en/
11 http://heartofgold.dfki.de/
12 http://nlp.ilsp.gr

processing of a data chunk is performed by fol-

lowing a path in such a workflow tree. For ex-

ample, in case the input is raw text the starting

point is the root of the tree. However, LP is also

capable of processing already annotated re-

sources thus saving processing time and re-

sources; i.e., if the user requests to process a

dataset at a level L (e.g. OpenNLP chunking),

and the resource has already been processed at a

level A that is a prerequisite for L (e.g. Open

NLP Tokenization), then the process will start

from the already existing level A annotated re-

source. Also, the system is aware of what annota-

tion levels make sense and therefore are available

for an already processed resource and presents

the corresponding choices (e.g. a POS-tagged

corpus can be parsed or chunked, but not to-

kenised) to the user via the web interface (as in

Figure 1).

Currently, LP implements services and work-

flows that can process a) monolingual resources

in raw text as well as XCES format and b) bilin-

gual resources in TMX, MOSES, and XCES

formats. Bilingual resources, essentially parallel

corpora, are split into their language specific

parts and monolingual processing services are

invoked for each language side.

The resources are stored in the META-

SHARE/QT21 repository in a compressed format

(e.g. .zip, tar.gz, .gz). Before processing starts,

META-SHARE/QT21 decompresses the speci-

99

fied resource file and then uses an appropriate

reader that splits the content of the extracted files

in smaller text (data) chunks, so that any file size

constraints that a service might have can be met.

These chunks are then forwarded to the appropri-

ate processing service/workflow. As soon as the

META-SHARE/QT21 has completed the data

processing a symmetric procedure collects the

resulting (annotated) data chunks and merges

them in a single compressed resource.

Additional features of the implemented infra-

structure include: a) mechanisms for automatical-

ly creating the metadata records of the newly

generated datasets, as a result of processing using

an annotation service or workflow, b) discovera-

bility of processing services for a particular lan-

guage and annotation level by simple or faceted

search, c) describing and uploading of user-

owned datasets up to a size limit (in compressed

format) depending on the user’s status (Figure 3),

d) temporarily storing user-owned processed da-

tasets for 48 hours and deleting them afterwards,

unless the user decides to publicly share them, e)

checking processed resources for potential errors

(e.g. number of files processed as expected), f)

monitoring progress of all processing requests

and using mechanisms to prevent the application

from hanging when waiting for a service re-

sponse, g) automatically cancelling processing

requests that either hang for a long period (e.g.

due to network connectivity problems) or are not

executed correctly (e.g. when the encoding or

the format is not compatible with a service/tool)

h) concurrently executing several workflows or

parts of a workflow.

3.1 META-SHARE/QT21 user evalua-

tion and scalability tests.

Initially, we conducted a set of user tests which

aimed at spotting bugs; then we assessed the sta-

bility and usability of META-SHARE/QT21 by

asking 15 users to complete a list of 8 annotation

tasks for resources of various formats and lan-

guages. All testers were researchers and they

managed to locate or create the needed resources,

submit their requests and receive the annotation

results within a few hours without problems.

Completion times varied depending on the re-

quested task.

In addition, we assessed the performance and

scalability of the LP application by testing it with

resources of various lengths depending on the

workflow.

Figure 4: Workflow tree for the English

OpenNLP tools.

Locally running services (tools that run within

our application) were tested with resources of

1MB, 10MB and 50MB. Remote services were

tested with smaller resources of 500KB, 5MB

and 10MB. First, each tool/service was tested

separately (not concurrently) so as to assess its

processing efficiency. Then, we initiated concur-

rent workflows. All performed tests, concurrent

or not, were completed successfully generating

the expected output, with the processing times of

all growing linearly with resource size; (Figure

5). The tests have also shown that LP application

can handle in parallel at least 4 workflows that

process ~200MB of data. We plan to handle the

processing overload that can be generated by

multiple user request for large datasets by using

multiple instances of the Camel-based LP in a

distributed environment (e.g. Hadoop) in which

processing will be carried out in parallel.

4 Assumptions and limitations

Currently, each META-SHARE/QT21 workflow

chains together components or services of the

same suite of tools, e.g. OpenNLP or the Pana-

cea/DCU services. To accommodate cases where

the services deployed belong to different suites,

we have developed the appropriate converters.

For example, in a UIMA-based tree, where a

GATE-based Named Entity Recogniser (NER) is

integrated in the respective NER workflow, the

UIMA output of the processing services preced-

ing named entity recognition is converted to the

GATE format and is fed to the GATE-

compatible NER (e.g. Tokenizer → Splitter →

POS-Tagger → UIMA-GATE Converter →

NER).

100

Figure 5: Plot of processing times over resource

size for all local English services

Enabling the user to define and deploy custom

workflows, cross-suite or not, is on our agenda

for the immediate future. The implementation of

cross-suite workflows requires the development

of several data format converters for each pair of

different technologies (e.g. UIMA-GATE,

OpenNLP-Panacea/DCU). There are several per-

formance, compatibility and interoperability is-

sues that arise in such cases and have to be

investigated and addressed, especially in the light

of Language Grid and LAPPS Grid develop-

ments (Ide et al., 2014).

Last, but not least, considering the experi-

mental META-SHARE/QT21 repository opera-

tions from the legal framework point of view, we

have adopted a rather simple operational model

by which only openly licensed, with no no-

derivatives restriction, datasets can be processed

by openly licensed services and workflows. In

future versions, in collaboration with other infra-

structure providers, we intend to elaborate on a

business logic that will allow processing of oth-

erwise licensed datasets and services supporting

the appropriate business models.

5 Conclusions and Future Work

The demonstration presented META-

SHARE/QT21, a data sharing and annotation

service infrastructure. META-SHARE/QT21 is

based on META-SHARE, an open-source data

infrastructure platform and a language processing

layer. The latter is implemented using a widely

used integration framework which enables easy

creation of data workflows by providing appro-

priate mechanisms and components for gluing

different technologies, services and data sources

(XML, txt, TMX). This capability is very useful

in a data processing platform, since there is a) an

abundance of NLP and machine learning tools

implemented (or offered) using different tech-

nologies and libraries (e.g. UIMA, GATE, SOAP

services, etc.) and b) a variety of data formats

(e.g. XCES, TMX). The user evaluation that we

conducted has shown that META-SHARE/QT21

can be easily used by NLP researchers for ob-

taining annotations on a set of resources of vari-

ous formats. Also a set of stress tests that we

conducted revealed that the LP layer can process

concurrently a significant amount of data. We are

now investigating how data annotation can run

on multiple machines in a distributed environ-

ment (e.g. Hadoop clusters), thus enabling the

processing of large volumes of data.

Acknowledgments

This paper presents work done in the framework
of the projects T4ME (GA no. 249119),
QTLaunchPad project (GA no. 296347), funded
by DG INFSO of the European Commission
through the FP7 and ICT-PSP Programmes, and
maintained as well as further extended in the
framework of the Greek CLARIN Attiki project
(MIS 441451), Support for ESFRI/2006 Re-
search Infrastructures, of the Greek Government.

We are grateful to the NLX-Natural Language
and Speech Group of the University of Lisbon
and its head, Antonio Branco, for kindly provid-
ing access to the LX-Center services.

References

Soria, C., Bel, N., Choukri, K., Mariani, J., Mona-

chini, M., Odijk, J., Piperidis, S., Quochi, V., Cal-

zolari, N. (2012). The FLaReNet Strategic

Language Resource Agenda. Proceedings of the

8th Language Resources and Evaluation Confer-

ence (LREC’12), ELRA.

Gavrilidou, M.; Labropoulou, P.; Desypri, E.; Pipe-

ridis, S.; Papageorgiou, H.; Monachini, M.; Fron-

tini, F.; Declerck, T.; Francopoulo, G.; Arranz, V.

and Mapelli, V. (2012). The META-SHARE

Metadata Schema for the Description of Language

Resources. In Nicoletta Calzolari, Khalid Choukri,

Thierry Declerck, Mehmet Uğur Doğan, Bente

Maegaard, Joseph Mariani, Jan Odijk, Stelios Pi-

peridis (Eds), Proceedings of the Eighth Interna-

tional Conference on Language Resources and

Evaluation (LREC’12), 23-25 May, Istanbul, Tur-

key. European Language Resources Association

(ELRA).

101

Wittenburg, P., Bel, N., Borin, L., Budin, G., Calzola-

ri, N. Hajicova, E. Koskenniemi, K., Lemnitzer,

L., Maegaard B., Piasecki, M., Pierrel, J.M., Piper-

idis, S., Skadina, I., Tufis, D., Veenendaal, R.v .,

Váradi, T., Wynne, M. (2010). Resource and Ser-

vice Centres as the Backbone for a Sustainable

Service Infrastructure. Proceedings of the 7th

Language Resources and Evaluation Conference

(LREC’10), ELRA.

Ishida, T. (Ed) (2011). The Language Grid. Service-

Oriented Collective Intelligence for Language Re-

source Interoperability, Springer

Poch, M., Bel, N. (2011) Interoperability and tech-

nology for a language resources factory Workshop

on Language Resources, Technology and Services

in the Sharing Paradigm – IJCNLP 2011.

Piperidis, S. (2012). The META-SHARE language

resources sharing infrastructure: Principles, chal-

lenges, solutions. In Proceedings of LREC-2012,

pages 36–42, Istanbul, Turkey.

Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., Wang,

D., Suderman, K., Verhagen, M., and Wright, J.

(2014) The Language Application Grid. Proceed-

ings of the 9th Language Resources and Evaluation

Conference (LREC’14), ELRA

Broeder, D., Kemps-Snijders, M., Van Uytvanck, D.,

Windhouwer, M., Withers, P., Wittenburg, P. and

Zinn, C. (2010). A Data Category Registry- and

Component-based Metadata Framework. Proceed-

ings of the 7
th

 Language Resources and Evaluation

Conference (LREC’10), ELRA.

Varga, D., Németh, L., Halácsy, A., Kornai,, P., Trón,

V., Nagy, V. (2005). Parallel corpora for medium

density languages. In Proceedings of the RANLP

2005, pages 590-596.

102

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 103–108,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

JOBIMVIZ: A Web-based Visualization
for Graph-based Distributional Semantic Models

Eugen Ruppert and Manuel Kaufmann and Martin Riedl and Chris Biemann
FG Language Technology

Computer Science Department, Technische Universität Darmstadt,
Hochschulsstrasse 10, D-62489 Darmstadt, Germany

{eugen.ruppert,riedl,biem}@cs.tu-darmstadt.de, mtk@kisad.de

Abstract

This paper introduces a web-based visual-
ization framework for graph-based distri-
butional semantic models. The visualiza-
tion supports a wide range of data struc-
tures, including term similarities, sim-
ilarities of contexts, support of multi-
word expressions, sense clusters for terms
and sense labels. In contrast to other
browsers of semantic resources, our visu-
alization accepts input sentences, which
are subsequently processed with language-
independent or language-dependent ways
to compute term-context representations.
Our web demonstrator currently contains
models for multiple languages, based on
different preprocessing such as depen-
dency parsing and n-gram context repre-
sentations. These models can be accessed
from a database, the web interface and via
a RESTful API. The latter facilitates the
quick integration of such models in re-
search prototypes.

1 Introduction

Statistical semantics has emerged as a field of
computational linguistics, aiming at automatically
computing semantic representations for words,
sentences and phrases from (large) corpora. While
early approaches to distributional semantics were
split into symbolic, graph-based approaches (Lin,
1998) and vector-based approaches (Schütze,
1993), recent trends have mainly concentrated on
optimizing the representation of word meanings in
vector spaces and how these account for composi-
tionality (cf. Baroni and Lenci (2010); Turney and
Pantel (2010)).

While dense vector representations, obtained by
singular value decomposition (cf. Rapp (2002))
or neural embeddings (Mikolov et al., 2010), have
gained popularity due to successes in modelling
semantic and relational similarity, we propose to
revisit graph-based approaches to distributional
semantics in the tradition of Lin (1998), Curran
(2002) and Biemann and Riedl (2013) – at least as
an additional alternative – for the following rea-
sons:

• (dense) vector representations are not inter-
pretable, thus it cannot be traced why two
terms are similar

• vectors do not make word senses explicit, but
represent ambiguous words as a mix of their
senses

• graph-based models can be straightforwardly
structured and extended, e.g. to represent tax-
onomic or other relationships

In this demonstration paper, we describe JO-
BIMVIZ, a visualization and interactive demon-
strator for graph-based models of distributional
semantics. Our models comprise similarities be-
tween terms (a.k.a. distributional thesaurus) and
multiword units, similarities between context fea-
tures, clustered word senses and their labeling
with taxonomic is-a relations. The demonstra-
tor transforms input sentences into a term-context
representation and allows to browse parts of the
underlying model relevant to the sentence at hand.
Requests are handled through a RESTful API,
which allows to use all available information
in custom prototypes via HTTP requests. The
demonstrator, as well as the computation of the
models, is fully available open source under a per-
missive license.

103

2 Related Work

Aside from providing a convenient lookup for hu-
man users, the visualization of semantic models
provides an important tool for debugging models
visually. Additionally, prototyping of semantic ap-
plications based on these models is substantially
accelerated.

VISUALSYNONYMS1 and THESAURUS.COM2

offer lookup possibilities to retrieve various in-
formation for input words. Users can view in-
formation, like WordNet or Wikipedia definitions
and related words (synonyms, hypernyms, etc.).
BABELNET3 (Navigli and Ponzetto, 2012) uses
such information to compile multilingual defini-
tions and translations for input words. Here, the
words are differentiated by senses, with taxonomi-
cal labels. BABELNET offers a SPARQL endpoint
and APIs for web access.

SERELEX4 (Panchenko et al., 2013) is a graph-
ical thesaurus viewer. Users can enter a term
for different languages and retrieve related words.
The similarity graph displays the similarity links
between similar items (‘secondary links’). The
items can be expanded for a denser graph. The
input terms map to nominal phrases, allowing the
interface to display short definitions and disam-
biguations from Wikipedia. An API with JSON
output for similar words is provided.

SKETCH ENGINE5 (Kilgarriff et al., 2004) of-
fers access to pre-processed corpora. For each
corpus, the user can view concordances and sim-
ilar terms (thesaurus) for a given term. SKETCH

ENGINE also features statistical information, like
word frequency and co-occurrence counts. Fur-
thermore it shows meta information for a corpus.
One drawback of the SKETCH ENGINE is that the
tools and the models are not freely available.

NETSPEAK6 (Stein et al., 2010) is a search en-
gine for words in context. Access is possible via a
graphical UI, a RESTful interface and a Java API.
Users can enter wildcards and other meta sym-
bols into the input phrases and thus retrieve all the
words and phrases that occur in a given context.
The information is displayed with corpus statis-
tics.

1http://www.visualsynonyms.com
2http://www.thesaurus.com
3http://babelnet.org/
4http://serelex.org/
5http://www.sketchengine.co.uk/
6http://www.netspeak.org/

A novel aspect of JOBIMVIZ is that it in-
corporates several different aspects of symbolic
methods (distributional thesaurus, context feature
scores, sense clusters), and all of these methods
are derived from the input corpus alone, without
relying on external resources, which are not avail-
able for every language/domain. Furthermore, we
provide domain-based sense clusterings with is-a
labels (cf. Figure 4), which is not performed by
the other discussed tools.

Our interface features a generic interactive vi-
sualization that is adaptable to different kinds of
parses and also handles multiword units in the vi-
sualization. All of this information is made freely
available by the API, enabling rapid prototyp-
ing techniques. To our knowledge, the presented
demonstrator is the only online tool that combines
technical accessibility (open source project, open
API) with rich, flexible preprocessing options (cf.
Section 3) and graph-based, structured semantic
models that contain context similarities.

3 Computation of distributional models

The visualization is based on distributional mod-
els computed with the JoBimText framework (Bie-
mann and Riedl, 2013)7; however it can also be
used for other semantic models of similar struc-
ture. One of the major components of the frame-
work is a method for the computation of distribu-
tional thesauri. This method consists of two steps:
a holing operation and a similarity computation.

The holing operation processes text and yields
a representation consisting of jos and bims. Jos
and bims are normally instantiated by a term (jo)
and its context features (bims), but the definition
extends to arbitrary splits of the input perception
that mutually characterize each other distribution-
ally. The holing operation executes a preprocess-
ing pipeline that can be as simple as text segmen-
tation or complex like POS tagging and depen-
dency parsing, depending on the complexity of the
context features. As the preprocessing is defined
in UIMA (Ferrucci and Lally, 2004) pipeline de-
scriptors, it is straightforward to exchange com-
ponents or define new preprocessing operations.
Using this processed and annotated text, the hol-
ing annotator generates the term–feature represen-
tation of the input text, e.g. by using the neighbor-
ing words (‘trigram holing’) or dependency paths

7The framework is available under the permissive ASL
2.0 license at http://sf.net/p/jobimtext.

104

Request-/
Reply
Queue

DatabaseAPI-
Workers

Holing-
workers

UIMA-
Pipeline

Java EE Webserver

RESTful
API

User

GUI

Figure 1: Architecture of JOBIMVIZ, with the
three components GUI, Web Server and Workers.

between terms (‘dependency holing’). A graphi-
cal example is given in Figure 5, where the holing
operation yields four context features for the term
example#NN. Different term representations are
possible, like surface text, lemma, lemma+POS
and also multiword expressions. This flexibility
allows, on the one hand, domain- and language-
independent similarity computations using general
holing operations, while on the other hand allow-
ing complex, language-specific processing in the
holing operations for higher quality models (e.g.
using parsing and lemmatization).

The second part consists of the similarity com-
putation, which relies on MapReduce (Dean and
Ghemawat, 2004) for scalability and employs ef-
ficient pruning strategies to keep runtime feasible
even for very large corpora. After the computa-
tion of similarities, sense clusters for each term
are computed using Chinese Whispers graph clus-
tering (Biemann, 2006), as described in Biemann
et al. (2013). Furthermore, the sense clusters are
also labeled with hypernyms (is-a relations) de-
rived from Hearst patterns (Hearst, 1992), imple-
mented using the UIMA Ruta (Kluegl et al., 2014)
pattern matching engine8.

4 Web-based Demonstrator

4.1 Architecture and Technology

The architecture of JOBIMVIZ consists of three
main components (see Figure 1). The central el-
ement is a Java EE based web server, which pro-
vides a RESTful interface (Fielding, 2000) for ac-
cessing API resources, such as sentence holing op-
erations and the distributional models.

To handle many parallel requests for long run-
ning holing operations like dependency parsing,
we use an Apache ActiveMQ9 based request/reply

8https://uima.apache.org/ruta.html
9http://activemq.apache.org/

queue. All requests to the web server are stored
in the queue and processed by one of the worker
processes, which can be distributed on differ-
ent machines and handle the requests in parallel.
These workers form the second component of our
system. The holing workers execute the UIMA
pipelines that define the holing operations. Us-
age of UIMA descriptors provides great flexibil-
ity, since one type of workers can run every holing
operation. Every model defines a custom UIMA
pipeline to ensure the same holing operation for
the input and the model. To speed up the hol-
ing operation we cache frequently queried holing
outputs into the in-memory database Redis10. Re-
quests to the API are processed by another type of
workers, which retrieve the relevant data from the
models database.

The third component of the software is a
HTML5-based GUI with an overall layout based
on the Bootstrap11 framework. The front-end uses
Ajax requests to connect to the RESTful interface
of the web server and retrieves responses in the
JSON format. The received data is processed by a
Javascript application, which uses D3.js (Bostock
et al., 2011) to visualize the graphs.

4.2 Visualization

In the demonstrator, users can enter sentences or
phrases, run different holing operations on the in-
put and browse distributional models. The demon-
strator can be accessed online12.

Figure 2 shows the application layout. First,
the user can decide on the model, which consists
of a corpus and a holing operation, and select it
via the dropdown holing operation selector (3).
Then, the user enters a sentence in the text field
(1) and activates the processing by clicking the
Parse button (2). The holing output is presented
as a graph (4) with marked terms and context fea-
tures. Other views are available in tab bar at the
top (5). To retrieve term similarities, a term in
the displayed sentence can be selected (4a), acti-
vating the information boxes (6, 7, 8, 9). Context
similarities can be viewed by selecting the corre-
sponding feature arc (4b). The frequency of the
selected term/feature is presented on the top right
(6). Similar items are displayed in the first box
in the lower pane (7). Similarity scores between

10http://redis.io
11http://www.getbootstrap.com/
12http://goo.gl/V2ZEly

105

Figure 2: Overview of the visualization with a collapsed dependency parse of the input sentence This is
an example for the paper; the selected term is paper#NN.

Figure 3: Similar bims (left) and most signifi-
cant jos (right) for the dependency parse context
give#VB-dobj (direct object of give).

the selected and similar terms are shown, includ-
ing self-similarities as an upper limit for similarity
of the selected item.

The most relevant context features for the term
are displayed with the significance score and their
term-feature count in the corpus (8). When select-
ing a context feature, the most relevant terms for
a context feature are shown (cf. Figure 3). For
terms, there is a box displaying sense clusters (9).
These are often available in different granularities
to match the application requirements (e.g. ‘CW’
or ‘CW-finer’)13. When a user selects a sense clus-
ter, a list of related terms for the selected cluster
and a list of hypernyms (is-a relations) with fre-
quency scores are displayed (cf. Figure 4). But-
tons for API calls are displayed for all data display
in the GUI (10). This enables users to get comfort-
able with the models and the API before deploying
it in an application. The buttons feature selectors

13Here, ‘CW’ is referring to sense clusters computed with
Chinese Whispers (Biemann, 2006).

Figure 4: Different word senses for paper, with
hypernym terms (sense 1 paper:publication, sense
2 paper:material), as accessed from field (9) in
Figure 2. The tabs “CW/CW-finer” provide access
to different sense clustering inventories, e.g. with
a different granularity.

for different output data format options, i.e. TSV,
XML, JSON and RDF. For the boxes with list con-
tent, there is a ‘maximize’ button next to the API
button that brings up a screen-filling overlay.

4.2.1 Sentence Holing Operations

For the graphical representation of holing opera-
tions, the web demo offers views for single terms
(Figure 5 and 6) as well as support for n-grams
(Figure 7). Figure 5 shows the tree representation
for a dependency parser using collapsed depen-
dencies. Figure 6 exemplifies a holing operation
considering the left and right neighboring words
as one context feature (‘trigram holing’). Figure 7
shows the result of the same holing operation, ap-
plied for n-grams, where several different possi-
ble left and right multiword items can be selected
as context. Here, the demonstrator identified mul-

106

Figure 5: Collapsed dependency (de Marneffe et
al., 2006) holing result for This is an example for
the paper; the preposition for is collapsed into the
prep for dependency.

Figure 6: Trigram holing (unigram) result for This
is an example for the paper.

tiword expressions that are present in the corre-
sponding distributional model (acute lymphoblas-
tic leukemia, lymphoblastic leukemia cells and hu-
man bones). These expressions can be selected
like single word items. Furthermore, there is a fil-
tering function for n-grams, where users can refine
the display of n-grams by selecting the desired n-
gram lengths.

4.2.2 Model Access
The demonstrator features a selection of mod-
els for different languages (currently: German,
English, Hindi, Bengali) and different domains,
like news, encyclopedia or medical domain. Be-
sides term similarities, typical context features and
sense clusters are also part of these models. Dis-
tributional similarities for context features can be
viewed as well. By selecting an arc that represents
the feature relation, the user can view similar fea-
tures in the GUI. In Figure 3, the context features

Figure 7: Trigram holing (n-gram) result for mi-
gration of acute lymphoblastic leukemia cells into
human bones with display of multiwords that are
part of the model.

that are most similar to give#VB#-dobj (direct
object of verb give) are displayed. Here, the most
significant words for a feature are shown. To our
knowledge, we are the first ones to explicitly pro-
vide similarities of contexts in distributional se-
mantic models.

Holing operations and models can be accessed
via an open RESTful API. The access URIs con-
tain the model identifier (consisting of dataset and
holing operation), the desired method, like sen-
tence holing or similar terms, and the input sen-
tence, term or context feature. The distributional
project also features a Java API to access models
via the web-based API14.

5 Conclusion and Future Work

In this paper we have introduced a new web-based
tool that can be used to browse and to access
graph-based semantic models based on distribu-
tional semantics. In its current form, it can dis-
play data from a distributional thesaurus, simi-
larities of context features, sense clusters labeled
with taxonomic relations, and provides the dis-
play of multiword expressions. Additionally, it
provides the functionality to transform sentences
into term–context representations. The web demo
can give a first impression for people who are
interested in the JoBimText framework for dis-
tributional semantics. Providing a RESTful in-
terface for accessing all information with state-

14For an overview of available API methods, see http:
//goo.gl/l6K6Gu.

107

less requests allows for an easy integration into
prototypes. The RESTful API can also be ac-
cessed using our Java API, which also can access
other back-ends such as on-disk and in-memory
databases. The complete project is available under
the permissive Apache ASL 2.0 license and mod-
els for several languages are available for down-
load15.

Whereas at the moment similar terms are glob-
ally ranked, we will add visualization support for
a contextualization method, in order to rank sim-
ilar terms regarding their context within the sen-
tence. Furthermore, we are working on incorpo-
rating more complex pre-processing for the hol-
ing operation in the visualization, e.g. aggregating
context features over co-reference chains, as well
as relation extraction and frame-semantic parsing
for term–context representations.

Acknowledgments

This work has been supported by the German Fed-
eral Ministry of Education and Research (BMBF)
within the context of the Software Campus project
LiCoRes under grant No. 01IS12054 and by an
IBM Shared University Research award.

References
Marco Baroni and Alessandro Lenci. 2010. Distributional

memory: A general framework for corpus-based seman-
tics. Computational Linguistics, 36(4):673–721.

Chris Biemann and Martin Riedl. 2013. Text: Now in 2D! a
framework for lexical expansion with contextual similar-
ity. Journal of Language Modelling, 1(1):55–95.

Chris Biemann, Bonaventura Coppola, Michael R. Glass, Al-
fio Gliozzo, Matthew Hatem, and Martin Riedl. 2013.
JoBimText Visualizer: A graph-based approach to con-
textualizing distributional similarity. In Proc. TextGraphs
2013, pages 6–10, Seattle, Washington, USA.

Chris Biemann. 2006. Chinese Whispers – an efficient
graph clustering algorithm and its application to natural
language processing problems. In Proc. TextGraphs 2006,
pages 73–80, New York City, NY, USA.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011.
D3: Data-driven documents. IEEE Transactions on Visu-
alization & Computer Graphics, 17(12):2301–2309.

James R. Curran. 2002. Ensemble methods for automatic
thesaurus extraction. In Proc. EMNLP’02/ACL-2002,
pages 222–229, Philadelphia, PA, USA.

15Selection of models available under http:
//sf.net/projects/jobimtext/files/data/
models/.

Marie-Catherine de Marneffe, Bill MacCartney, and Christo-
pher D. Manning. 2006. Generating typed dependency
parses from phrase structure parses. In Proc. LREC-2006,
pages 449–454, Genova, Italy.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:
Simplified Data Processing on Large Clusters. In Proc.
OSDI ’04, pages 137–150, San Francisco, CA, USA.

David Ferrucci and Adam Lally. 2004. UIMA: An Architec-
tural Approach to Unstructured Information Processing in
the Corporate Research Environment. Natural Language
Engineering, 10(3-4):327–348.

Roy Thomas Fielding. 2000. Architectural Styles and the
Design of Network-based Software Architectures. Doc-
toral dissertation, University of California, Irivne.

Marti A. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. In Proc. COLING-1992, pages
539–545, Nantes, France.

Adam Kilgarriff, Pavel Rychlý, Pavel Smrž, and David Tug-
well. 2004. The Sketch Engine. In Proc. EURALEX
2004, pages 105–116, Lorient, France.

Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg
Fette, and Frank Puppe. 2014. UIMA Ruta: Rapid devel-
opment of rule-based information extraction applications.
Natural Language Engineering.

Dekang Lin. 1998. Automatic retrieval and clustering of
similar words. In Proc. COLING-98, pages 768–774,
Montréal, Quebec, Canada.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neural
network based language model. In Proc. INTERSPEECH
2010, pages 1045–1048, Makuhari, Chiba, Japan.

Roberto Navigli and Simone P. Ponzetto. 2012. BabelNet:
The automatic construction, evaluation and application of
a wide-coverage multilingual semantic network. Artificial
Intelligence, 193:217–250.

Alexander Panchenko, Pavel Romanov, Olga Morozova, Hu-
bert Naets, Andrey Philippovich, Alexey Romanov, and
Fairon Cédrick. 2013. Serelex: Search and visualization
of semantically related words. In Proc. ECIR 2013, pages
837–840, Moscow, Russia.

Reinhard Rapp. 2002. The computation of word asso-
ciations: Comparing syntagmatic and paradigmatic ap-
proaches. In Proc. COLING ’02, pages 1–7, Taipei, Tai-
wan.

Hinrich Schütze. 1993. Word space. In Advances in Neural
Information Processing Systems 5, pages 895–902, Den-
ver, Colorado, USA.

Benno Stein, Martin Potthast, and Martin Trenkmann. 2010.
Retrieving Customary Web Language to Assist Writers.
In Advances in Information Retrieval, ECIR 10, pages
631–635, Milton Keynes, UK.

Peter D. Turney and Patrick Pantel. 2010. From frequency
to meaning: Vector space models of semantics. Journal of
artificial intelligence research, 37(1):141–188.

108

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 109–114,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

End-to-end Argument Generation System in Debating
Misa Sato Kohsuke Yanai Toshihiko Yanase

Toshinori Miyoshi Makoto Iwayama Qinghua Sun Yoshiki Niwa
Hitachi Ltd. Research & Development Group

1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601 Japan
{misa.sato.mw, kohsuke.yanai.cs, toshihiko.yanase.gm,

toshinori.miyoshi.pd, makoto.iwayama.nw,
qinghua.sun.ap, yoshiki.niwa.tx}@hitachi.com

Abstract
We introduce an argument generation sys-
tem in debating, one that is based on sen-
tence retrieval. Users can specify a motion
such as This house should ban gambling,
and a stance on whether the system agrees
or disagrees with the motion. Then the
system outputs three argument paragraphs
based on “values” automatically decided
by the system. The “value” indicates a
topic that is considered as a positive or
negative for people or communities, such
as health and education. Each paragraph
is related to one value and composed of
about seven sentences. An evaluation over
50 motions from a popular debate web-
site showed that the generated arguments
are understandable in 64 paragraphs out of
150.

1 Introduction

This paper describes our end-to-end argument
generation system, developed to participate in En-
glish debating games as an AI debater. When users
give a “motion” like This house should ban gam-
bling and a “stance” on whether the system should
agree or disagree with the motion, the system gen-
erates argument scripts in the first constructive
round of a debate.

Among NLP communities, interest is growing
in argumentation, such as argumentation mining
and claim detection (Levy et al., 2014; Mizuno et
al., 2012; Park et al., 2014). However, argument
generation is still as hard a task as other text gener-
ation tasks; no standard methods or systems exist,
as far as we know.

We assume that argument generation systems
are helpful in a variety of decision-making situ-
ations such as business, law, politics and medical
care. This is because people usually investigate
existing arguments on the Internet, newspapers, or

research papers before reaching conclusions. In
this research, we focus on debating game style
because there is similarity in argument construc-
tion between debating games and actual decision-
making.

The difficulty in argument generation is that ar-
gument scripts have to be persuasive. We ex-
plain this need by comparing argument generation
with multi-document summarization. In the two
tasks, one practical approach is combining partial
texts retrieved from multiple documents. Gener-
ated scripts in both tasks should be natural and
have sufficient content. Because the summariza-
tion task is to generate summary scripts of multi-
ple documents, the essential basis of its evaluation
is coverage, that is, how much content in the origi-
nal documents is included in the generated scripts.
However, as the role of argument scripts is to per-
suade people, persuasiveness is more important
than coverage.

We believe that the following three points are
required to generate persuasive argument scripts:

1. Consistency with a given stance
2. Cause and effect relationships
3. Relevance to people’s values

For example, when debaters focus on an agree
stance with a motion of This house should ban
gambling, one persuasive argument would discuss
the negative effects of gambling. To reach a dis-
cussion about the negative effects under this con-
dition, we need to consider the three points.

1. Consistency means that the stance of argu-
ment scripts must be equal to the given stance and
consistent in the overall arguments. For example,
because the gambling motion implies the claim
that gambling is negative, the generated argument
should include only negative aspects of gambling.

2. Causality makes argumentation persua-
sive. To capture causality, we focus on pro-
moting/suppressing relationships. Hashimoto et

109

Figure 1: Screenshot and Sample Input & Output Script

al. (2012) also showed that the relationships are
useful for causality extractions. The claim gam-
bling promotes negative issues would be persua-
sive in an argumentation that agrees with a ban on
gambling.

3. Values There are topics obviously considered
to be positive or negative and highly relevant to
people’s values. For instance, health, education
and natural environment are considered to be pos-
itive values, while crime, pollution and high cost
are considered to be negative. It is possible to gen-
erate scripts about negative effects by collecting
partial texts describing negative values linked to
gambling, such as crime.

2 Overview

2.1 Demo Description

Visitors will have the opportunity to select a mo-
tion and a stance and to run the system to generate
argument scripts automatically.

Each argument script generated by the system
consists of three topics corresponding to values,
such as health, education and revenue. This ap-
proach comes from our observations that persua-
sive arguments would be related to multiple val-
ues. Figure 1 shows the interface of the system and
an example of generated argument scripts. First,
users give text scripts about the “motion” and se-

lect the “stance” whether agree or disagree. In
the figure, the given motion is This house should
ban smoking in public spaces, and the given stance
is an agree side. When users click the start but-
ton, the system begins processing. Users can see
how many sentences or documents are processed
and how many sentences belong to each value in
the graphs in the upper right corner. Finally, the
system provides three generated paragraphs with
their value titles such as poverty, pollution, and
disease while the generated argument scripts are
read aloud by our text-to-speech system.

2.2 System Overview

Figure 2 shows the overview of the system.
As discussed above, the key of constructing ar-

guments is to find positive/negative effects of a tar-
get in the motion. In this paper, we call the target
“a motion keyphrase”.

Positive/negative effects appear in the form of
affect relationships like something affects some-
thing. Main elements of arguments are sentences
that contain affect relationships whose subject is
a motion keyphrase and whose object represents a
value.

We have two types of affect predicates: affect+
and affect−. Affect+ means a promoting predi-
cate such as create, enhance, expand, improve, in-
crease. On the other hand, affect− means a sup-

110

Figure 2: System Overview

pressing predicate such as decrease, discourage,
eliminate, limit, threaten. The system stored the
affect relationships in text data as automatically
added annotations described in Section 4.

Though the system consists of 21 algorithms,
we describe four main components in this paper:

(1) A motion analysis component decides a
motion keyphrase and a polarity of arguments
to be generated.

(2) A value selection component decides mul-
tiple values relevant to the given motion by
retrieving sentences that contain affect rela-
tionships.

(3) A sentence retrieval component retrieves
sentences relevant to each value from the
stored text data.

(4) A sentence ordering and rephrasing
component combines and arranges the re-
trieved sentences to construct natural argu-
ment scripts.

They are processed in a pipeline and some of the
algorithms are processed in parallel on a cluster of
10 machines. We describe key functions of the
components in Section 3.

The system uses large text data from Gigaword
corpus (Napoles et al., 2012) and the annotations
to the text data. The annotations are added auto-
matically in a preprocessing step. Section 4 de-
scribes what kinds of annotations exploited in the
system. The text and annotation data are stored us-
ing Cassandra1, which is an open-source database
management system designed for handling large
amounts of data across commodity servers. They
are indexed into Solr2, open source enterprise
search platform, that enables full-text search.

2.3 Evaluation

We evaluated the generated argument scripts on
the basis of subjective evaluations.

1Cassandra: http://cassandra.apache.org
2Apache Solr: http://lucene.apache.org/solr

Table 1: Evaluation Results
Evaluation Score Num of paragraphs
0: make-no-sense 86
1: understandable 38
2: +clear 16
3: +persuasive 10
4: +natural 0

We used 50 motions from a popular debate web-
site Debatabase 3 as inputs to the system. The
system outputs three paragraphs per motion, and
each paragraph is composed of seven sentences,
totaling 150 paragraphs for 50 motions. The para-
graphs are rated by authors on a five point scale
ranging from 0 to 4. Each evaluator judges 30
paragraphs in 10 motions. The paragraphs that do
not include any claims or supporting evidence re-
lated to the motion, are given a rating of 0 points.
A 1 point rating is given when the argument is un-
derstood by the evaluator, despite a number of ir-
relevant sentences. If more than four of the seven
sentences in the paragraph are relevant to the given
motion and consistent to the stance, it is given a 2
point rating. If the evaluator feels it is persuasive,
it is given a 3 point rating. When it satisfies the
above conditions and is presented as a natural ar-
gument, it is given a 4 point rating.

Table 1 shows the results. We found that the ar-
gumentations are understandable in 64 paragraphs
(= 38+16+10+0) out of 150.

3 Pipeline Components

3.1 Motion Analysis Component

In the beginning of processing, the system an-
alyzes the given motion text, and extracts a
keyphrase, a motion polarity, a predicate, an at-
titude, and contexts. A predicate is a phrase which
gives positive/negative sign to a keyphrase, and an

3Debatabase: http://idebate.org/debatabase

111

Table 2: Motion Analysis Results
motion keyphrase pol. predicate attitude contexts
This house believes that casino is harmful for the city casino −1 harmful believe the city
This house would create a single EU army a single EU army +1 – create –
This house should ban gambling gambling −1 – ban –
This house believes that assisted suicide should be legalized assisted suicide +1 – legalize –

Table 3: Motion Analysis Rules. K = motion keyphrase, C = contexts.
priority rule predicate instances

1 K be modify-ed for C modify: good(+1), honor(+1), popular(+1), harmful(−1), negative(−1), weak(−1)
2 affect K affect: create(+1), enhance(+1), increase(+1), cut(−1), discourage(−1), eliminate(−1)
3 believe K believe: allow(+1), legalize(+1), permit(+1), support(+1), ban(−1), oppose(−1)
4 K be believe-ed believe: allow(+1), legalize(+1), permit(+1), support(+1), ban(−1), oppose(−1)

.

attitude is a predicate of this house. Table 2 shows
results of motion analysis.

To analyze a motion, the system has 22 rules
with their priority. Table 3 shows a part of the
rules. The rules are applied in the order by their
priority, until a motion keyphrase is extracted.

Suppose that the given motion is This house be-
lieves that casino is harmful for the city and the
given stance is agree(+1) (corresponding to the
first line of Table 2). The first rule “K be modify-
ed for C” in Table 3 matches the motion. As
harmful is a modifying predicate, casinos is K and
the city is C. An attitude of this house is believe.
A motion polarity is −1 because of the negative
predicate harmful(−1). In the same way, from the
second to the fourth rules in Table 3 can analyze
the other three motion examples in Table 2.

The system calculates an argument polarity by
multiplying the sign of the given stance and the
motion polarity. The system constructs arguments
that discuss the motion keyphrase, in accordance
with the argument polarity. For example, if the
given stance is agree(+1) and the motion polarity
is negative(−1), then the system decides an argu-
ment polarity is −1 and constructs arguments that
claim “the motion keyphrase is negative(−1)”.

3.2 Value Selection Component

The value selection component decides multiple
values relevant to the given motion by using a
value dictionary. The value dictionary formulates
a set of values that represents what is important
in human’s life, what is harmful in communities,
etc. Each value is regarded as a viewpoint of the
generated argument.

Table 4 describes an example of the value dic-
tionary. As shown in Table 4, each value (e.g., dis-

ease, investment) belongs to a field (e.g., health,
economy, respectively), and has three attributes: a
value polarity, representative phrases, and context
phrases. The value polarity +1(−1) means that
the value is something good(bad). The represen-
tative phrases are linguistic expressions of the val-
ues, and the numbers are their weights calculated
by IDF in Gigaword corpus. The context phrases
are phrases that are likely to appear in neighbor
of the value in text documents. They are used to
solve ambiguity of the linguistic expressions. The
value dictionary of the current system contains 16
fields and 61 values.

The procedure of the value selection is below:
Step 1 Retrieves sentences that contain affect re-

lationships between the motion keyphrase
and one of representative phrases in the value
dictionary. For instance, it retrieves Gam-
bling increases the number of crimes.

Step 2 Calculates a polarity to the keyphrase in
each sentence, and filters out the sentences
where the polarity is not equivalent to the ar-
gument polarity. For instance, the polarity for
Gambling increases the number of crimes is
−1 by multiplying +1 (increase in the affect
dictionary) and−1 (crime in the value dictio-
nary), which equals to the argument polarity.

Step 3 Sums weights of found values and selects
the top five values.

The value dictionary was created manually.
First, fields of the dictionary were determined by
the authors in reference to the roles of govern-
ment agencies, and then value entries related to
each field were chosen manually from Debatabase.
Second, a rule-based extractor that extracts values
discussed in a document was constructed using the
dictionary, and the extractor applied to each docu-

112

Table 4: Value Dictionary
field value polarity representative phrases context phrases
economy investment +1 investment:27.8, development aid:48.2 asset, bank, capital, fund, profit, stock, ...
finance cost −1 expense:35.9, expenditure:55.7 budget, dollar, fuel, lower, price, share, ...
finance income +1 revenue:35.4, wage:39.8 budget, company, earnings, higher, gain, ...
health disease −1 disease:36.6, complication:40.1 AIDS, Alzheimer, blood, cancer, death, ...
safety crime −1 crime:31.5, prostitution:56.2 arrest, gun, jail, kidnapping, victim, ...
...

ment in Debatabase. Third, we manually added
new entries to the dictionary. If a value is ex-
tracted from a document, we extracted represen-
tative/context phrases corresponding to the value
from the document. If no value is extracted, we
extracted new values that were contained in the
document. We continued these steps of classify-
ing documents and adding entries to the dictionary
like a Bootstrapping method.

3.3 Sentence Retrieval Component

This component retrieves sentences relevant to
each value from the stored text data.

It first retrieves documents using a query com-
posed of weighted phrases. The retrieved docu-
ments should contain both the motion keyphrase
and more than one representative phrases of the
decided values. While the motion keyphrases
can be replaced with their synonyms or hy-
ponyms, their weights are smaller than the orig-
inal keyphrases; those of synonyms are 0.75 and
those of hyponyms are 0.5. The synonyms and hy-
ponyms are acquired by WordNet (Miller, 1995).
Because short documents don’t usually contains
informative scripts, the length of retrieved docu-
ments are limited to more than 200 words.

For example, when the motion keyphrase is
gambling, a search query for a health value is

(gambling#49.53 OR gaming#22.87)
AND (health#27.48 OR disease#36.60
OR addiction#52.39
OR hospital#29.76)

AND (length:[200 TO *]).

The real numbers following sharp signs are
weights of the former phrases, calculated by mul-
tiplying the IDF of the phrase and a synonym or
hyponym reduction rate.

The retrieval step prefers sentences that contain
promote/suppress relationships. The polarities of
the retrieved sentences must be equal to the argu-
ment polarity. The polarity of each sentence is
calculated by the product of the signs of related

phrases, such as the predicate of the keyphrase,
the promote/suppress verb, and the representative
value phrase. In the example of gambling ban(−1)
decrease(−1) the number of crimes(−1), the po-
larity of the sentence is −1.

The system uses about 10,000,000 newswire
documents and retrieves 500 per value in this step.

3.4 Sentence Ordering and Rephrasing
Component

This component processes the sentence set of each
value separately.

The sentence ordering step orders the retrieved
sentences in the natural order in debating by the
method reported in (Yanase et al., 2015). The
method employs an assumpsion that a constructive
speech item in debating consists of a claim sen-
tence and one or more supporting sentences, and
that the claim sentence lies in the first position of
the paragraph. The assumption is implemented as
two machine learning problems: claim sentence
selection and supporting sentence ordering. The
claim sentence selection problem is formulated as
a binary-classification problem where a given sen-
tence is a claim or not. In the supporting sentence
ordering problem, the method orders the other sen-
tences on the basis of connectivity of pairs of sen-
tences. This problem is formulated as a ranking
problem, similarly to (Tan et al., 2013). Features
for machine learning models in both problems are
extracted not only from the sentences to be ordered
but also from the motion text.

Finally, the rephrasing step trims or replaces
surplus phrases referring to too many details
for argument scripts, such as dates and people’s
names. Several simple rules are used.

4 Data Preprocessing: Annotations

The system adds annotations automatically in pre-
processing into the stored text data by using dic-
tionaries and syntax information by Stanford Core
NLP (Manning et al., 2014). In the current system,
about 250 million annotations are stored. Users

113

can add the annotations manually. A list of main
semantic annotations is below:
affect: promoting/suppressing relationships.
For example, it adds an annotation of “affect+:
casino → the number of crimes” into a text
casino increases the number of crimes. The affect
dictionary, which is manually created, contains
608 positive phrases and 371 negative phrases.
modify: phrases which gives positive/negative
sign to words governed by them. For example,
it adds an annotation of “modify−: environment”
into a text harmful environment. The modification
dictionary contains 79 positive phrases and 134
negative phrases.
believe: relationships which represents attitudes
of a subject to its object. For example, it adds
an annotation of “believe−: smoking” into a text
The government bans smoking in public spaces be-
cause of a negative believe phrase ban. The be-
lieve dictionary contains 30 positive phrases, 47
negative phrases and 15 neutral phrases.

5 Error Analysis

We describe three major problems of the system
here: (1) identification errors, (2) polarity errors,
(3) motion format limitation.

(1) Identification errors occur on recognizing
a motion keyphrase in text data on sentence re-
trieval step. The system can incorrectly retrieve
sentences including mentions whose expressions
are the same as or similar to the motion keyphrase
but different in their meanings. In the screenshot
of Figure 1, for example, although “smoking” in
the motion refers to “tobacco smoking,” the first
sentence in the pollution paragraph argues about
“smoking caused by a fire.”

The identification problem is especially obvi-
ous in the case a motion keyphrase forms a com-
pound noun. For instance, on the motion of This
House should ban cosmetic surgery, it is not clear
if surgery in some text is equal to cosmetic surgery
or not. The errors would show requirements of
more precise word sense disambiguation or coref-
erence resolution among multiple documents.

(2) Polarity errors are not so rare. Regarding the
disease paragraph in Figure 1, the second sentence
would contain an argument on the opposite stance
in error.

(3) Motion format limitation is that the system
can process only motions in formats which ask
people if its motion keyphrase should be banned or

permitted. Representative examples of unaccept-
able motions are comparison like This house be-
lieves that capitalism is better than socialism and
questions of an adequate degree like This House
should lower the drinking age.

6 Conclusion

We described a demonstration of our argument
generation system. Our system can generate un-
derstandable arguments on a given motion for a
given stance. Our next work is to generate coun-
terarguments, which argue against the opponents.

Acknowledgments

We would like to thank Prof. Kentaro Inui from
Tohoku University for valuable discussion.

References
Chikara Hashimoto, Kentaro Torisawa and Stijn De

Saeger. 2012. Excitatory or Inhibitory: A New
Semantic Orientation Extracts Contradiction and
Causality from the Web, In Proceedings of EMNLP-
CoNLL 2012, pages 619–630.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit, In Proceedings of ACL
2014 System Demonstrations, pages 55–60.

George A. Miller. 1995. WordNet: A Lexical Database
for English In Communications of the ACM, 38(11):
pages 39–41.

Joonsuk Park and Claire Cardie. 2014. Identifying Ap-
propriate Support for Propositions in Online User
Comments In Proceedings of the First Workshop on
Argumentation Mining, pages 29–38.

Junta Mizuno, Eric Nichols, Yotaro Watanabe and Ken-
taro Inui. 2012. Organizing Information on the Web
through Agreement-Conflict Relation Classification
In Proceedings of the Eighth Asia Information Re-
trieval Societies Conference , pages 126–137.

Napoles, Courtney, Matthew Gormley and Benjamin
Van Durme. 2012. Annotated English Gigaword
LDC2012T21. Web Download, Philadelphia: Lin-
guistic Data Consortium.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud
Aharoni and Noam Slonim. 2014. Context Depen-
dent Claim Detection In Proceedings of COLING
2014: Technical Papers, pages 1489–1500.

Jiwei Tan, XiaojunWan and Jianguo Xiao 2013.
Learning to order natural language texts In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 87-91.

Toshihiko Yanase, Toshinori Miyoshi, Kohsuke Yanai,
Misa Sato, Makoto Iwayama, Yoshiki Niwa, Paul
Reisert and Kentaro Inui 2015. Learning Sen-
tence Ordering for Opinion Generation of Debate
In Proceedings of the 2nd Workshop on Argumenta-
tion Mining, pages 94–103.

114

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 115–120,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

Multi-level Translation Quality Prediction with QUEST++

Lucia Specia, Gustavo Henrique Paetzold and Carolina Scarton
Department of Computer Science

University of Sheffield, UK
{l.specia,ghpaetzold1,c.scarton}@sheffield.ac.uk

Abstract

This paper presents QUEST++ , an open
source tool for quality estimation which
can predict quality for texts at word, sen-
tence and document level. It also provides
pipelined processing, whereby predictions
made at a lower level (e.g. for words) can
be used as input to build models for pre-
dictions at a higher level (e.g. sentences).
QUEST++ allows the extraction of a va-
riety of features, and provides machine
learning algorithms to build and test qual-
ity estimation models. Results on recent
datasets show that QUEST++ achieves
state-of-the-art performance.

1 Introduction

Quality Estimation (QE) of Machine Translation
(MT) have become increasingly popular over the
last decade. With the goal of providing a predic-
tion on the quality of a machine translated text, QE
systems have the potential to make MT more use-
ful in a number of scenarios, for example, improv-
ing post-editing efficiency (Specia, 2011), select-
ing high quality segments (Soricut and Echihabi,
2010), selecting the best translation (Shah and
Specia, 2014), and highlighting words or phrases
that need revision (Bach et al., 2011).

Most recent work focuses on sentence-level QE.
This variant is addressed as a supervised machine
learning task using a variety of algorithms to in-
duce models from examples of sentence transla-
tions annotated with quality labels (e.g. 1-5 likert
scores). Sentence-level QE has been covered in
shared tasks organised by the Workshop on Statis-
tical Machine Translation (WMT) annually since
2012. While standard algorithms can be used to
build prediction models, key to this task is work
of feature engineering. Two open source feature

extraction toolkits are available for that: ASIYA1

and QUEST2 (Specia et al., 2013). The latter has
been used as the official baseline for the WMT
shared tasks and extended by a number of partic-
ipants, leading to improved results over the years
(Callison-Burch et al., 2012; Bojar et al., 2013;
Bojar et al., 2014).

QE at other textual levels have received much
less attention. Word-level QE (Blatz et al., 2004;
Luong et al., 2014) is seemingly a more challeng-
ing task where a quality label is to be produced
for each target word. An additional challenge is
the acquisition of sizable training sets. Although
significant efforts have been made, there is con-
siderable room for improvement. In fact, most
WMT13-14 QE shared task submissions were un-
able to beat a trivial baseline.

Document-level QE consists in predicting a sin-
gle label for entire documents, be it an absolute
score (Scarton and Specia, 2014) or a relative
ranking of translations by one or more MT sys-
tems (Soricut and Echihabi, 2010). While certain
sentences are perfect in isolation, their combina-
tion in context may lead to an incoherent docu-
ment. Conversely, while a sentence can be poor in
isolation, when put in context, it may benefit from
information in surrounding sentences, leading to
a good quality document. Feature engineering is
a challenge given the little availability of tools to
extract discourse-wide information. In addition,
no datasets with human-created labels are avail-
able and thus scores produced by automatic met-
rics have to be used as approximation (Scarton et
al., 2015).

Some applications require fine-grained, word-
level information on quality. For example, one
may want to highlight words that need fixing.
Document-level QE is needed particularly for gist-
ing purposes where post-editing is not an option.

1http://nlp.lsi.upc.edu/asiya/
2http://www.quest.dcs.shef.ac.uk/

115

For example, for predictions on translations of
product reviews in order to decide whether or not
they are understandable by readers. We believe
that the limited progress in word and document-
level QE research is partially due to lack of a basic
framework that one can be build upon and extend.

QUEST++ is a significantly refactored and
expanded version of an existing open source
sentence-level toolkit, QUEST. Feature extrac-
tion modules for both word and document-level
QE were added and the three levels of prediction
were unified into a single pipeline, allowing for in-
teractions between word, sentence and document-
level QE. For example, word-level predictions can
be used as features for sentence-level QE. Finally,
sequence-labelling learning algorithms for word-
level QE were added. QUEST++ can be easily ex-
tended with new features at any textual level. The
architecture of the system is described in Section
2. Its main component, the feature extractor, is
presented in Section 3. Section 4 presents experi-
ments using the framework with various datasets.

2 Architecture

QUEST++ has two main modules: a feature ex-
traction module and a machine learning module.
The first module is implemented in Java and pro-
vides a number of feature extractors, as well as
abstract classes for features, resources and pre-
processing steps so that extractors for new fea-
tures can be easily added. The basic functioning
of the feature extraction module requires raw text
files with the source and translation texts, and a
few resources (where available) such as the MT
source training corpus and source and target lan-
guage models (LMs). Configuration files are used
to indicate paths for resources and the features that
should be extracted. For its main resources (e.g.
LMs), if a resource is missing, QUEST++ can gen-
erate it automatically.

Figure 1 depicts the architecture of QUEST++ .
Document and Paragraph classes are used for
document-level feature extraction. A Document is
a group of Paragraphs, which in turn is a group
of Sentences. Sentence is used for both word- and
sentence-level feature extraction. A Feature Pro-
cessing Module was created for each level. Each
processing level is independent and can deal with
the peculiarities of its type of feature.

Machine learning QUEST++ provides scripts
to interface the Python toolkit scikit-learn3

(Pedregosa et al.,). This module is indepen-
dent from the feature extraction code and uses
the extracted feature sets to build and test QE
models. The module can be configured to run
different regression and classification algorithms,
feature selection methods and grid search for
hyper-parameter optimisation. Algorithms from
scikit-learn can be easily integrated by
modifying existing scripts.

For word-level prediction, QUEST++ provides
an interface for CRFSuite (Okazaki, 2007), a se-
quence labelling C++ library for Conditional Ran-
dom Fields (CRF). One can configure CRFSuite
training settings, produce models and test them.

3 Features

Features in QUEST++ can be extracted from either
source or target (or both) sides of the corpus at a
given textual level. In order describe the features
supported, we denote:
• S and T the source and target documents,
• s and t for source and target sentences, and
• s and t for source and target words.
We concentrate on MT system-independent

(black-box) features, which are extracted based on
the output of the MT system rather than any of
its internal representations. These allow for more
flexible experiments and comparisons across MT
systems. System-dependent features can be ex-
tracted as long they are represented using a pre-
defined XML scheme. Most of the existing fea-
tures are either language-independent or depend
on linguistic resources such as POS taggers. The
latter can be extracted for any language, as long
as the resource is available. For a pipelined ap-
proach, predictions at a given level can become
features for higher level model, e.g. features based
on word-level predictions for sentence-level QE.

3.1 Word level

We explore a range of features from recent work
(Bicici and Way, 2014; Camargo de Souza et al.,
2014; Luong et al., 2014; Wisniewski et al., 2014),
totalling 40 features of seven types:

Target context These are features that explore
the context of the target word. Given a word ti
in position i of a target sentence, we extract: ti,

3http://scikit-learn.org/

116

Figure 1: Architecture of QUEST++

i.e., the word itself, bigrams ti−1ti and titi+1, and
trigrams ti−2ti−1ti, ti−1titi+1 and titi+1ti+2.

Alignment context These features explore the
word alignment between source and target sen-
tences. They require the 1-to-N alignment be-
tween source and target sentences to be provided.
Given a word ti in position i of a target sentence
and a word sj aligned to it in position j of a source
sentence, the features are: the aligned word sj it-
self, target-source bigrams sj−1ti and tisj+1, and
source-target bigrams ti−2sj , ti−1sj , sjti+1 and
sjti+2.

Lexical These features explore POS informa-
tion on the source and target words. Given
the POS tag Pti of word ti in position i of a
target sentence and the POS tag Psj of word
sj aligned to it in position j of a source sen-
tence, we extract: the POS tags Pti and Psj

themselves, the bigrams Pti−1Pti and PtiPti+1

and trigrams Pti−2Pti−1Pti, Pti−1PtiPti+1 and
PtiPti+1Pti+2. Four binary features are also ex-
tracted with value 1 if ti is a stop word, punctua-
tion symbol, proper noun or numeral.

LM These features are related to the n-gram fre-
quencies of a word’s context with respect to an LM
(Raybaud et al., 2011). Six features are extracted:
lexical and syntactic backoff behavior, as well as
lexical and syntactic longest preceding n-gram for
both a target word and an aligned source word.
Given a word ti in position i of a target sentence,

the lexical backoff behavior is calculated as:

f (ti) =

7 if ti−2, ti−1, ti exists
6 if ti−2, ti−1 and ti−1, ti exist
5 if only ti−1, ti exists
4 if ti−2, ti−1 and ti exist
3 if ti−1 and ti exist
2 if ti exists
1 if ti is out of the vocabulary

The syntactic backoff behavior is calculated in
an analogous fashion: it verifies for the existence
of n-grams of POS tags in a POS-tagged LM. The
POS tags of target sentence are produced by the
Stanford Parser4 (integrated in QUEST++).

Syntactic QUEST++ provides one syntactic fea-
ture that proved very promising in previous work:
the Null Link (Xiong et al., 2010). It is a binary
feature that receives value 1 if a given word ti in
a target sentence has at least one dependency link
with another word tj , and 0 otherwise. The Stan-
ford Parser is used for dependency parsing.

Semantic These features explore the polysemy
of target and source words, i.e. the number of
senses existing as entries in a WordNet for a given
target word ti or a source word si. We employ
the Universal WordNet,5 which provides access to
WordNets of various languages.

4http://nlp.stanford.edu/software/
lex-parser.shtml

5http://www.lexvo.org/uwn/

117

Pseudo-reference This binary feature explores
the similarity between the target sentence and a
translation for the source sentence produced by an-
other MT system. The feature is 1 if the given
word ti in position i of a target sentence S is also
present in a pseudo-reference translation R. In our
experiments, the pseudo-reference is produced by
Moses systems trained over parallel corpora.

3.2 Sentence level
Sentence-level QE features have been extensively
explored and described in previous work. The
number of QUEST++ features varies from 80 to
123 depending on the language pair. The complete
list is given as part of QUEST++ ’s documentation.
Some examples are:
• number of tokens in s & t and their ratio,
• LM probability of s & t,
• ratio of punctuation symbols in s & t,
• ratio of percentage of numbers, content-/non-

content words, nouns/verbs/etc in s & t,
• proportion of dependency relations between

(aligned) constituents in s & t,
• difference in depth of syntactic trees of s & t.
In our experiments, we use the set of 80 fea-

tures, as these can be extracted for all language
pairs of our datasets.

3.3 Document level
Our document-level features follow from those in
the work of (Wong and Kit, 2012) on MT evalua-
tion and (Scarton and Specia, 2014) for document-
level QE. Nine features are extracted, in addition
to aggregated values of sentence-level features for
the entire document:
• content words/lemmas/nouns repetition in

S/T ,
• ratio of content words/lemmas/nouns in S/T ,

4 Experiments

In what follows, we evaluate QUEST++’s perfor-
mance for the three prediction levels and various
datasets.

4.1 Word-level QE
Datasets We use five word-level QE datasets:
the WMT14 English-Spanish, Spanish-English,
English-German and German-English datasets,
and the WMT15 English-Spanish dataset.

Metrics For the WMT14 data, we evaluate per-
formance in the three official classification tasks:

• Binary: A Good/Bad label, where Bad indi-
cates the need for editing the token.
• Level 1: A Good/Accuracy/Fluency label,

specifying the coarser level categories of er-
rors for each token, or Good for tokens with
no error.
• Multi-Class: One of 16 labels specifying the

error type for the token (mistranslation, miss-
ing word, etc.).

The evaluation metric is the average F-1 of all
but the Good class. For the WMT15 dataset, we
consider only the Binary classification task, since
the dataset does not provide other annotations.

Settings For all datasets, the models were
trained with the CRF module in QUEST++ . While
for the WMT14 German-English dataset we use
the Passive Aggressive learning algorithm, for the
remaining datasets, we use the Adaptive Reg-
ularization of Weight Vector (AROW) learning.
Through experimentation, we found that this setup
to be the most effective. The hyper-parameters for
each model were optimised through 10-fold cross
validation. The baseline is the majority class in
the training data, i.e. a system that always pre-
dicts “Unintelligible” for Multi-Class, “Fluency”
for Level 1, and “Bad” for the Binary setup.

Results The F-1 scores for the WMT14 datasets
are given in Tables 1–4, for QUEST++ and sys-
tems that oficially participated in the task. The re-
sults show that QUEST++ was able to outperform
all participating systems in WMT14 except for the
English-Spanish baseline in the Binary and Level
1 tasks. The results in Table 5 also highlight the
importance of selecting an adequate learning al-
gorithm in CRF models.

System Binary Level 1 Multiclass
QUEST++ 0.502 0.392 0.227
Baseline 0.525 0.404 0.222
LIG/BL 0.441 0.317 0.204
LIG/FS 0.444 0.317 0.204
FBK-1 0.487 0.372 0.170
FBK-2 0.426 0.385 0.230
LIMSI 0.473 − −
RTM-1 0.350 0.299 0.268
RTM-2 0.328 0.266 0.032

Table 1: F-1 for the WMT14 English-Spanish task

4.2 Pipeline for sentence-level QE

Here we evaluate the pipeline of using word-level
predictions as features for sentence-level QE.

118

System Binary Level 1 Multiclass
QUEST++ 0.386 0.267 0.161
Baseline 0.299 0.151 0.019
RTM-1 0.269 0.219 0.087
RTM-2 0.291 0.239 0.081

Table 2: F-1 for the WMT14 Spanish-English task

System Binary Level 1 Multiclass
QUEST++ 0.507 0.287 0.161
Baseline 0.445 0.117 0.086
RTM-1 0.452 0.211 0.150
RTM-2 0.369 0.219 0.124

Table 3: F-1 for the WMT14 English-German task

Dataset We use the WMT15 dataset for word-
level QE. The split between training and test sets
was modified to allow for more sentences for train-
ing the sentence-level QE model. The 2000 last
sentences of the original training set were used
as test along with the original 1000 dev set sen-
tences. Therefore, word predictions were gener-
ated for 3000 sentences, which were later split in
2000 sentences for training and 1000 sentences for
testing the sentence-level model.

Features The 17 QUEST++ baseline features
are used alone (Baseline) and in combination with
four word-level prediction features:
• count & proportion of Good words,
• count & proportion of Bad words.
Oracle word level labels, as given in the original

dataset, are also used in a separate experiment to
study the potential of this pipelined approach.

Settings For learning sentence-level models, the
SVR algorithm with RBF kernel and hyperparam-
eters optimised via grid search in QUEST++ is
used. Evaluation is done using MAE (Mean Ab-
solute Error) as metric.

Results As shown in Table 6, the use of word-
level predictions as features led to no improve-
ment. However, the use of the oracle word-level
labels as features substantially improved the re-
sults, lowering the baseline error by half. We note
that the method used in this experiments is the
same as that in Section 4.1, but with fewer in-
stances for training the word-level models. Im-

System Binary Level 1 Multiclass
QUEST++ 0.401 0.230 0.079
Baseline 0.365 0.149 0.069
RTM-1 0.261 0.082 0.023
RTM-2 0.229 0.085 0.030

Table 4: F-1 for the WMT14 German-English task

Algorithm Binary
AROW 0.379
PA 0.352
LBFGS 0.001
L2SGD 0.000
AP 0.000

Table 5: F-1 for the WMT15 English-Spanish task

proving word-level prediction could thus lead to
better results in the pipeline for sentence-level QE.

MAE
Baseline 0.159
Baseline+Predicted 0.158
Baseline+Oracle 0.07

Table 6: MAE values for sentence-level QE

4.3 Pipeline for document-level QE

Here we evaluate the pipeline of using sentence-
level predictions as features for QE of documents.

Dataset For training the sentence-level model,
we use the English-Spanish WMT13 training set
for sentence-level QE. For the document-level
model, we use English-Spanish WMT13 data
from the translation shared task. We mixed the
outputs of all MT systems, leading to 934 trans-
lated documents. 560 randomly selected docu-
ments were used for training and 374 for test-
ing. As quality labels, for sentence-level training
we consider both the HTER and the Likert labels
available. For document-level prediction, BLEU,
TER and METEOR are used as quality labels (not
as features), given the lack of human-target quality
labels for document-level prediction.

Features The 17 QUEST++ baseline features
are aggregated to produce document-level fea-
tures (Baseline). These are then combined with
document-level features (Section 3.3) and finally
with features from sentence-level predictions:
• maximum/minimum predicted HTER or Lik-

ert score,
• average predicted HTER or Likert score,
• Median, first quartile and third quartile pre-

dicted HTER or Likert score.
Oracle sentence labels are not possible as they

do not exist for the test set documents.

Settings For training and evaluation, we use the
same settings as for sentence-level.

Results Table 7 shows the results in terms of
MAE. The best result was achieved with the

119

baseline plus HTER features, but no significant
improvements over the baseline were observed.
Document-level prediction is a very challenging
task: automatic metric scores used as labels do
not seem to reliably distinguish translations of dif-
ferent source documents, since they were primar-
ily designed to compare alternative translations for
the same source document.

BLEU TER METEOR
Baseline 0.049 0.050 0.055
Baseline+Doc-level 0.053 0.057 0.055
Baseline+HTER 0.053 0.048 0.054
Baseline+Likert 0.054 0.056 0.054
Baseline+Doc-level+HTER 0.053 0.054 0.054
Baseline+Doc-level+Likert 0.053 0.056 0.054

Table 7: MAE values for document-level QE

5 Remarks

The source code for the framework, the datasets
and extra resources can be downloaded from
https://github.com/ghpaetzold/
questplusplus.

The license for the Java code, Python and
shell scripts is BSD, a permissive license with
no restrictions on the use or extensions of the
software for any purposes, including commer-
cial. For pre-existing code and resources, e.g.,
scikit-learn, their licenses apply.

Acknowledgments

This work was supported by the European Associ-
ation for Machine Translation, the QT21 project
(H2020 No. 645452) and the EXPERT project
(EU Marie Curie ITN No. 317471).

References
N. Bach, F. Huang, and Y. Al-Onaizan. 2011. Good-

ness: a method for measuring MT confidence. In
ACL11.

E. Bicici and A. Way. 2014. Referential Transla-
tion Machines for Predicting Translation Quality. In
WMT14.

J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur,
C. Goutte, A. Kulesza, A. Sanchis, and N. Ueffing.
2004. Confidence Estimation for Machine Transla-
tion. In COLING04.

O. Bojar, C. Buck, C. Callison-Burch, C. Federmann,
B. Haddow, P. Koehn, C. Monz, M. Post, R. Soricut,
and L. Specia. 2013. Findings of the 2013 Work-
shop on SMT. In WMT13.

O. Bojar, C. Buck, C. Federmann, B. Haddow,
P. Koehn, J. Leveling, C. Monz, P. Pecina, M. Post,
H. Saint-Amand, R. Soricut, L. Specia, and A. Tam-
chyna. 2014. Findings of the 2014 Workshop on
SMT. In WMT14.

C. Callison-Burch, P. Koehn, C. Monz, M. Post,
R. Soricut, and L. Specia. 2012. Findings of the
2012 Workshop on SMT. In WMT12.

J. G. Camargo de Souza, J. González-Rubio, C. Buck,
M. Turchi, and M. Negri. 2014. FBK-UPV-
UEdin participation in the WMT14 Quality Estima-
tion shared-task. In WMT14.

N. Q. Luong, L. Besacier, and B. Lecouteux. 2014.
LIG System for Word Level QE task. In WMT14.

N. Okazaki. 2007. CRFsuite: a fast implementation
of Conditional Random Fields. http://www.
chokkan.org/software/crfsuite/.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12.

S. Raybaud, D. Langlois, and K. Smali. 2011. This
sentence is wrong. Detecting errors in machine-
translated sentences. Machine Translation, 25(1).

C. Scarton and L. Specia. 2014. Document-level trans-
lation quality estimation: exploring discourse and
pseudo-references. In EAMT14.

C. Scarton, M. Zampieri, M. Vela, J. van Genabith, and
L. Specia. 2015. Searching for Context: a Study
on Document-Level Labels for Translation Quality
Estimation. In EAMT15.

K. Shah and L. Specia. 2014. Quality estimation for
translation selection. In EAMT14.

R. Soricut and A. Echihabi. 2010. Trustrank: Induc-
ing trust in automatic translations via ranking. In
ACL10.

L. Specia, K. Shah, J. G. C. de Souza, and T. Cohn.
2013. Quest - a translation quality estimation frame-
work. In ACL13.

L. Specia. 2011. Exploiting objective annotations
for measuring translation post-editing effort. In
EAMT11.

G. Wisniewski, N. Pcheux, A. Allauzen, and F. Yvon.
2014. LIMSI Submission for WMT’14 QE Task. In
WMT14.

B. T. M. Wong and C. Kit. 2012. Extending machine
translation evaluation metrics with lexical cohesion
to document level. In EMNLP/CONLL.

D. Xiong, M. Zhang, and H. Li. 2010. Error detection
for SMT using linguistic features. In ACL10.

120

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 121–126,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

WA-Continuum: Visualising Word Alignments across
Multiple Parallel Sentences Simultaneously

David Steele
Department of Computer Science

The University of Sheffield
Sheffield, UK

dbsteele1@sheffield.ac.uk

Lucia Specia
Department of Computer Science

The University of Sheffield
Sheffield, UK

l.specia@sheffield.ac.uk

Abstract

Word alignment (WA) between a pair of
sentences in the same or different lan-
guages is a key component of many nat-
ural language processing tasks. It is com-
monly used for identifying the translation
relationships between words and phrases
in parallel sentences from two different
languages. WA-Continuum is a tool de-
signed for the visualisation of WAs. It was
initially built to aid research studying WAs
and ways to improve them. The tool re-
lies on the automated mark-up of WAs, as
typically produced by WA tools. Differ-
ent from most previous work, it presents
the alignment information graphically in a
WA matrix that can be easily understood
by users, as opposed to text connected by
lines. The key features of the tool are the
ability to visualise WA matrices for mul-
tiple parallel aligned sentences simultane-
ously in a single place, coupled with pow-
erful search and selection components to
find and inspect particular sentences as re-
quired.

1 Introduction

Automatically generated WA of parallel sen-
tences, as introduced by the IBM models (Brown
et al., 1990), is a mapping between source words
and target words. It plays a vital role in Statisti-
cal Machine Translation (SMT) as the initial step
to generate translation rules in most state of the
art SMT approaches. It is also widely classed as
a valuable linguistic resource for multilingual text
processing in general.

Accurate WAs form the basis for construct-
ing probabilistic word or phrase-based translation
dictionaries, as well as the generation of more
elaborate translation rules, such as hierarchical

or syntax-based rules. As WAs improve, it is
expected that the translation rules also improve,
which, in turn, should lead to better Machine
Translation (MT).

Our research involves a careful study and evalu-
ation of the WA process and aims to develop ways
to improve its performance. A substantial part of
evaluating WAs often includes human intervention
where candidate WAs produced by various soft-
ware are examined. Consequently, tools to display
the alignment information are very important for
humans to analyse and readily digest such infor-
mation.

Various tools have been developed in previous
work that enable the visualisation and, in some
cases, direct manipulation of WAs. However, none
of these tools meet important requirements in our
research such as being able to quickly examine
WAs for tens and even hundreds of sentences si-
multaneously in a very clear format and indeed
being able to search, shuffle, and filter those align-
ments according to desired specific criteria. The
WA-Continuum tool was developed to fulfil this
need. It is implemented in Python and outputs to
standard HTML files, utilising the powerful prop-
erties provided by CSS and JavaScript. As the out-
put file is saved as regular HTML it works with
modern web browsers and thus users can make
use of many of the features they provide, such as
‘search and find’.

The remainder of the paper is organised as fol-
lows: Section 2 gives a brief overview of existing
WA visualisation tools. Section 3 highlights the
technical specification of the WA-Continuum soft-
ware as well as a number of useful features. Sec-
tion 4 presents the conclusion along with a brief
overview of future development plans.

2 Visualising Word Alignments

With the continuing attention given to SMT and
the overarching importance of WAs, various tools

121

Figure 1: A simple graphical visualisation of WAs
for an English-Spanish parallel sentence (Jurafsky
and Martin, 2009).

Figure 2: A simple graphical visualisation of WAs
for a German-English parallel sentence. The input
has been segmented into phrases (Koehn, 2013).

have been developed that help evaluate and vi-
sualise such alignments by going beyond us-
ing text alone. To understand the limitations
of text-only visualisation, consider the following
Chinese-English example, where the alignments
are given in terms of the positions of source-target
tokens: 我爱你 ! ||| i love you ! ||| 0-0 1-1 2-2
3-3. For short and simple sentences with numer-
ous 1-to-1 monotone alignments this visualisation
style can be sufficient. However, it is certainly not
suitable for longer and more complex sentences
that may contain more intricate alignments.

Previous tools include Cairo (Smith et al., 2000)
and VisualLIHLA (Caseli et al., 2008) and have
different implementations serving different pur-
poses, but they are usually presented in one of two
main visual styles. The earlier styles show align-
ments by matching words in text boxes, across two
sentences, using arrows or lines to make the con-
nections. Figure 1 shows an example of this style,
where the words in a parallel English and Span-
ish sentence have been aligned. From the example
it can be seen clearly which words map to each
other, where reordering occurs (arrows cross), and
where phrases are mapped to single words (e.g.
‘did not’ is mapped to ‘no’). Figure 2 shows a sim-
ilar mapping, but this time it places whole phrases
within a single text box and shows both word and
phrase alignments. Again, the place where the ar-
rows cross shows some reordering has occurred.
The accuracy of the alignments shown in both fig-
ures is not a concern, as the tools are purely de-
signed for visualisation purposes. The clarity in
how the information is presented, on the other
hand, is critical.

Figure 3: A graphical visualisation of WAs for
the given Spanish-English parallel sentence using
the matrix format. The columns represent Span-
ish words whilst the rows represent English words
(Jurafsky and Martin, 2009).

The second and perhaps more sophisticated
style displays the alignments in a matrix type grid,
where the individual columns of the grid map to
single elements (words or punctuation marks) in
one language and the rows do likewise for single
elements in the other language. Figure 3 shows
the same parallel sentences as those in Figure 1,
but in the grid style. Single blocks show map-
pings between individual elements (e.g. ‘Mary’
and ‘Maria’) whereas multiple blocks appearing
in the same row or column tend to show phrases
mapping to single words or other phrases (e.g. ‘did
not’ maps to ‘no’). As can be seen from Figures
1, 2 and 3 the same information is clearly pre-
sented in two different formats, both of which are
more intuitive than showing text and word position
numbers only.

The tools described so far are static and only
show visual representations of WAs. Tools such as
Yawat (Yet Another Word Alignment Tool) (Ger-
mann, 2008) and the SWIFT Aligner (Gilmanov
et al., 2014), however, allow the direct manipula-
tion and editing of WAs via graphical interfaces.
Picaro – a simple command-line alignment visual-
isation tool (Riesa, 2011) – uses the grid style to
display information. It also has an online demo
web page1 that allows for the demonstration of
the tool within a browser for a single parallel sen-
tence. Although Picaro is a relatively simple tool,
the visual presentation of the grid format on the
demonstration web page is clear and is ideal for

1http://nlg.isi.edu/demos/picaro/

122

quickly understanding WAs. Our research in SMT
requires the use of this type of presentation style
using the grid format, but with a few more pow-
erful features. Consequently, we had to develop
a new tool that had extra features, but maintained
the visual appeal and simplicity of the grid format.

3 Software Features

This section provides an overview of our software
including input format and technical specification,
as well as a number of the pertinent and powerful
features that we have been using.

3.1 Input and Technical Specification

WA-Continuum is written in Python (version 2.7).
The input commands can be typed directly into the
command-line on Mac, Linux and Windows com-
puters or laptops. They can also be passed as ar-
guments in a number of integrated development
environments (IDEs) such as Eclipse2 or Spyder3.

The input for the tool should include at least one
aligned parallel sentence arranged in the following
format:

SOURCE ||| TARGET |||WAs.

For example:
我爱你 ||| i love you ||| 0-0 1-1 2-2

Typically though the input will be a text file
containing a list of many such aligned parallel
sentences, one per line. The file is read along
with an optional user selected keyword or key-
phrase (e.g. -k ‘hello’ or -k ‘as soon as’), which
then only returns sentence pairs containing that
given word or phrase. Once these commands have
been provided, the output is returned as an HTML
page, which uses a mixture of HTML, CSS and
JavaScript. The page is then automatically opened
in the default web browser. This implementa-
tion has been successfully tested with a number of
modern web browsers including Mozilla Firefox,
Internet Explorer 11, Google Chrome and Opera.

A single web page can show thousands of align-
ment grids (it has been tested for 10000+ sen-
tences), but despite the fact that the program pro-
duces the HTML for the output very quickly, it
takes the browser a while to render the page when
thousands of grids are involved. We have found
through testing that up to 1000 grids can be loaded

2https://eclipse.org/
3https://github.com/spyder-ide/spyder/releases

and rendered fairly quickly (under four seconds on
an Intel dual core i3-3220 (3GHZ) computer with
12GB of RAM running Windows 8.1), and so, for
performance, we have set the current maximum
number of grids to 512 as this is usually enough
per search for inspection and evaluation purposes.

A short video showing a demonstration of the
WA-Continuum software is available online at:
http://wa-continuum.vidmeup.com/
The software itself will be made available for
download at:
http://staffwww.dcs.shef.ac.uk/
people/D.Steele/

3.2 Features

This section provides an overview of the perti-
nent features that have been developed and used
in our research including: keyword search, phrase
search, simple regular expression searches, view-
ing phrase pairs (minimal bi-phrases), and utilis-
ing useful browser features.

For all the given figures in this section exempli-
fying the WA-continuum software, the individual
coordinates for each square in the matrices should
be read as row number first, followed by the col-
umn number. For Figure 4, the alignment point
mapping ‘因为’ to ‘because’ (as highlighted at the
top and right hand side) should be read as align-
ment point 3-5. The three lines of text below each
grid show the source language, target language
and WAs as they appear in the input file.

Keyword Searching

As the main aim of the WA-Continuum soft-
ware is to be able to display clearly WAs for many
sentences (possibly the whole corpus), a keyword
search was implemented to enable users to select
sentences to visualise from the input file, for ex-
ample, for the analysis of particular constructions
such as those using discourse markers.

Figure 4 shows a typical alignment grid re-
turned from using the keyword search ‘because’.
The ‘14’ in the top left of the figure is an indi-
cation that it is the 15th4 grid for ‘because’ that
appears in the output page. Scrolling up the page
will show previous sentences featuring ‘because’,
while scrolling down will show subsequent sen-
tences.

4The sentence count starts at 0 to keep it consistent with
the alignment point numbering, which also starts at 0.

123

Figure 4: An example of a WA grid returned us-
ing the keyword search term ‘because’. The cursor
was placed over the alignment point for ‘because’
and ‘因为’ (point 3-5) so the tokens involved in
the alignment are highlighted.

Phrase Searching

This is simply an extension of the keyword
search, but by enclosing the search term in
quotes it enables the user to input a phrase. For
example, a user could easily run the program
with the search term ‘as soon as’ and only results
containing that complete phrase will be returned.
If the ‘as soon as’ was typed without the quotes,
the tool will return results for the keyword ‘as’.

It is worth noting here that the keyword/phrase
searches also apply to other alphabets/languages
in the input file. For example, a user could do a
search using either ‘china’ (lower case) or ‘中国’.

Support for Simple Regular Expressions

While keyword and phrase searches are use-
ful tools, if the user is looking for more specific
sentences then they can use searches combined
with basic regular expressions (RE). Figure 5 is
an example of WAs returned using the RE search
term ‘if.*, then’ which is being used to examine
sentences containing the if/then conditional.
Using the RE search term ‘if.*, then’ matches
any sentence that contains: ‘if’ followed by any
number of characters (.*) followed by a comma
and space and finally a ‘then’. Being able to use
REs makes the search very flexible and helps to
pinpoint specific examples.

Using Browser Features

Figure 5: A WA grid returned by using the regular
expression search term ‘if.*, then’.

Web browsers often contain many powerful
features, but one that is particularly useful for
searching the output of tens or hundreds of grids
is the ‘search and find’ function. Figure 6 shows
a browser search for ‘go to the airport’ being
performed on all alignment grids returned by
the original command-line keyword search term
‘the’. The figure shows that the sentence being
examined is the fifty-fifth one on the page as well
as it being the second out of eleven containing
matches for ‘go to the airport’. The up and down
arrows next to the search term enables the user to
quickly jump through the matches on the page.
Finally, the small yellow/orange lines on the right
hand side show where the other grids containing a
match appear on the page.

Phrase Pairs (Minimal Bi-phrases)

Koehn (2013) describes the idea of extract-
ing phrase pairs from word alignments for
phrase-based SMT. The reasoning is that if a
phrase pair has been identified, it can then be
used as evidence for the translation of future
occurrences of the phrase. Figure 7 shows an
example where ‘assumes that’ has been mapped
to ‘geht davon aus , dass’. Using this idea we
enabled our software to highlight phrase pairs
in order to better evaluate the WAs not just for
single words, but also for entire phrases. The
input file remains the same, but when the optional

124

Figure 6: Using the web browser features to search
the results. In this case, matches for ‘go to the
airport’ are sought.

‘-b’ switch, for bi-phrases on, is used in the
command-line then the tool recursively extracts
the phrase pairs at runtime and displays them in
the relevant matrices.

Figure 8 shows the first result returned using
the phrase search ‘as soon as’ plus the command-
line flag ‘-b’, which highlights phrase pairs. Each
single block containing the hash symbol repre-
sents the actual word alignment points, whereas
the large block represents phrase alignments.
Phrase alignments will always appear as rectan-
gles and may include blocks that were not origi-
nally aligned (coloured, but no hash symbol). In
the context of Figure 8, the English words ‘to call
you’ have been mapped as a phrase to ‘给你打电
话’ (literally: ‘give you make phone [call]). In this
case, quite a good translation. The process to es-
tablish a phrase pair works as follows. If column 5
(‘call’) is examined it is clear that it contains three
mappings to rows 7, 9 and 10 respectively. This
means that in order to use column 5 in a phrase we
must include every alignment point that occurs in
the column and by extension those that appear in
each of the rows 7, 9 and 10. However, to get from
row 7 to row 9 we must also include everything in
row 8, and so it goes on in a recursive process.

The phrase ‘to call you’ uses columns 4, 5 and
6. Column 4 has an alignment point at row 9 (9-
4). Row 9 in turn also has an alignment point with
column 5 (9-5), which then encompasses the other
alignment points in column 5 (7-5 and 10-5). As
moving through column 5 includes using row 8

Figure 7: A WA grid showing a phrase pair map-
ping of ‘assumes that’ to ‘geht davon aus , dass’
(Koehn, 2013).

then we must also include all alignment points for
that row as well, which in this case is in column 6
(8-6). After this, as there are no more alignment
points to consider outside of that block, then the
phrase is complete. A similar process is applied in
Figure 7, which is why the ‘ , ’ in column 4 must
be included as part of the phrase ‘geht davon aus ,
dass’.

Another point worth noting in Figure 8 is that
the alignment at point 8-6 (highlighted) mapping
‘你’ to ‘you’ is in a different colour. The rea-
son for this is that the software has been devel-
oped to show possible phrases/words that may oc-
cur within a larger phrase (nested phrases), as well
as being a phrase or single aligned word in its own
right. That is, in this case no other item appears
in column 6 or row 8 and so the word alignment
could be extracted in its own right as a mapping
between ‘你’ and ‘you’. None of the other ele-
ments that appear in the phrase ‘to call you’ have
the same property.

Finally columns 7, 8, 9, and row 2 have no
alignment points in them at all. This means
that the alignment software has not found suit-
able alignments for these elements. Using the
grid format enables one to spot this issue right
away. Based on knowledge of Chinese, we can
also quickly spot that the word ‘returns’ (column
11) should be mapped to ‘回来’ (row 2) and ‘as
soon as’ (columns 7, 8 and 9) should be mapped to
‘一’ (row 1). These errors would be much harder
to spot when examining the alignments in a text
only format.

125

Figure 8: A WA grid showing a phrase pair map-
ping of ‘to call you’ to ‘给你打电话’.

Other Features

A number of other features are available to
the user, including the ability to shuffle the results,
select a range of matrices, and filter the results to
include sentences under a certain length. Extra
features such as these are continually being
incorporated into the software as the need arises.
Furthermore, as the software is open source and
well documented, its modular design will enable
others to develop and extend the tool to easily add
further features as required.

4 Conclusion and Future Work

WA-Continuum was designed with one main spe-
cific purpose in mind, which is visualising WAs
for a large number of sentences at once, making it
possible to evaluate them more efficiently. Soft-
ware that enables the visualisation of WAs has
been developed in previous work and they offer
a myriad of features including manual editing of
WAs and text highlighting. However, none of the
tools that we found appeared to offer the full set of
functionalities that were required. WA-Continuum
builds on the idea of displaying WAs in an intuitive
matrix style, but makes accessing and searching
large volumes of data a fairly straightforward task.

In the future we aim to further enhance the soft-
ware by making a number of additions:

• Extra interactivity will be added to enable
manual editing of WAs.

• Phrase pairs could be shown on a separate
page or alongside the main grids, which is
useful where nested phrase pairs occur.

• Results that return a larger number of grids
(e.g. over 1000) will be spread over multi-
ple pages, with a main master page contain-
ing links to each of the sub pages.

• The option to output a small number of grids
to PDF may also be added as it is a useful
format, which could be used consistently in
numerous ways across many devices.

Acknowledgements The authors wish to thank
W Aziz for his valued input (including code snip-
pets), ideas and suggestions.

References
Peter F. Brown, John Cocke, Stephen A. Della, Vincent

J. Della Pietra, Fredrick Jelinek, John D. Lafferty,
Robert L. Mercer, and Paul S. Roosin. 1990. A Sta-
tistical Approach to Machine Translation. Compu-
tational Linguistics, 16(2):76-85.

Helena Caseli, Felipe T. Gomes, Thiago A.S. Pardo,
and Maria das Gracas V. Nunes. 2008. Visual-
LIHLA: The Visual Online Tool for Lexical Align-
ment. In XIV Brazilian Symposium on Multimedia
and the Web, pages 378-380. Vila Velha, Brazil.

Ulrich Germann. 2008. Yawat: Yet Another Word
Alignment Tool. ACL-08: HLT Demo Session,
pages 20-23. Columbus, Ohio.

Timur Gilmanov, Olga Scrivner, and Sandra Kubler.
2014. SWIFT Aligner, A Multifunctional Tool for
Parallel Corpora: Visualization, Word Alignment,
and (Morpho)-Syntactic Cross-Language Transfer.
LREC, pages 2913-2919. Reykjavik, Iceland.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Proecessing (2nd ed.). Pearson Pren-
tice Hall, London.

Philipp Koehn. 2013. Statistical Machine Translation.
Cambridge University Press, Cambridge.

Patrick Lambert. 2004. Alignment set toolkit.
http://gps-tsc.upc.es/veu/personal/lambert/software/
AlignmentSet.html.

Jason Riesa. 2011. Picaro: A simple
Command-Line Alignment Visualisation Tool.
http://nlg.isi.edu/demos/picaro/.

Noah A. Smith and Michael E. Jahr. 2000. Cairo: An
Alignment Visualisation Tool. In LREC. Athens,
Greece.

Jörg Tiedemann. 2006. ISA and ICA —Two web inter-
faces for interactive alignment of bitexts. In LREC.
Genoa, Italy.

126

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 127–132,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

A Domain-independent Rule-based Framework for Event Extraction

Marco A. Valenzuela-Escárcega Gus Hahn-Powell Thomas Hicks Mihai Surdeanu
University of Arizona, Tucson, AZ, USA

{marcov,hahnpowell,msurdeanu,hickst}@email.arizona.edu

Abstract

We describe the design, development, and API
of ODIN (Open Domain INformer), a domain-
independent, rule-based event extraction (EE)
framework. The proposed EE approach is:
simple (most events are captured with simple
lexico-syntactic patterns), powerful (the lan-
guage can capture complex constructs, such
as events taking other events as arguments,
and regular expressions over syntactic graphs),
robust (to recover from syntactic parsing er-
rors, syntactic patterns can be freely mixed
with surface, token-based patterns), and fast
(the runtime environment processes 110 sen-
tences/second in a real-world domain with a
grammar of over 200 rules). We used this
framework to develop a grammar for the bio-
chemical domain, which approached human
performance. Our EE framework is accom-
panied by a web-based user interface for the
rapid development of event grammars and vi-
sualization of matches. The ODIN framework
and the domain-specific grammars are avail-
able as open-source code.

1 Introduction
Rule-based information extraction (IE) has long en-
joyed wide adoption throughout industry, though it has
remained largely ignored in academia, in favor of ma-
chine learning (ML) methods (Chiticariu et al., 2013).
However, rule-based systems have several advantages
over pure ML systems, including: (a) the rules are
interpretable and thus suitable for rapid development
and domain transfer; and (b) humans and machines can
contribute to the same model. Why then have such sys-
tems failed to hold the attention of the academic com-
munity? One argument raised by Chiticariu et al. is
that, despite notable efforts (Appelt and Onyshkevych,
1998; Levy and Andrew, 2006; Hunter et al., 2008;
Cunningham et al., 2011; Chang and Manning, 2014),
there is not a standard language for this task, or a “stan-
dard way to express rules”, which raises the entry cost

for new rule-based systems.
Here we aim to address this issue with a novel event

extraction (EE) language and framework called ODIN
(Open Domain INformer). We follow the simplicity
principles promoted by other natural language process-
ing toolkits, such as Stanford’s CoreNLP, which aim to
“avoid over-design”, “do one thing well”, and have a
user “up and running in ten minutes or less” (Manning
et al., 2014). In particular, our approach is:

Simple: Taking advantage of a syntactic dependency1

representation (de Marneffe and Manning, 2008), our
EE language has a simple, declarative syntax (see Ex-
amples 1 & 2) for n-ary events, which captures single
or multi-word event predicates (trigger) with lexi-
cal and morphological constraints, and event arguments
(e.g., theme) with (generally) simple syntactic patterns
and semantic constraints.

Powerful: Despite its simplicity, our EE framework
can capture complex constructs when necessary, such
as: (a) recursive events2, (b) complex regular expres-
sions over syntactic patterns for event arguments. In-
spired by Stanford’s Semgrex3, we have extended a
standard regular expression language to describe pat-
terns over directed graphs4, e.g., we introduce new <

and > operators to specify the direction of edge traver-
sal in the dependency graph. Finally, we allow for (c)
optional arguments5 and multiple arguments with the
same name.

Robust: To recover from unavoidable syntactic errors,
SD patterns (such as the ones in Examples 1 and 2)
can be can be freely mixed with surface, token-based
patterns, using a language inspired by the Allen Insti-

1Hereafter abbreviated as SD.
2Events that take other events as arguments (see Figure 1

and the corresponding Example (2) for such an event in the
biochemical domain. The Positive Regulation takes
a Phosphorylation event as the Controlled argu-
ment)

3nlp.stanford.edu/software/tregex.
shtml

4Here we use syntactic dependencies.
5cause in Example 1.

127

Figure 1: An example sentence containing a recursive event.

tute of Artificial Intelligence’s Tagger6. These patterns
match against information extracted in our text process-
ing pipeline7 , namely a token’s part of speech, lem-
matized form, named entity label, and the immediate
incoming and outgoing edges in the SD graph. Exam-
ple 3 shows an equivalent rule to the one in Example 1
using surface patterns (i.e. a pattern that is independent
of a token sequence’s underlying syntactic structure).

Fast: Our EE runtime is fast because our rules use
event trigger phrases, captured with shallow lexico-
morphological patterns, as starting points. Only when
event triggers are detected is the matching of more
complex syntactic patterns for arguments attempted.
This guarantees quick executions. For example, in
the biochemical domain (discussed in Section 2), our
framework processes an average of 110 sentences/sec-
ond8 with a grammar of 211 rules on a laptop with an
i7 CPU and 16GB of RAM.

2 Building a Domain from Scratch
We next describe how to use the proposed framework
to build an event extractor for the biochemical domain
(Ohta et al., 2013) from scratch.

Rule-based systems have been shown to perform at
the state-of-the-art for event extraction in the biology
domain (Peng et al., 2014; Bui et al., 2013). The do-
main, however, is not without its challenges. For exam-
ple, it is not uncommon for biochemical events to con-
tain other events as arguments. Consider the example
sentence in Figure 1. The sentence contains two events,
one event referring to the biochemical process known
as phosphorylation, and a recursive event describing
a biochemical regulation that controls the mentioned
phosphorylation. We will introduce a minimal set of
rules that capture these two events. Here, we will as-
sume the simple entities (denoted in bold in Figure 1)
have already been detected through a named entity rec-
ognizer.9

When a rule matches, the extracted token spans
for trigger and arguments, together with the corre-
sponding event and argument labels (here the event

6https://github.com/allenai/taggers
7https://github.com/sistanlp/

processors
8after the initial text processing pipeline
9Though the discussion focuses on event extraction, our

framework can also be applied to the task of entity recogni-
tion.

1 - name: Phosphorylation_1
2 priority: 2
3 label: [Phosphorylation, Event]
4 pattern: |
5 trigger = [lemma="phosphorylation"]
6 theme:PhysicalEntity = prep_of
7 (nn|conj|cc)*
8 cause:PhysicalEntity? = prep_by
9 (nn|conj|cc)*

Example 1: An example of a rule using syntactic
structure. For the phosphorylation event, our
selected event trigger (LINE 5) is a nominal
predicate with the lemma phosphorylation. This
trigger serves as the starting point for the syntactic
patterns that extract event arguments. When
searching for a theme to the Phosphorylation
event, we begin at the specified trigger and
look for an incoming dependent that is the object
of the preposition of. The pattern fragment
(nn|conj and|cc)* targets entities that appear as
modifiers in noun phrases (e.g., . . . of the cyclin-D1
protein), or a series of arguments in a coordinated
phrase. The entity mention associated with our
theme must be a named entity with the label
PhysicalEntity (LINE 7), a hypernym of several
more specialized types identified in an earlier
iteration. The cause argument is marked as
optional (denoted by the ? symbol).

label is Phosphorylation, and the argument labels
are theme & cause) are dispatched to a labeling
action. By default, these actions simply create an
EventMention Scala object with the corresponding
event label, and the extracted named arguments. Exam-
ple 5 summarizes the EventMention class. Custom
actions may be defined as Scala code, and be attached
to specific rules. For example, a custom action may
trigger coreference resolution when a rule matches a
common noun, e.g., the protein, instead of the expected
named entity.

The second rule, shown in Example 2, captures the
recursive event in Figure 1. Importantly, this rule takes
other events as arguments, e.g., the controlled ar-
gument must be an event mention, here generated by
the rule in Example 1. To guarantee correct execution,
the runtime repeatedly applies the given EE grammar
on each sentence until no rule matches. For example,
here the rule in Example 2 would not match in the first

128

1 - name: Positive_regulation_1
2 label: [Positive_regulation, Event]
3 priority: 3
4 pattern: |
5 trigger =

[lemma=/promot|induc|increas
6 |stimul|lead|enhanc|up-regulat/
7 & tag=/ˆV|RB/]
8 controller:PhysicalEntity = nsubj

nn*
9 controlled:Event = dobj nn*

Example 2: An example of a rule designed to
capture a recursive event. The rule detects a relevant
verbal or adverbial trigger and expects its arguments
to be in a SUBJECT↔ DIRECT OBJECT relationship.
The controlled argument must be the mention of
another event.

1 - name: Phosphorylation_surface_1
2 priority: 2
3 type: token
4 label: [Phosphorylation, Event]
5 pattern: |
6 (?<trigger>
7 [lemma="phosphorylation"]) of []*?
8 @theme:PhysicalEntity []*?
9 (by @cause:PhysicalEntity)?

Example 3: An alternative rule to Example 1
that uses a surface pattern. Surface patterns
match event triggers and arguments over sequences
of tokens and other mentions (e.g., the theme

matches over an entire named entity of type
PhysicalEntity). Event triggers (trigger)
match the whole sequence of tokens encompassed
in parentheses. Argument names preceded by the
@ symbol, e.g., @theme, require the specification of
an event type (denoted by :type). This pattern is
shorthand for matching the span of an entire named
entity with the specified type.

iteration because no event mentions have been created
yet, but would match in the second iteration. This pro-
cess can optionally be optimized with rule priorities
(as shown in the figure). For example, the priorities
assigned to Examples 1 and 2 enforce that the second
rule is executed only in an iteration following the first
rule. Utilizing rule priorities allows for a derivational
construction of complex events or complete grammars
from their components.

Once the grammar has been defined, the entire sys-
tem can be run in less than 10 lines of code, as shown
in Example 4. The output of this code is a collection of
event mentions, i.e., instances of the EventMention

class outlined in Example 5.

3 Visualization

We accompany the above EE system with an interactive
web-based tool for event grammar development and re-

1 class SimpleExample extends App {
2 // read rules from file
3 val rules = Source.fromFile(
4 "rules.yml").mkString
5 // make extractor engine
6 val engine = new ExtractorEngine(rules)
7 // create text processor for biomedical
8 // domain: POS, NER, and syntax
9 val processor = new BioNLPProcessor

10 // make document from free text;
11 // the document includes POS, NER, and
12 // syntactic annotations
13 val text = "TopBP1 promotes the

phosphorylation of cyclin-D1 by ATR."
14 val doc = processor.annotate(text)
15 // run the actual EE grammar
16 val mentions = engine.extractFrom(doc)
17 }

Example 4: The minimal Scala code required
to run the system. The input (LINE 13) is raw
text. The output is a list of event mentions of
the type EventMention. Here we show the
use of a text processor specific to the biomedical
domain. The framework also includes an open-
domain text processor that includes POS tagging,
named entity recognition, syntactic parsing, and
coreference resolution. Additional processors for
domain-specific tasks can easily be added.

sults visualization. Figure 2 shows the input fields for
the user interface. The UI accepts free text to match
against, and can be configured to run either a predefined
domain grammar or one provided on-the-fly through a
text box, allowing for the rapid development and tuning
of rules.

Figure 2: Our interactive environment for rapid de-
velopment of event grammars.The UI supports the
input of rules and free text.

Figure 3 shows the output of the visualization tool
on the example sentence from Figure 1 using the gram-

129

1 class EventMention(
2 /** The ontological labels associated with
3 * the event (specified in the rule) */
4 val label: Seq[String],
5 /** The starting point of our pattern */
6 val trigger: TextBoundMention,
7 /** A mapping of argument names to the
8 * Mentions that contain them */
9 val arguments: Map[String, Seq[Mention]],

10 /** The name of the corresponding rule */
11 val foundBy: String
12 /** The span of the Mention
13 * in the original document*/
14 val tokenInterval: Interval)

Example 5: Example 4 produces a set of
mentions. Here we focus on mentions of events
(EventMention). This code block shows relevant
fields in the EventMention class, which stores
each event mention detected and assembled by
the system. The arguments field captures the
fact that the mapping from names to arguments is
one-to-many (e.g., there may be multiple theme

arguments). Interval stores a token span in the
input text. TextBoundMention stores a simple
mention, minimally a label and a token span.

mar discussed in the previous section. The web inter-
face is implemented as a client-server Grails10 web ap-
plication which runs the EE system on the server and
displays the results on the client side. The applica-
tion’s client-side code displays both entity and event
mentions, as well as the output of the text preprocessor
(to help with debugging) using Brat (Stenetorp et al.,
2012).

4 Results

We extended the grammar introduced previously to
capture 10 different biochemical events, with an av-
erage of 11 rules per event type. Using this grammar
we participated in a recent evaluation by DARPA’s Big
Mechanism program11, where systems had to perform
deep reading of two research papers on cancer biology.
Table 1 summarizes our results.

Our system was ranked above the median, with re-
spect to overall F1 score. We find these results en-
couraging for two reasons. First, inter-annotator agree-
ment on the task was below 60%, which indicates that
our system roughly approaches human performance,
especially for precision. Second, the lower recall is
partially explained by the fact that annotators marked
also indirect biological relations (e.g., A activates B),
which do not correspond to actual biochemical reac-
tions but, instead, summarize sequences of biochemi-
cal reactions. Our grammar currently recognizes only
direct biochemical reactions.

10https://grails.org
11http://www.darpa.mil/Our_Work/I2O/

Programs/Big_Mechanism.aspx

System Precision Recall F1
Submitted run 54% 29% 37.3%

Ceiling system 82.1% 81.8% 82%

Table 1: Results from the January 2015 DARPA
Big Mechanism Dry Run evaluation on reading
biomedical papers, against a known biochemical
model. In addition to event extraction, this eval-
uation required participants to identify if the ex-
tracted information corroborates, contradicts, or ex-
tends the given model. Here, extending the model
means proposing a biochemical reaction that is not
contained in the model, but it involves at least a bio-
chemical entity from the model. The ceiling system
indicates idealized performance of the rule-based
framework, after a post-hoc analysis.

More importantly, this evaluation offers a good plat-
form to analyze the potential of the proposed rule-based
framework, by estimating the ceiling performance of
our EE system, when all addressable issues are fixed.
We performed this analysis after the evaluation dead-
line, and we manually:

1. Removed the keys that do not encode direct bio-
chemical reactions.

2. Corrected three rules, to better model one event
and one entity type.

3. Fixed system bugs, including XML parsing errors,
which caused some meta data to appear in text and
be misinterpreted as biological entities, and a syn-
tax error in one rule, which caused several false
positives.

The results of this ceiling system are listed in the sec-
ond row in Table 1. This analysis highlights an encour-
aging finding: the current rule framework is expressive:
it can capture approximately 80% of the events in this
complex domain. The remaining 20% require corefer-
ence resolution and complex syntactic patterns, which
were not correctly captured by the parser.

5 Related Work
Despite the dominant focus on machine learning mod-
els for IE in the literature, previous work includes sev-
eral notable rule-based efforts. For example, GATE
(Cunningham et al., 2011), and the Common Pat-
tern Specification Language (Appelt and Onyshkevych,
1998) introduce a rule-based framework for IE, imple-
mented as a cascade of grammars defined using surface
patterns. The ICE system offers an active-learning sys-
tem that learns named entity and binary relation pat-
terns built on top of syntactic dependencies (He and
Grishman, 2011). Stanford’s Semgrex12 and Tregex
(Levy and Andrew, 2006) model syntactic patterns,

12http://nlp.stanford.edu/software/
tregex.shtml

130

Figure 3: A Brat-based visualization of the event mentions created from the example sentence in Figure 1.
Not shown but included in the visualization: a table with token information (lemmas, PoS tags, NE labels, and
character spans).

while a separate tool from the same group, Token-
sRegex (Chang and Manning, 2014), defines surface
patterns over token sequences. Chiticariu et al. (2011)
demonstrated that a rule-based NER system can match
or outperform results achieved with machine learning
approaches, but also showed that rule-writing is a la-
bor intensive process even with a language specifically
designed for the task.

In addition to the above domain-independent frame-
works, multiple previous works focused on rule-based
systems built around specific domains. For exam-
ple, in bioinformatics, several dedicated rule-based sys-
tems obtained state-of-the-art performance in the ex-
traction of protein-protein interactions (PPI) (Hunter
et al., 2008; Huang et al., 2004).

Our work complements and extends the above ef-
forts with a relatively simple EE platform that: (a)
hybridizes syntactic dependency patterns with surface
patterns, (b) offers support for the extraction of recur-
sive events; (c) is coupled with a fast runtime environ-
ment; and (d) is easily customizable to new domains.

6 Conclusion

We have described a domain-independent, rule-based
event extraction framework and rapid development en-
vironment that is simple, fast, powerful, and robust. It
is our hope that this framework reduces the entry cost
in the development of rule-based event extraction sys-
tems.

We demonstrated how to build a biomedical domain
from scratch, including rule examples and simple Scala
code sufficient to run the domain grammar over free
text. We recently extended this grammar to participate
in the DARPA Big Mechanism evaluation, in which our
system achieved an F1 of 37%. By modeling the under-
lying syntactic representation of events, our grammar
for this task used an average of only 11 rules per event;
this indicates that the syntactic structures of events are

largely generalizable to a small set of predicate frames
and that domain grammars can be constructed with rel-
atively low effort. Our post-hoc analysis demonstrated
that the system’s true ceiling is 82%. This important
result demonstrates that the proposed event extraction
framework is expressive enough to capture most com-
plex events annotated by domain experts.

Finally, to improve the user experience by aiding in
the construction of event grammars, our framework is
accompanied by a web-based interface for testing rules
and visualizing matched events.

This whole effort is available as open-
source code at: https://github.com/
sistanlp/processors. See also: https:
//github.com/sistanlp/processors/
wiki/ODIN-(Open-Domain-INformer), for
ODIN documentation.

Acknowledgments
This work was funded by the DARPA Big Mechanism
program under ARO contract W911NF-14-1-0395.

131

References
Appelt, Douglas E and Boyan Onyshkevych. 1998. The com-

mon pattern specification language. In Proc. of the TIP-
STER Workshop. pages 23–30.

Bui, Quoc-Chinh, Erik M Van Mulligen, David Campos, and
Jan A Kors. 2013. A fast rule-based approach for biomed-
ical event extraction. Proc. of ACL page 104.

Chang, Angel X. and Christopher D. Manning. 2014. To-
kensRegex: Defining cascaded regular expressions over
tokens. Technical Report CSTR 2014-02, Computer Sci-
ence, Stanford.

Chiticariu, Laura, R. Krishnamurthy, Y. Li, F. R. Reiss, and
S. Vaithyanathan. 2011. Domain adaptation of rule-based
annotators for named-entity recognition tasks. In Proc. of
EMNLP.

Chiticariu, Laura, Yunyao Li, and Frederick R Reiss. 2013.
Rule-based information extraction is dead! long live
rule-based information extraction systems! In Proc. of
EMNLP.

Cunningham, Hamish, Diana Maynard, Kalina Bontcheva,
Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve
Gorrell, Adam Funk, Angus Roberts, Danica Daml-
janovic, Thomas Heitz, Mark A. Greenwood, Horacio
Saggion, Johann Petrak, Yaoyong Li, and Wim Peters.
2011. Developing Language Processing Components with
GATE (Version 6). University of Sheffield.

de Marneffe, Marie-Catherine and Christopher D. Manning.
2008. The Stanford typed dependencies representation.
In Proc. of COLING Workshop on Cross-framework and
Cross-domain Parser Evaluation.

He, Yifan and Ralph Grishman. 2011. Ice: Rapid informa-
tion extraction customization for nlp novices. In Proc. of
NAACL.

Huang, Minlie, Xiaoyan Zhu, Yu Hao, Donald G. Payan,
Kunbin Qu, and Ming Li. 2004. Discovering patterns to
extract proteinprotein interactions from full texts. Bioin-
formatics 20(18):3604–3612.

Hunter, Lawrence, Zhiyong Lu, James Firby, William A
Baumgartner, Helen L Johnson, Philip V Ogren, and
K Bretonnel Cohen. 2008. Opendmap: an open source,
ontology-driven concept analysis engine, with applications
to capturing knowledge regarding protein transport, pro-
tein interactions and cell-type-specific gene expression.
BMC bioinformatics 9(1):78.

Levy, Roger and Galen Andrew. 2006. Tregex and Tsurgeon:
tools for querying and manipulating tree data structures. In
Proc. of LREC.

Manning, C. D., M. Surdeanu, J. Bauer, J. Finkel, S. J.
Bethard, and D. McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In Proc. of ACL.

Ohta, Tomoko, Sampo Pyysalo, Rafal Rak, Andrew Rowley,
Hong-Woo Chun, Sung-Jae Jung, Sung-Pil Choi, Sophia
Ananiadou, and Junichi Tsujii. 2013. Overview of the
pathway curation (pc) task of bionlp shared task 2013. In
Proc. of the BioNLP-ST Workshop.

Peng, Yifan, Manabu Torii, Cathy H Wu, and K Vijay-
Shanker. 2014. A generalizable NLP framework for fast
development of pattern-based biomedical relation extrac-
tion systems. BMC bioinformatics 15(1):285.

Stenetorp, Pontus, Sampo Pyysalo, Goran Topić, Tomoko
Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 2012. Brat:
a web-based tool for nlp-assisted text annotation. In Proc.
of the Demonstrations at EACL.

132

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 133–138,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

Storybase: Towards Building a Knowledge Base for News Events

Zhaohui Wu†, Chen Liang‡, C. Lee Giles‡†
†Computer Science and Engineering, ‡Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

zzw109@psu.edu, {cul226,giles}@ist.psu.edu

Abstract

To better organize and understand online
news information, we propose Storybase1,
a knowledge base for news events that
builds upon Wikipedia current events and
daily Web news. It first constructs sto-
ries and their timelines based on Wikipedi-
a current events and then detects and links
daily news to enrich those Wikipedia sto-
ries with more comprehensive events. We
encode events and develop efficient even-
t clustering and chaining techniques in an
event space. We demonstrate Storybase
with a news events search engine that help-
s find historical and ongoing news stories
and inspect their dynamic timelines.

1 Introduction
Users are often overwhelmed by the flood of infor-
mation, especially frequently daily updated news.
Search engines effectively find news snippets and
related Web pages, or group similar pages in clus-
ters. However, it remains difficult to coherently
connect isolated information nuggets to form the
big picture, or to accurately track the flow of in-
formation to show the evolution of events. For ex-
ample, current news search engines or aggregation
sites, such as Google or Yahoo news, show only
isolated daily news events, without linking them
to historical events or show storylines.

Most existing knowledge bases such as DBpe-
dia and Freebase are designed for managing gen-
eral named entities or concepts and often lack cov-
erage or representation for temporally evolving
news events. For example, as of this writing, Free-
base has not treated “2014 Ferguson unrest” as an
“event”, let alone show its sub events or timelines.
As such, we propose building a knowledge base,
namely Storybase, that stores news events in a se-

1http://breckenridge.ist.psu.edu:8000/storybase

mantic coherent schema that could explicitly dis-
play their evolving timelines. We define a story
as a set of topically or causally related and tempo-
rally ordered news events, usually corresponding
to a Wikipedia article such as “Malaysia Airlines
Flight 370”. An event is defined as something im-
portant happening at some time in some place, re-
ported by a set of news articles, which is encoded
by named entities, actors and actions used as the
main points in a plot.

Building an event knowledge base from scratch
is challenging, since it is difficult to obtain a
gold standard for events and their timelines. We
found that Wikipedia current events2 provide high-
quality manually edited news events. To scale up,
we link daily news sources and fit them into ex-
isting stories or create new stories, by efficien-
t event detection and storyline construction tech-
niques in a semantic space which is encoded with
news events’ entities, actors, and actions. From
April 1, 2013 to March 1, 2015, we have collect-
ed 1,256 stories consisting of 35,362 news events
from Wikipedia current events, and 35,166,735
daily news articles. Experimental evaluation com-
pares our methods for event clustering and chain-
ing with multiple baselines. We build a news event
search engine based on Storybase to show news s-
tories and their event chains.

Our main contributions include:

• A news event knowledge base, Storybase,
with a search interface for news storylines;

• The introduction of Wikipedia current events
as resources for building event knowledge
bases and as datasets for event detection and
storyline construction;

• New approaches for event clustering and
chaining with experimental comparisons to
other baselines.

2http://en.wikipedia.org/wiki/Portal:Current events

133

News

Crawling web
news from
various sources

Preprocess

Event Encoding

Categorization

Actors, Actions

Entities, Theme

Clustering

Chaining

Attacks and armed conflicts;
Disaster and accidents;
International relations;
Law and crime;
. . .

Knowledge Base

1. War in Afghanistan

2. 2014 Ukrainian revolution

3. Malaysia Airlines Flight 370

. . .

+

Figure 1: Overall process of building Storybase

2 Overview and Definitions

Figure 1 shows the overall process for building S-
torybase. Input is daily crawled web news arti-
cles and Wikipedia current events. This generates
the storylines and builds the Storybase using five
steps system: preprocessing, categorization, event
encoding, clustering, and chaining. Details are in
Section 4. A news event search engine is built to
provide a query based interface to search and visu-
alize the Storybase, which is shown in Section 5.

We now define concepts that will be frequently
referred to.

• A event identifies something (non-trivial)
happening in a certain place at a certain
time (Yang et al., 1999); it is a set of news
articles on the same news report.

• A story is a set of topical related news events.

• A storyline is a series of temporally ordered
events of the same story.

• Actors in an event are named entities that
make or receive actions.

• Actions are verbs that connect actors.

For example, as shown in Figure 2, “Pro-Russian
militants seize the regional prosecutor’s office in
the eastern Ukrainian city of Donetsk” is an even-
t reported by a set of articles from different news
sites. “2014 pro-Russian unrest in Ukraine” repre-
sents a story that consists of temporally evolving
events, which forms a storyline. “Pro-Russian mil-
itants” and “the regional prosecutor’s office” are
actors while “seize” is the action.

3 Data Collection

Wikipedia current events list manually edited dai-
ly news events since 1998, which provide rich
semantics and structure for news stories and
events such as story names, event categories (not
Wikipedia categories), and links to Wikipedia con-
cepts, as shown by Figure 2. For example, we

Event category

Story

Figure 2: Examples of Wikipedia current events

can observe that the event “Pro-Russian militants
seize the regional prosecutor’s office in the east-
ern Ukrainian city of Donetsk” belongs to the sto-
ry “2014 pro-Russian unrest in Ukraine” and the
category “Armed conflicts and attacks”, contain-
ing links to Wikipedia concepts “Eastern Ukraini-
an” and “Donetsk”. Thus, we construct a storyline
for “2014 pro-Russian unrest in Ukraine” by con-
necting all events under it.

The category labels provide a natural way
to classify news events. However, since the
Wikipedia events are edited by various users, the
category labels are not always consistent. For ex-
ample, one may use “Armed conflicts and attack-
s” while others might use “Attack and conflict”.
After canonicalization using Levenshtein distance
and grouping similar labels using word based Jac-
card similarity, we manually clean all the labels
into 12 categories, as shown in Table 1.

Although Wikipedia provides high quality man-
ually edited news events, it covers only a smal-
l number of events every day, usually less than 30.
Thus, to scale up Storybase and make the stories
more comprehensive, starting from April 1, 2013,
we crawl daily news articles from a large number
of sources from various news publishers, provided
by GDELT3 project (Leetaru and Schrodt, 2013).

4 Building Storybase

4.1 Preprocess and Categorization

To extract and parse Wikipedia current events,
we implement two template based extractors for
events between January 2003 and April 2006 and
those events after April 2006 respectively due to
their difference in templates. The news articles
linked at the end of each event description are also
crawled. We use boilerpipe4 to extract the title and
main text content of each news article. We extrac-
t the first three sentences in the main content for
summarization.

3http://www.gdeltproject.org/data.html
4https://code.google.com/p/boilerpipe/

134

ID Category
1 conflict, attack
2 disaster, accident
3 international relations
4 politics and elections
5 law and crime
6 business and economy
7 science and technology
8 sports
9 arts and culture

10 health, medicine, environment
11 education
12 deaths

Table 1: Categories of events in Storybase

We maintain an N-to-1 mapping for each cate-
gory listed in Table 1. For example, any category
label in {“Armed conflicts and attacks”, “conflict-
s and attacks”, “Armed conflicts”, “Attacks and
conflicts”, “Attacks and armed conflicts”} will be
mapped to Category 1. For an event not belonging
to existing stories, we label its category using the
majority of their k-nearest (k=10) neighbors based
on the cosine similarity of event descriptions.

4.2 Event Encoding

We encode an event as a vector containing named
entities, actors and actions. Named entities such
as people and locations in news reports contain
important information of the event. Core entities
that play important roles in an event are called
actors, which are usually people or organizations
that make or receive actions. We use the Stanford
CoreNLP (Manning et al., 2014) for the named
entity recognition and extract all Wikipedia con-
cepts appearing in news content. Entities that are
subjects or objects in the title and description are
treated as actors. If no entities are found, we then
use the CAMEO dictionaries5 for actor and action
extraction.

4.3 Event Clustering and Chaining

Event clustering groups together news on
the same event. Locality-Sensitive Hashing
(LSH) (Van Durme and Lall, 2010) is used for
fast similarity comparison. We first do dedupli-
cation on all articles on the same date using 84
bits sim-Hashing (Charikar, 2002). We then use
modified sim-Hashing on the vector space of event
described in Section 4.2, rather than shingling or
bag-of-words (Paulev et al., 2010). A new article
is encoded into the event space with the content

5http://eventdata.parusanalytics.com/data.dir/cameo.html

Figure 3: Screenshot of category “Conflict”

of its title and description. Its LSH key k (84 bit-
s binary code) is computed and compared to keys
of other articles. Articles whose keys have ham-
ming distances smaller than a threshold θ among
each other will be clustered as an event. We then
check all events of the previous date and merge
two events into one if their distance (average ham-
ming distances of key pairs) is smaller than θ and
their categories are the same.

Event chaining links an event to an existing
story or determines if it is the starting event of
a new story. While LSH could give high-purity
event clusters, it might not be able to determine
whether two events with distance larger than θ are
topically related, or belong to the same story. Intu-
itively, an event should bring some novelty and p-
reserve some common information compared with
the previous ones in the story, causing a trade-
off between relevance and novelty, which could
be measured by some textual similarity. Adding
an event should also keep the storyline coherent.
To model coherence, we investigate two features,
the Connecting-Dots coherence score (Shahaf and
Guestrin, 2010) and KL-divergence. We use the
gradient boosting tree (Friedman, 2001) to learn if
an event belongs to a story by using the above fea-
tures of relevance/novelty and coherence, all based
on storylines constructed from Wikipedia current
events. For a story {e1,...,em}, (ei, {e1, ..., ei−1})
are positive pairs; (e−, {e1, ..., ei−1}) are negative
pairs, i = 2, ...,m, where e− is an event randomly
sampled from other stories in the same date of ei.

For all GDELT news on date t, we first detect all
events using event clustering. For an event that has
not been merged into events of the previous date,
we use the model to decide which story it belongs
to. If none, the event will be served as the first
event of a new story with an empty story name.

135

Figure 4: Screenshot results for the query “Crimea”

5 Storybase Demonstration

We demonstrate Storybase by building a news
event search engine that can retrieve and visual-
ize the stories. In the backend, we implemented
various facilities, such as ranking functions (B-
M25, cosine similarity, and inner product) and re-
fining metrics (popularity and recency). The rank-
ing functions compute relevance between queries
and stories while a story is represented by the story
name and all event descriptions. Popularity mea-
sures the impact of stories on Web. For simplic-
ity, we implement popularity as the accumulative
number of unique news reports for all events of a
story. Recency measures the timeliness or fresh-
ness, which is an important and helpful feature
for sorting and filtering news stories, and is im-
plemented by simply sorting stories based on the
date of their latest event.

The front page gives a category navigation list
in the left, a search box in the middle, and the re-
cent stories behind the box. A category links to the
recent events from the category, as shown by Fig-
ure 3. The demo contains three views: storyline,
story, and event. Figure 4 shows a screenshot of
the storyline view returned by querying “Crimea”.
The results are organized at the story level, where
we show a thumbnail of the event chain for each
story. The description, category, and date of an
event are presented in the event box. By clicking
the story name, it will direct to a story view page

that chronologically lists all its events where the
story name links to the corresponding Wikipedia
article. Clicking “more” for each event links to the
event view page that lists all the news articles of
the event. At the upper right corner there is drop-
down menu which allow users to set the ranking
functions and refine metrics.

6 Experiments

We evaluate the event clustering and chain-
ing in an experimental dataset constructed us-
ing Wikipedia current events from 01/01/2013 to
01/31/2015, which contains 652 stories covering
9004 events with 8,944 news articles.

We first explore whether our event clustering
can effectively and efficiently cluster news arti-
cles of the same event. To construct the dataset,
we select the events that link to more than 4
news articles, which in total gives us 55 events
from 229 news articles. We then compare our
method with the state-of-art clustering algorithm-
s including K-means (Hartigan and Wong, 1979)
and DBSCAN (Ester et al., 1996), and the state-of-
art LSH methods including min-Hashing (Broder,
1997) and sim-Hashing (Charikar, 2002). We use
the cluster module provided by sklearn6. For both
K-means and DBSCAN, we use TFIDF based Eu-
clidean distance in bag-of-word space. For K-
means, we set the number of clusters to 55. For

6http://scikit-learn.org/stable/modules/clustering.html

136

Methods Precision Recall F1
K-means 76.2% 73.1% 74.6%
DBSCAN 77.9% 74.6% 76.2%
Min-Hashing 82.1% 51.2% 63.1%
Sim-Hashing 80.1% 50.2% 61.7%
Event-Hashing 79.6% 76.8% 78.2%

Table 2: Event clustering comparisons

Methods Avg. Accuracy
Cosine 66.7%
Connecting-Dots Coherence 45.2%
KL Coherence 43.3%
Learning based Model 71.5%

Table 3: Comparisons of event chaining

DBSCAN, we set the neighborhood size (the min-
imum number of points required to form a dense
region) as 1. Both min-Hashing and sim-Hashing
generate an 84 bits binary code to represent an
event. We set θ as 5.

Table 2 shows the average precision, recal-
l, and F1 scores over all clusters. Our method
(Event-Hashing) outperforms both distance-based
and LSH based clustering algorithms in terms of
effectiveness, suggesting that our event represen-
tation using entities, actors, and actions is a more
promising approach than bag-of-word ones. Our
method is somewhat slower than min-Hashing and
sim-Hashing because of the extra computing on
the event space. It is worth noting that min-
Hashing and sim-Hashing have higher precisions
than ours, but at the cost of a big loss in recall.

We then evaluate the effectiveness of the even-
t chaining for constructing storylines. We use
the 458 stories starting in range [01/01/2013,
02/28/2014] for training and the other 194 stories
for testing. We define accuracy of a construct-
ed storyline as the fraction of the correctly linked
events. For testing, each story is initialized by its
first event. Thresholds of the three baseline mea-
sures are tuned in the training set. As shown by
Table 3, our learning based model combining the
three features significantly outperforms the base-
lines in average accuracy over the testing stories.

A small scale evaluation on the effectiveness
and efficiency of the news event search engine is
also performed. First, we evaluate the ranking per-
formance for different ranking functions on a test
query set including 10 different queries using pre-
cision at k (P@k). The query set contains “Unit-

Method P@3 P@5 P@10 AvgTimePerQuery
Inn. Pro. 57 66 69 133ms
BM25 100 94 92 104ms
Cosine 100 94 96 136ms

Table 4: Performance comparisons of ranking
methods on event search

ed States”, ”Russia”, “China”, ”Barack Obama”,
”European Union”, ”President of the United S-
tates”, “Car bomb”, ”North Korea”, “South Kore-
a”, ”President of Russia”. We choose these queries
because they appear frequently in the news articles
and are very likely to be searched by users. Table 4
shows the performance of three ranking functions.
The P@k scores for BM25 and cosine similarity is
higher than inner product. This happens because
the inner product does not do normalization thus
favors the longer documents which should be less
relevant in our setting.

7 Related Work

Little work has been reported on the building
of event knowledge bases with the exception of
EVIN (Kuzey and Weikum, 2014). However, their
main focus is on extracting named events from
news articles in an offline setting for knowledge
base population (Ji and Grishman, 2011), but not
building storylines for new events from large scale
daily news streams.

Topic detection and tracking (TDT) that ad-
dresses event-based organization of news has been
widely studied (Yang et al., 1999; Allan, 2002;
Petrović et al., 2012). Furthermore, there is a
rich literature on bursty event detection (Klein-
berg, 2002; Fung et al., 2005; He et al., 2007),
where an “event” is a set of word features that
co-occur in certain time windows in text streams.
There is also an emerging interest in building news
timelines (Li and Li, 2013; Yan et al., 2011), event
chains (Chambers and Jurafsky, 2008; Shahaf and
Guestrin, 2010; Tannier and Moriceau, 2013), or
topic model based storylines (Ahmed et al., 2011).
It is worth noting that some work uses similar
event encoding based on actors and actions for po-
litical events (O’Connor et al., 2013). Our work
is different from existing work in both the repre-
sentation of an “event” and event detection tech-
niques. We use a three-layer (story-event-article)
representation to organize the storylines and de-
velop efficient clustering and chaining methods on
the event space.

137

8 Conclusion and Future Work

We presented Storybase, an event knowledge base
for news stories containing rich temporal and
semantic information and described a storyline
based news event search engine. Experimental re-
sults demonstrated that our proposed methods are
effective and efficient for event detection and s-
toryline based search. Future work could include
enriching properties of a story using Wikipedia in-
fobox and better summarizing events and stories.

9 Acknowledgements

We acknowledge partial support from Raytheon
and the National Science Foundation, useful dis-
cussions with B.J. Simpson, Robert Cole, Philip
A. Schrodt, and Muhammed Y. Idris, and techni-
cal support from Jian Wu, Kyle Williams, and the
CiteseerX team.

References
Amr Ahmed, Qirong Ho, Jacob Eisenstein, Eric Xing,

Alexander J Smola, and Choon Hui Teo. 2011. U-
nified analysis of streaming news. In WWW, pages
267–276.

James Allan. 2002. Introduction to topic detection
and tracking. In James Allan, editor, Topic Detec-
tion and Tracking, volume 12 of The Information
Retrieval Series, pages 1–16.

Andrei Z Broder. 1997. On the resemblance and con-
tainment of documents. In Compression and Com-
plexity of Sequences 1997., pages 21–29. IEEE.

Nathanael Chambers and Daniel Jurafsky. 2008. Un-
supervised learning of narrative event chains. In A-
CL, pages 789–797.

Moses S Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In STOC, pages
380–388.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and X-
iaowei Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In KDD, volume 96, pages 226–231.

Jerome H Friedman. 2001. Greedy function approxi-
mation: a gradient boosting machine. Annals of s-
tatistics, pages 1189–1232.

Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Philip S.
Yu, and Hongjun Lu. 2005. Parameter free bursty
events detection in text streams. In VLDB, pages
181–192.

J. A. Hartigan and M. A. Wong. 1979. A k-means
clustering algorithm. JSTOR: Applied Statistics,
28(1):100–108.

Qi He, Kuiyu Chang, and Ee-Peng Lim. 2007. An-
alyzing feature trajectories for event detection. In
SIGIR, pages 207–214.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In ACL, pages 1148–1158.

Jon Kleinberg. 2002. Bursty and hierarchical structure
in streams. In KDD, pages 91–101.

Erdal Kuzey and Gerhard Weikum. 2014. Evin: build-
ing a knowledge base of events. In WWW compan-
ion, pages 103–106.

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–
2012. In Paper presented at the ISA Annual Con-
vention, volume 2, page 4.

Jiwei Li and Sujian Li. 2013. Evolutionary hierarchi-
cal dirichlet process for timeline summarization. In
ACL, pages 556–560.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In ACL, pages 55–60.

Brendan O’Connor, Brandon M Stewart, and Noah A
Smith. 2013. Learning to extract international re-
lations from political context. In ACL (1), pages
1094–1104.

Loc Paulev, Herv Jgou, and Laurent Amsaleg. 2010.
Locality sensitive hashing: A comparison of hash
function types and querying mechanisms. Pattern
Recognition Letters, 31(11):1348 – 1358.

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2012. Using paraphrases for improving first sto-
ry detection in news and twitter. In NAACL, pages
338–346.

Dafna Shahaf and Carlos Guestrin. 2010. Connecting
the dots between news articles. In KDD, pages 623–
632.

Xavier Tannier and Véronique Moriceau. 2013. Build-
ing event threads out of multiple news articles. In
EMNLP, pages 958–967.

Benjamin Van Durme and Ashwin Lall. 2010. Online
generation of locality sensitive hash signatures. In
ACL, pages 231–235.

Rui Yan, Liang Kong, Congrui Huang, Xiaojun Wan,
Xiaoming Li, and Yan Zhang. 2011. Timeline gen-
eration through evolutionary trans-temporal summa-
rization. In EMNLP, pages 433–443.

Yiming Yang, Jaime G Carbonell, Ralf D Brown,
Thomas Pierce, Brian T Archibald, and Xin Li-
u. 1999. Learning approaches for detecting and
tracking news events. IEEE Intelligent Systems,
14(4):32–43.

138

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 139–144,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

WriteAhead: Mining Grammar Patterns in Corpora for Assisted Writing

Tzu-Hsi Yen, Jian-Cheng Wu+
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan, R.O.C. 30013

{joe, jiancheng}@nlplab.cc

Joanne Boisson, Jim Chang, Jason Chang
+National Academy for Educational Research

Minstry of Education
Taipei, Taiwan, R.O.C. 30013

{joanne,jim,jason}@nlplab.cc

Abstract

This paper describes WriteAhead, a
resource-rich, Interactive Writing Envi-
ronment that provides L2 learners with
writing prompts, as well as ”get it right”
advice, to helps them write fluently and
accurately. The method involves automat-
ically analyzing reference and learner cor-
pora, extracting grammar patterns with ex-
ample phrases, and computing dubious,
overused patterns. At run-time, as the user
types (or mouses over) a word, the system
automatically retrieves and displays gram-
mar patterns and examples, most relevant
to the word. The user can opt for patterns
from a general corpus, academic corpus,
learner corpus, or commonly overused du-
bious patterns found in a learner corpus.
WriteAhead proactively engages the user
with steady, timely, and spot-on informa-
tion for effective assisted writing. Pre-
liminary experiments show that WriteA-
head fulfills the design goal of foster-
ing learner independence and encouraging
self-editing, and is likely to induce better
writing, and improve writing skills in the
long run.

1 Introduction

The British Council has estimated that roughly
a billion people are learning and using English
around the world (British Council 1997), mostly
as a second language, and the numbers are grow-
ing. Clearly, many of L2 speakers of English feel
themselves to be at a disadvantage in work that
requires communication in English. For exam-
ple, Flowerdew (1999) reports that a third of Hong

Kong academics feel disadvantged in publishing a
paper internationally, as compared to native speak-
ers.

These L2 speakers and learners provide moti-
vation for research and development of computer
assisted language learning, in particular tools that
help identify and correct learners’ writing errors.
Much work has been done on developing tech-
nologies for automated gramatical error correc-
tion (GEC) to assist language learners (Leacock,
Chodorow, Gamon, and Tetreault 2010). How-
ever, such efforts have not led to the development
of a production system (Wampler, 2002).

However, Milton (2010) pointed out that fo-
cusing on fully-automatic, high quality GEC so-
lutions has overlooked the long-term pedagogi-
cal needs of L2 learner writers. Learners could
be more effectively assisted in an interactive
writring environment (IWE) that constantly pro-
vides context-sensitive writing suggestions, right
in the process of writing or self-editing.

Consider an online writer who starts a sentence
with ”This paper discusses” The best way the
system can help is probably displaying the patterns
related to the last word discuss such as discuss
something and discusses with someone, that help
the user to write accurately and fluently. If the user
somehow writes or pastes in some incorrect sen-
tence, ”This paper discusses about the influence of
interference and reflection of light.” The best way
the system can help is probably displaying the er-
roneous or overused pattern, discuss about some-
thing, that prompts the user to change the sentence
to ”This paper discusses the influence of interfer-
ence and reflection of light.”

Intuitively, by extracting and displaying such
patterns and examples, distilled from a very large
corpus, we can guide the user towards writing flu-

139

Figure 1: Example WriteAhead session where an user typed ”This paper present method”.

ently, and free of grammatical errors.
We present a new system, WriteAhead, that

proactively provides just-in-time writing sugges-
tions to assist student writers, while they type
away. Example WriteAhead suggestions for ”We
discussed ...” are shown in Figure 1. WriteAhead
has determined the best patterns and examples ex-
tracted from the underlying corpus. WriteAhead
learns these patterns and examples automatically
during training by analyzing annotated dictionary
examples and automatically tagged sentences in a
corpus. As will be described in Section 4, we used
the information on collocation and syntax (ICS)
for example sentences from online Macmillan En-
glish Dictionary, as well as in the Citeseer x cor-
pus, to develop WriteAhead.

At run-time, WriteAhead activates itself as the
user types in yet another word (e.g., ”discussed”
in the prefix ”We discussed ...”). WriteAhead then
retrieves patterns related to the last word. WriteA-
head goes one step further and re-ranks the sug-
gestions, in an attempt to move most relevant sug-
gestions to the top. WriteAhead can be accessed at
http://writehead.nlpweb.org/.

In our prototype, WriteAhead returns the sug-
gestions to the user directly (see Figure 1); alterna-
tively, the suggestions returned by WriteAhead can
be used as input to an automatic grammar checker
or an essay rater.

The rest of this paper is organized as follows.

We review the related work in the next section.
Then we present our method for automatically
learning normal and overused grammar patterns
and examples for use in an interactive writing en-
vironment (Section 3). Section 5 gives a demon-
stration script of the interactive writing environ-
ment.

2 Related Work

Much work described in a recent survey (Lea-
cock, Chodorow, Gamon, and Tetreault 2010)
show that the elusive goal of fully-automatic and
high-quality grammatical error correction is far
from a reality. Moreover, Milton (2010) pointed
out that we should shift the focus and responsi-
bility to the learner, since no conclusive evidence
shows explicit correction by a teacher or machine
is leads to improved writing skills (Truscott, 1996;
Ferris and Hedgcock, 2005). In this paper, we
develop an interactive writing environment (IWE)
that constantly provides context-sensitive writing
suggestions, right in the process of writing or self-
editing.

Autocompletion has been widely used in many
language production tasks (e.g., search query and
translation). Examples include Google Suggest
and TransType, which pioneered the interactive
user interface for statistical machine translation
(Langlais et al., 2002; Casacuberta et al. 2009).
However, previous work focuses exclusively on

140

————————————————————————-
Procedure ExtractPatterns(Sent, Keywords, Corpus)

(1) Learning phrase templates for grammar patterns of
content words (Section 3.1.1)

(2) Extracting grammar patterns for all keywords in the
given corpus based on phrase templates (Section 3.1.2)

(3) Extracting exemplary instances for all patterns of all
keywords (Section 3.1.3)

————————————————————————-
Figure 2: Outline of the pattern extraction process

providing surface suggestions lacking in general-
ity to be truely effective for all users in different
writing situation. In contrast, we provide sugges-
tions in the form of theoretical and pedagogically
sound language representation, in the form of Pat-
tern Grammar (Hunston and Francis 2000). We
also provide concise examples much like concor-
dance advocated by Sinclair (1991).

Much work has been done in deriving context-
free grammar from a corpus, while very little work
has been done in deriving pattern grammar. Ma-
son and Hunston (2004) reports on a pilot study
to automatically recognize grammar patterns for
verbs, using only limited linguistic knowledge. It
is unclear whether their method can scale up and
extend to other parts of speech. In contrast, we
show it is feasible to extract grammar patterns for
nouns, verbs, and adjectives on a large scale using
a corpus with hundreds of million words.

Researchers have been extracting error patterns
in the form of word or part of speech (POS) se-
quencesto detect real-word spelling errors (e.g.,
Golding and Schabes, 1996; Verberne, 2002). For
example, the sequence of det. det. n. definitely
indicate an error, while v. prep. adv. might or
might not indicate an error. For this reason, func-
tion words (e.g., prepositions) are not necessarily
reduced to POS tags (e.g., v. to adv.). Sometimes,
even lexicalized patterns are necessary (e.g., go to
adv.) Sun et al. (2007) extend n-grams to non-
continuous sequential patterns allowing arbitrary
gaps between words. In a recent study closer to
our work, Gamon (2011) use high-order part-of-
speech ngram to model and detect learner errors
on the sentence level.

In contrast to the previous research in devel-
oping computer assisted writing environment, we
present a system that automatically learns gram-
mar patterns and examples from an academic writ-
ten corpus as well as learner corpus, with the goal
of providing relevant, in-context suggestions.

3 Method

Non-native speakers often make grammatically er-
ror, particularly in using some common words in
writing (e.g., discuss vs. discuss *about). In addi-
tion, using dictionaries or mere lexical suggestions
to assist learner in writing is often not sufficient,
and the information could be irrelevant at times.
In this section, we address such a problem. Given
various corpora (e.g., BNC or CiteseerX) in a spe-
cific genre/domain and a unfinished or completed
sentence, we intend to assist the user by retrieving
and displaying a set of suggestions extracted from
each corpus. For this, by a simple and intuitional
method, we extract grammatical error patterns and
correction such that the top ranked suggestions are
likely to contain a pattern that fits well with the
context of the unfinished sentence. We describe
the stage of our solution to this problem in the sub-
sections that followed.

3.1 Extracting Grammar Patterns

We attempt to extract grammatical error patterns
and correction for keywords in a given corpus to
provide writing suggestions, in order to assist ESL
learners in an online writing session. Our extrac-
tion process is shown in Figure 2.

3.1.1 Learning Extraction Templates In the
first stage of the extraction process (Step (1) in
Figure 2), we generate a set of phrase templates
for identifying grammar patterns based on infor-
mation on Collocation and Syntax (ICS) in an on-
line dictionary.

For example, the dictionary entry of difficulty
may provide examples with ICS pattern, such as
have difficulty/problem (in) doing something:
Six months after the accident, he still has difficulty
walking. This complicated pattern with parenthet-
ical and alternative parts can be expanded to yield
patterns such as have difficulty in doing some-
thing. By generalizing such a pattern into tem-
plates with PoS and phrase tags (e.g., v. np prep.
v np, we can identify instances of such a pattern
in tagged and chunked sentences. For this, we ex-
pand the parentheticals (e.g., (in)) and alternatives
(e.g., difficulty/problem) in ICS.

Then, we replace (non-entry) words in ICS with
the most frequent part of speech tags or phrase
tags, resulting in sequences of POS and phrase la-
bels (e.g., v. difficulty prep. v. np). Then, we
take only the complementation part (e.g., prep.
v. np). Finally, we convert each complementa-

141

tion into a regular expression for a RegExp chunk
parser.

Subsequently, we convert each template into a
regular expression of chunk labels, intended to
match instances of potential patterns in tagged
sentences. The chunk labels typically are repre-
sented using B-I-O symbols followed by phrase
type, with each symbol denoting Beginning,
Inside, and Outside of the phrase. Note that in or-
der to identify the head of a phrase, we change the
B-I-O representation to I-H-O, with H signifying
the Head.

3.1.2 Extracting Patterns In the second stage
of the extraction process (Step (2) in Figure 2),
we identify instances of potential patterns for all
keywords. These instances are generated for each
tagged and chunked sentence in the given corpus
and for each chunk templates obtained in the pre-
vious stage.

We adopt the MapReduce framework to extract
salient patterns. At the start of the Map Proce-
dure, we perform part of speech, lemmatization,
and base phrase tagging on the sentences. We
then find all pattern instances anchoring at a key-
word and matching templates obtained in the first
stage. Then, from each matched instance, we ex-
tract the tuple, (grammar pattern, collocation, and
ngrams). Finally, we emit all tuples extracted from
the tagged sentence. The map procedure is applied
to every tagged sentence in the given corpus.

In the reduce part, the ReducePattern Proce-
dure receives a batch of tuples, locally sorted and
grouped by keyword, as is usually done in the
MapReduce paradigm. At the start of the Redu-
cePattern Procedure, we further group the tuple
by pattern. Then we count the number of tuples
of each pattern as well as within-group average
and standard deviation of the counts. Finally, with
these statistics, we filter and identify patterns more
frequent than average by 1 standard deviation. The
ReducePattern Procedure is applied to all tuples
generated in the Map Procedure. Sample output
of this stage is shown in Table 1.

3.1.3 Extracting Exemplary Phrases In the
third and final stage of extraction, we generate ex-
emplary phrases for all patterns of all keywords
of interest using the ReduceCollExm Procedure,
which is done after the Map procedure, and essen-
tially the same as the ReducePattern Procedure in
the second stage (Section 3.1.2).

In the spirit of the GDEX method (Kilgarriff

Table 1: Example difficulty patterns extracted.

Pattern Count Example

difficulty of something 2169 of the problem
difficulty in doing something 1790 in solving the problems
difficulty of doing something 1264 of solving this problem
difficulty in something 1219 in the previous analyses
difficulty with something 755 with this approach
difficulty doing something 718 using it

Note: There are 11200 instances of potential difficulty pat-
terns with average count of 215 and a standard deviation of
318

et al. 2008) of selecting good dictionary exam-
ples for a headword via collocations, we propose
a method for selection good example for a pattern.
For this, we count and select salient collocations
(e.g., the heads of phrases, difficulty in process in
pattern instance difficulty in the optimization pro-
cess). For each selected collocation, we choose
the most frequent instance (augmented with con-
text) to show the user the typical situation of using
the collocation.

These examples also facilitate the system in
ranking patterns (as will be described in Section
3.2). For that, we add one chunk before, and one
chunk after the collocational instance. For exam-
ple, the collocation, method for solution of equa-
tion is exemplified using the authentic corpus ex-
ample, ”method for exact solution of homogeneous
linear differential equation” in the context of ”re-
port a new analytical ... with.” We use a similar
procedure as describe in Section 3.1.2 to extract
examples.

After the grammar patterns are extracted from a
reference corpus and a learner corpus, we normal-
ize and compared the counts of the same pattern in
the two corpora and compuate an overuse ratio for
all patterns and retain patterns with a high overuse
ratio.

3.2 Retrieving and Ranking Suggestions

Once the patterns and examples are automatically
extracted for each keyword in the given corpus,
they are stored and indexed by keyword. At run-
time in a writing session, WriteAway constantly
probes and gets the last keyword of the unfinished
sentence Sent in the text box (or the word under
the mouse when in editing mode). With the key-
word as a query, WriteAway retrieves and ranks all
relevant patterns and examples (Pat and Exm) aim-
ing to move the most relevant information toward
the top. We compute the longest common subse-
quence (LCS) of Sent and an example, Exm. The
examples and patterns are ranked by

142

Score(Exm) = | LCS(Exm, Sent) | × Count(Exm).

Score(Pat) =
∑

Score(E), where E is an example of Pat

To improve ranking, we also try to find the
longest similar subsequence (LSS) between the
user input, Sent and retrieved example, Exm
based on distributional word similarity using the
word2vec (Mikolov et al., 2013) cosine distance.
The new score function is:

Score(Exm) = LSS(Exm, Sent) × Count(Exm),

LSS(Exm, Sent) = max sim(Exmsub, Sentsub),

sim(A, B) = 0, if |A| 6= |B|.
sim(A, B) =

∑
word-sim(Ai, Bi), otherwise.

4 Experiments and Results

For training, we used a collection of approxi-
mately 3,000 examples for 700 headwords ob-
tained from online Macmillan English Dictionary
(Rundel 2007), to develop the templates of pat-
terns. The headwords include nouns, verbs, ad-
jectives, and adverbs. We then proceeded to ex-
tract writing grammar patterns and examples from
the British National Corpus (BNC, with 100 mil-
lion words), CiteseerX corpus (with 460 million
words) and Taiwan Degree Thesis Corpus (with
10 million words). First, we used Tsujii POS Tag-
ger (Tsuruoka and Tsujii 2005) to generate tagged
sentences. We applied the proposed method to
generate suggestions for each of the 700 content
keywords in Academic Keyword List.

4.1 Technical Architecture

WriteAhead was implemented in Python and Flask
Web framework. We stored the suggestions in
JSON format using PostgreSQL for faster access.
WriteAhead server obtains client input from a pop-
ular browser (Safari, Chrome, or Firefox) dynam-
ically with AJAX techniques. For uninterrupted
service and ease of scaling up, we chose to host
WriteAhead on Heroku, a cloud-platform-as-a-
service (PaaS) site.

4.2 Evaluating WriteAhead

To evaluate the performance of WriteAhead, we
randomly sampled 100 sentences from a learner
corpus with complementation errors. For each
sentence, we identify the keyword related to the er-
ror and checked whether we have identify an over-
used pattern relevant to the error, and if positive
the rank of this pattern. We then use the Mean Re-
ciprocate Rank (MRR) to measure performance.
Evaluation of WriteAhead showed a MMR rate of

.30 and a recall rate of 24%. The Top 1, 2, 3 recall
rates are 31%, 35%, and 38% respectively

5 Demo script

In this demo, we will present a new writing assis-
tance system, WriteAhead, which makes it easy to
obtain writing tips as you type away. WriteAhead
does two things really well.

First, it examines the unfinished sentence you
just typed in and then automatically gives you tips
in the form of grammar patterns (accompanied
with examples similar to those found in a good
dictionary) for continuing your sentence.

Second, WriteAhead automatically ranks sug-
gestions relevant to your writing, so you spend less
time looking at tips, and focus more on writing
your text.

You might type in The paper present method
and you are not sure about how to continue. You
will instantly receive tips on grammar as well as
content as shown in Figure 1. At a quick glance,
you might find a relevant pattern, method for do-
ing something with examples such as This paper
presents/describes a method for generating solu-
tions. That could tip you off as to change the sen-
tence into This paper presents a method, thus get-
ting rid of tense and article errors, and help you
continue to write something like method for ex-
tracting information.

Using WriteAhead this way, you could at once
speed up writing and avoid making common writ-
ing errors. This writing and tip-taking process re-
peats until you finish writing a sentence. And as
you start writing a new, the process starts all over
again.

Most autocompletion systems such as Google
Suggest and TransType offer word-level sugges-
tions, while WriteAhead organizes, summarizes,
and ranks suggestions, so you can, at a glance,
grasp complex linguistic information and make
quick decision. Our philosophy is that it is impor-
tant to show information from general to specific
to reduce the cognitive load, so while minding the
form, you can still focus on the content of writing.

WriteAhead makes writing easy and fun, and it
also turns writing into a continuous learning pro-
cess by combining problem solving and informa-
tion seeking together to create a satisfying user
experience. WriteAhead can even help you beat
Writers Block. WriteAhead can be accessed at
http://writeahead.nlpweb.org/.

143

6 Conclusion

Many avenues exist for future research and im-
provement of WriteAhead. For example, corpora
for different language levels, genres (e.g., emails,
news) could be used to make the suggestions more
relevant to users with diverse proficiency levels
and interests. NLP, IR, and machine learning
techniques could be used to provide more rele-
vant ranking, to pin-point grammatical errors, or
to generate finer-grained semantic patterns (e.g.,
assist someone in something or attend activ-
ity/institution) Additionally, an interesting direc-
tion is identifying grammar patterns using a CRF
sequence labeller.

In summary, in an attempt to assist learner writ-
ers, we have proposed a method for providing
writing suggestion as a user is typewriting. The
method involves extracting, retrieving, and rank-
ing grammar patterns and examples. We have im-
plemented and evaluated the proposed method as
applied to a scholarly corpus with promising re-
sults.

References
Casacuberta, Francisco, et al. ”Human interaction for

high-quality machine translation.” Communications
of the ACM 52.10 (2009): 135-138.

Dagneaux, Estelle, Sharon Denness, and Sylviane
Granger. ”Computer-aided error analysis.” System
26.2 (1998): 163-174.

Flowerdew, John. ”Problems in writing for scholarly
publication in English: The case of Hong Kong.”
Journal of Second Language Writing 8.3 (1999):
243-264.

Ferris, Dana, and J. S. Hedgcock. ”Teacher response
to student writing: Issues in oral and written feed-
back.” Teaching ESL composition: Purpose, pro-
cess and practice (2005): 184-222.

Graddol, David. ”The future of English?: A guide to
forecasting the popularity of the English language in
the 21st century.” (1997).

Granger, Sylviane, and Paul Rayson. Automatic profil-
ing of learner texts.” Learner English on computer
(1998): 119-131.

Granger, Sylviane, and Stephanie Tyson. ”Connector
usage in the English essay writing of native and non-
native EFL speakers of English.” World Englishes
15.1 (1996): 17-27.

Golding, Andrew R., and Yves Schabes. ”Combin-
ing trigram-based and feature-based methods for

context-sensitive spelling correction.” Proceedings
of the 34th annual meeting on Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, 1996.

Gamon, Michael. ”High-order sequence modeling for
language learner error detection.” Proceedings of
the 6th Workshop on Innovative Use of NLP for
Building Educational Applications. Association for
Computational Linguistics, 2011.

Hunston, Susan, and Gill Francis. Pattern grammar:
A corpus-driven approach to the lexical grammar of
English. Amsterdam: John Benjamins, 2000.

Leacock, Claudia, et al. ”Automated grammatical error
detection for language learners.” Synthesis lectures
on human language technologies 3.1 (2010): 1-134.

Milton, John, and Vivying SY Cheng. ”A toolkit
to assist L2 learners become independent writers.”
Proceedings of the NAACL HLT 2010 Workshop
on Computational Linguistics and Writing: Writ-
ing Processes and Authoring Aids. Association for
Computational Linguistics, 2010.

Mason, Oliver, and Susan Hunston. ”The auto-
matic recognition of verb patterns: A feasibility
study.” International journal of corpus linguistics
9.2 (2004): 253-270.

Mikolov, Tomas, et al. ”Distributed representations of
words and phrases and their compositionality.” Ad-
vances in Neural Information Processing Systems.
2013.

Sun, Guihua, et al. ”Detecting erroneous sentences us-
ing automatically mined sequential patterns.” An-
nual Meeting-Association for Computational Lin-
guistics. Vol. 45. No. 1. 2007.

Truscott, John. ”The case against grammar correc-
tion in L2 writing classes.” Language learning 46.2
(1996): 327-369.

Tsuruoka, Yoshimasa, and Jun’ichi Tsujii. ”Chunk
parsing revisited.” Proceedings of the Ninth Inter-
national Workshop on Parsing Technology. Associ-
ation for Computational Linguistics, 2005.

Verberne, Suzan. ”Context-sensitive spell checking
based on word trigram probabilities.” Unpublished
masters thesis, University of Nijmegen (2002).

Sinclair J. (1991) Corpus, Concordance, Collocation.
Oxford University Press, Hong Kong.

P. Langlais, G. Foster, and G. Lapalme. 2000.
TransType: a computer-aided translation typing sys-
tem. In Workshop on Embedded Machine Transla-
tion Systems.

Caragea, Cornelia, et al. ”CiteSeer x: A Scholarly
Big Dataset.” Advances in Information Retrieval.
Springer International Publishing, 2014. 311-322.

144

Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 145–150,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

NiuParser: A Chinese Syntactic and Semantic Parsing Toolkit

Jingbo Zhu Muhua Zhu ∗ Qiang Wang Tong Xiao

Natural Language Processing Lab.
Northeastern University

zhujingbo@mail.neu.edu.cn zhumuhua@gmail.com
wangqiangneu@gmail.com xiaotong@mail.neu.edu.cn

Abstract

We present a new toolkit - NiuParser -
for Chinese syntactic and semantic anal-
ysis. It can handle a wide range of Natural
Language Processing (NLP) tasks in Chi-
nese, including word segmentation, part-
of-speech tagging, named entity recogni-
tion, chunking, constituent parsing, depen-
dency parsing, and semantic role label-
ing. The NiuParser system runs fast and
shows state-of-the-art performance on sev-
eral benchmarks. Moreover, it is very easy
to use for both research and industrial pur-
poses. Advanced features include the Soft-
ware Development Kit (SDK) interfaces
and a multi-thread implementation for sys-
tem speed-up.

1 Introduction

Chinese has been one of the most popular world
languages for years. Due to its complexity and
diverse underlying structures, processing this lan-
guage is a challenging issue and has been clearly
an important part of Natural Language Processing
(NLP). Many tasks are proposed to analyze and
understand Chinese, ranging from word segmen-
tation to syntactic and/or semantic parsing, which
can benefit a wide range of natural language ap-
plications. To date, several systems have been
developed for Chinese word segmentation, part-
of-speech tagging and syntactic parsing (exam-
ples include Stanford CoreNLP1, FudanNLP2, LT-
P3 and etc.) though some of them are not opti-
mized for Chinese.

∗ This work was done during his Ph.D. study in North-
eastern University.

1http://nlp.stanford.edu/software/
corenlp.shtml

2http://fudannlp.googlecode.com
3http://www.ltp-cloud.com/intro/en/

In this paper we present a new toolkit for
Chinese syntactic and semantic analysis (cal-
l it NiuParser4). Unlike previous systems, the
NiuParser toolkit can handle most of Chinese
parsing-related tasks, including word segmenta-
tion, part-of-speech tagging, named entity recog-
nition, chunking, constituent parsing, dependency
parsing, and semantic role labeling. To the best
of our knowledge we are the first to report that all
seven of these functions are supported in a single
NLP package.

All subsystems in NiuParser are based on sta-
tistical models and are learned automatically from
data. Also, we optimize these systems for Chinese
in several ways, including handcrafted rules used
in pre/post-processing, heuristics used in various
algorithms, and a number of tuned features. The
systems are implemented with C++ and run fast.
On several benchmarks, we demonstrate state-of-
the-art performance in both accuracy/F1 score and
speed.

In addition, NiuParser can be fit into large-scale
tasks which are common in both research-oriented
experiments and industrial applications. Several
useful utilities are distributed with NiuParser, such
as the Software Development Kit (SDK) inter-
faces and a multi-thread implementation for sys-
tem speed-up.

The rest of the demonstration is organized as
follows. Section 2 describes the implementation
details of each subsystem, including statistical ap-
proaches and some enhancements with handcraft-
ed rules and dictionaries. Section 3 represents the
ways to use the toolkit. We also show the perfor-
mance of the system in Section 4 and finally we
conclude the demonstration and point out the fu-
ture work of NiuParser in Section 5.

4http://www.niuparser.com/index.en.
html

145

Word
Segmentation

POS
Tagging

Constituent
Parsing

Named Entity
Recognition

Dependency
Parsing

Chunking

Semantic Role
Labeling

NiuParser Subsystems

Conditional
Random Fields

Averaged
Perceptron

Maximum
Entropy

Recurrent
Neural Networks

Machine Learning Models

Figure 1: The system architecture of NiuParser.

2 The NiuParser System

2.1 What is NiuParser

The NiuParser system is a sentence-level syntactic
and semantic parsing toolkit developed by Natu-
ral Language Processing Laboratory in Northeast-
ern University of China. The system is designed
specifically to process the Chinese language. Sub-
systems of NiuParser include word segmentation,
POS tagging, named entity recognition, shallow
syntactic parsing (chunking), constituent parsing,
dependency parsing, and constituent parse-based
semantic role labeling. Figure 1 shows the archi-
tecture of the NiuParser system. As we can see
from the figure, subsystems in NiuParser are orga-
nized in a pipeline structure. A given sentence is
first segmented into a word sequence, each word
in which is assigned a POS tag by the POS tag-
ging subsystem. Based on the POS tagging result,
we can choose to do named entity recognition or
syntactic parsing. Finally, shallow semantic struc-
tures are generated by semantic role labeling on
the base of constituent parsing.

2.2 Statistical Approaches to Subsystems
2.2.1 Sequence Labeling
The subsystems of word segmentation, POS tag-
ging, named entity recognition, and chunking in
NiuParser are based on statistical sequence label-
ing models. Specifically, we adopt linear-chain
Conditional Random Fields (CRF) (Lafferty et al.,
2001) as the method for sequence labeling. Given
an input sample X = x1, x2, . . . , xL and its cor-
responding sequence Y = y1, y2, . . . , yL, Condi-
tional Random Fields are defined as follows.

Pw(Y |X) =
1

Zw(X)
exp(W T Φ(X, Y))) (1)

where Zw(X) denotes the normalization constant
and Φ(X, Y) are manually defined feature func-
tions. In the testing phase, the Viterbi algorithm
is applied to find an optimal label sequence or a
k-best list for a testing instance.

With Conditional Random Fields, Chinese
word segmentation is regarded as a character-
based sequence labeling problem. We adopt the
scheme of six tags (B, B2, B3, I, E, O) to translate

146

between a segmented sentence and its correspond-
ing label sequence (Zhao et al., 2005). Specifical-
ly, B, B2, B3 denotes the first, the second, and the
third character in a word, respectively. I means
that the character is inside in a word, and E means
that the character is at the end of a word. Finally,
O denotes a single-character word. Features in-
clude the characters (and their combinations) in a
sliding window.

As mentioned above, the NiuParser system uti-
lizes the pipeline method to integrate all the sub-
systems. That is, POS tagging, named enti-
ty recognition, and chunking take the output of
the preceding subsystem as input. For POS tag-
ging, we obtain training data from Penn Chinese
Treebank (CTB) (Xue et al., 2005), which has 32
POS tags. The named entity recognition subsys-
tem takes the guideline of OntoNotes (Pradhan et
al., 2007). Named entities annotated in OntoNotes
have 18 entity types in total, including person
names, organization names, and events, etc. Ta-
ble 1 presents a complete list of the entity types in
OntoNotes. Chunking uses training data derived
from constituent parse trees in CTB. In NiuParser,
we consider phrase types including noun phrase
(NP), verbal phrase (VP), quantifier phrase (QP),
prepositional phrase (PP), adjective phrase (AD-
JP), and classifier phrase (CLP), etc. Features for
the three subsystems are words (and their combi-
nations) in a sliding window. Prefix and suffix of
words are also used as features for better system
generalization.

2.2.2 Transition-based Parsing
Syntactic parsers can be grouped into two cate-
gories according to decoding algorithms: dynam-
ic programming-based and transition-based. For
the purpose of efficiency, we implement the con-
stituent and two versions of dependency parsers in
the NiuParser system with transition-based meth-
ods (Zhu et al., 2013; Zhang and Nivre, 2011;
Chen and Manning, 2014). Specifically, parser-
s are variants of shift-reduce parsers, which start
from an initial state and reach a final state by per-
forming an action in each stage transition. Fig-
ure 2 and Figure 3 present an example parse of the
two parsers, respectively.

One version of the dependency parsers follows
the work in (Chen and Manning, 2014), regarding
the state transition process as a sequence of clas-
sification decisions. In each transition, a best ac-
tion is chosen by a Neural Network classifier. The

other parses (the constituent parser and the other
version of dependency parser) utilize exactly the
same framework, where both training and decod-
ing phases are formalized as a beam search pro-
cess. In the decoding phase, the candidate parse
with the highest score in the beam will be picked
as the parsing result once the beam search process
terminates. In the training phase, a beam search-
based global online training method is adopted.
The training process iterates through the whole
training data by decoding the sentences sequent-
ly. On each sentence, parameters will be updated
immediately once the gold parse is pruned off the
beam. In the NiuParser system, we utilize aver-
aged perceptron to learn parameters.

2.2.3 Two-Stage Classification
Researchers in semantic role labeling have ex-
plored diverse syntactic structures (chunks, con-
stituent parses, and dependency parses) as input.
The semantic role labeling subsystem in NiuPars-
er considers constituent parse trees as input. The
subsystem can recognize constituents in a parse
tree as arguments with respect to a specified pred-
icate (See Figure 4). Here, semantic role labeling
is formalized as a two-stage classification prob-
lem. The first stage (called identification) conduct-
s a binary classification to decide whether a con-
stituent in a parse tree is an argument. After the
first stage, a set of constituents is fed to the sec-
ond stage (called classification) classifier which is
a multi-class classifier, used for assigning each ar-
gument an appropriate semantic label.

The statistical model used in the semantic role
labeling subsystem is Maximum Entropy (Berg-
er et al., 1996), which provides classification de-
cisions with corresponding probabilities. With
such probabilities, the identification stage applies
the algorithm of enforcing non-overlapping argu-
ments (Jiang and Ng, 2006) to maximize the log-
probability of the entire labeled parse tree. In the
classification stage, the classifier assigns labels to
arguments independently.

2.3 Improvements and Advanced Features
2.3.1 Word Segmentation
In Chinese sentences, words like dates, email
addresses, and web page URLs are pervasive but
training data for statistical methods is limited
in size to cover enough such words. A purely
statistical approach often fails to recognize such
words once the words do not appear in the training

147

PERSON peopel, including fictional NORP nationalities or religious or political groups
FACILITY building, airports, highways, etc. ORGANIZATION companies, agencies, etc.
GPE countries, cities, states LOCATION non-GPE, mountain ranges, bodies of water
PRODUCT vehicles, weapons, foods, etc. EVENT named hurricanes, battles, wars, sports events
WORD OF ART titles or books, songs, etc. LAW named documents made into laws
LANGUAGE named language DATE absolute or relative dates or periods
TIME times smaller than a day PERCENT percentage *including ”%”
MONEY monetary values, including unit QUANTITY measurements, as of weight or distances
ORDINAL ”first”, ”second” CARDINAL numerals that do not fall under another type

Table 1: Named entity types in OntoNotes

IP

VP

VP

VV

开幕

PP

NP

NR

罗马

P

在

NP

NP

NN

锦标赛

NN

游泳

NN

世界

QP

CLP

M

届

OD

第七

Figure 2: Example of constituent parsing in NiuParser.

data. Fortunately, such words generally have some
regular patterns and can be recognized by regular
expressions. The NiuParser system provides a
regular expression engine to do preprocessing for
the CRF-based segmenter.

Post-processing: Besides the word types
handled in the preprocessing step, a CRF-based
segmenter has a low accuracy in recogniz-
ing out-of-vocabulary words. The NiuParser
system implements a double-array trie for post-
processing. Users can add entries (each entry
is a string of characters and its corresponding
segments) into a dictionary. String of characters
in the dictionary will be assured to be segmented
according to its corresponding segments.

2.3.2 Named Entity Recognition
In academics, named entity recognition often suf-
fers from limited training data. In contrast, practi-
tioners generally seek to mine a large-vocabulary
entity dictionary from the Web, and then use the
entity dictionary to recognize entities as a maxi-
mum matching problem. This approach, howev-
er, fails to resolve ambiguities. The improvement
here is to combine dictionary-based methods and
statistical methods.

We first use the forward maximum matching ap-
proach to recognize entities in an input sentence
by using an entity dictionary. The recognition re-
sult is then sent to a CRF-based recognizer. Here
each word is assigned a label (start of an entity, in-
side an entity, or end of an entity) according to the
maximum matching result. The labels are used as
additional features in the CRF-based recognizer.
This approach is similar to the stacking method.

2.3.3 System Speed-up
In addition to fast algorithms (e.g., shift-reduce
parsing), NiuParser also supports a multithread-
ing mode to make full advantage of computers
with more than one CPU or core. In general, the
speed can be improved when multiple threads are
involved. However, it does not run faster when too
many threads are used (e.g., run with more than 8
threads) due to the increased cost of scheduling.

2.4 Usage

The NiuParser system supports three ways to use
the functionalities in the toolkit.

First, users can use the toolkit as an executable
file in the command lines. Model files and config-
uration of the system are specified in a configura-
tion file. Input-output files and the functionality to

148

第七 届 世界 游泳 锦标赛 在 罗马 开幕
OD M NN NN NN P NR VV

ROOT

M

NMOD

NMOD

NMOD

SBJ

VMOD

POBJ

Figure 3: Example of dependency parsing in NiuParser.

IP

VP

VP

VV

开幕

PP

在罗马

NP

第七届世界游泳锦标赛

Figure 4: Example of semantic role labeling in NiuParser.

be used are specified as command line arguments.
Second, all the functionalities in NiuParser can

be integrated into users’ own applications or busi-
ness process by using the toolkit’s SDK interfaces.
The SDK supports both Windows and Linux plat-
forms. In contrast to web services, SDK is more
suitable to be deployed in the server side.

Third, a demo web page is provided for users
to view the analysis results intuitively.5 All the
analysis results are presented graphically.

3 Experiments

We ran our system on several benchmarks. Specif-
ically, we trained and tested word segmentation,
POS tagging, chunking, and constituent parsing on
CTB5.1: articles 001-270 and 440-1151 were used
for training and articles 271-300 were used for
testing. The performance of named entity recog-
nition was reported on OntoNotes, where 49,011
sentences were used for training and 1,340 sen-
tences were used for testing. For semantic role
labeling, we adopted the same data set and split-
ting as in (Xue, 2008). Finally, the data set and
splitting in (Zhang and Clark, 2011) were used to
evaluate the performance of dependency parsing.

All results were reported on a machine with a

5http://demo.niuparser.com/index.en.
html

800MHz CPU and 4GB memory. See Table 2 for
results of acurracy/F1 scores, memory use, mod-
el sizes and speed. Note that we evaluated the
speed with a single thread and the accuracies were
achieved with statistical models only.

From the results we can see that most of the sub-
systems achieve state-of-the-art performance, (the
chunking subsystem is an exception, whose accu-
racy still have some room left for further improve-
ments.). In addition, the memory use of dependen-
cy parsing is extremely heavy. We will optimize
the implementation of dependency parsing in our
future work.

4 Conclusions and Future Work

We have presented the NiuParser Chinese syntac-
tic and semantic analysis toolkit. It can handle
several parsing tasks for Chinese, including word
segmentation, part-of-speech tagging, named enti-
ty recognition, chunking, constituent parsing, de-
pendency parsing, and constituent parser-based se-
mantic role labeling. The NiuParser system is fast
and shows state-of-the-art performance on sever-
al benchmarks. Moreover, it supports several ad-
vanced features, such as the Software Develop-
ment Kit (SDK) interfaces and the multi-thread
implementation for system speed-up.

In our future work, we will add more function-

149

Task Acurrary/F1 Memory Used Model Size Speed?

word segmentation 97.3% 68M 57M 45K
POS tagging 93.5% 93M 185M 38.8K
named entity recognition 88.1% 687M 708M 1.87K
chunking 81.1% 71.9MG 90M 18.8K
constituent parsing 83.2% 0.98G 243M 583.3
dependency parsing† 82.4% 2.9G 116M 402.4
dependency parsing‡ 82.1% 597M 22M 13.5K
semantic role labeling 68.4% 1.2M/0.9M 30M 494∗

Table 2: Evaluation of NiuParser on various tasks. †beam search-based global training method.
‡classification-based method with Neural Networks. ?characters per second. ∗ predicates per second.

alities to NiuParser. First of all, we will integrate a
new subsystem which conducts dependency-based
semantic role labeling. In addition, we will de-
velop a faster constituent parsers by using Recur-
rent Neural Network. According to the previous
work (Chen and Manning, 2014) (and its clone
in the NiuParser system), this method reduces the
cost of feature extraction and thus shows the ad-
vantage in speed. We expect the same approach
can be adapted to constituent parsing.

Acknowledges

This work was supported in part by the National
Science Foundation of China (Grants 61272376,
61300097, and 61432013).

References
Adam L. Berger, Stephen A. Della Pietra, and Vincent

J. Dealla Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Computa-
tional Linguics, 22:39–71.

Danqi Chen and Christopher D. Manning. 2014. A fast
and accurate dependency parser using neural net-
works. Proc. of EMNLP 2014, pages 740–750.

Zheng Ping Jiang and Hwee Tou Ng. 2006. Seman-
tic role labeling of nombank: a maximum entropy
approach. Proc. of EMNLP 2006, pages 138–145.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. Proc. of ICML 2001.

Sameer S. Pradhan, Hovy Eduard, Mitch Mar-
cus, Martha Palmer, Lance Ramshaw, and Ralph
Weischedel. 2007. Ontonotes: A unified relation-
al semantic representation. Proc. of ICSC 2007.

Nianwen Xue, Fei Xia, Chiou Fu-Dong, and Palmer
Martha. 2005. The penn chinese treebank: Phrase

structure annotation of a large corpus. Natural Lan-
guage Engineering, 11:207–238.

Nianwen Xue. 2008. Labeling chinese predicates with
semantic roles. Computational Linguistics, 32:225–
255.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics, 37:105–151.

Yue Zhang and Joakim Nivre. 2011. Transition-
based dependency parsing with rich non-local fea-
tures. Proc. of ACL 2011, pages 188–193.

Hai. Zhao, Chang-Ning Huang, and Mu Li. 2005. An
improved chinese word segmentation system with
conditional randome fileds. Proc. of SIGHAN 2006,
pages 162–165.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. A fast and accurate con-
stituent parsing. Proc. of ACL 2013.

150

Author Index

Ai, Renlong, 1
Akbik, Alan, 67

Bakagianni, Juli, 97
Barlacchi, Gianni, 79
Basili, Roberto, 19
Biemann, Chris, 103
Boisson, Joanne, 139
Bond, Francis, 7, 73

Campos, Jorge, 91
Castellucci, Giuseppe, 19
Cejuela, Juan Miguel, 91
Chang, Jason, 139
Chang, Jim, 139
Claus, Patrick, 61
Croce, Danilo, 19

Do Dinh, Erik-Lân, 13

Eckart de Castilho, Richard, 13
Eckart, Kerstin, 25

Filice, Simone, 19

Galanis, Dimitrios, 97
Gärtner, Markus, 25
Giles, C. Lee, 133
Ginter, Filip, 91
Gurevych, Iryna, 13

Habib, Mena, 31
Hahn-Powell, Gus, 127
Hakala, Kai, 91
Heinzerling, Benjamin, 37
Hennig, Leonhard, 43
Hicks, Thomas, 127

Iwayama, Makoto, 109

Jensen, Lars Juhl, 91

Kaufmann, Manuel, 103
Krause, Sebastian, 43
Ku, Lun-Wei, 49
Kuhn, Jonas, 25

Lê, Tuan Anh, 7
Lee, Yann-Huei, 49
Li, Chen, 91
Li, Hong, 43
Liang, Chen, 133
Lipenkova, Janna, 55

Martschat, Sebastian, 61
Michael, Thilo, 67
Miyoshi, Toshinori, 109
Morgado da Costa, Luís, 7, 73
Moschitti, Alessandro, 79

Nicosia, Massimo, 79
Niwa, Yoshiki, 109

Paetzold, Gustavo, 85, 115
Piperidis, Stelios, 97
Pyysalo, Sampo, 91

Riedl, Martin, 103
Ruppert, Eugen, 103

Sato, Misa, 109
Scarton, Carolina, 115
Schweitzer, Katrin, 25
Sofianopoulos, Sokratis, 97
Specia, Lucia, 85, 115, 121
Steele, David, 121
Stenetorp, Pontus, 91
Strube, Michael, 37, 61
Sun, Qinghua, 109
Surdeanu, Mihai, 127

Uszkoreit, Hans, 43

Valenzuela-Escárcega, Marco A., 127
van Keulen, Maurice, 31
Virk, Shafqat Mumtaz, 49

Wang, Qiang, 145
Wu, Jian-Cheng, 139
Wu, Zhaohui, 133

Xiao, Tong, 145
Xu, Feiyu, 1, 43

151

Yanai, Kohsuke, 109
Yanase, Toshihiko, 109
Yen, Tzu-Hsi, 139

Zhu, Jingbo, 145
Zhu, Muhua, 145

	Program
	A System Demonstration of a Framework for Computer Assisted Pronunciation Training
	IMI --- A Multilingual Semantic Annotation Environment
	In-tool Learning for Selective Manual Annotation in Large Corpora
	KeLP: a Kernel-based Learning Platform for Natural Language Processing
	Multi-modal Visualization and Search for Text and Prosody Annotations
	NEED4Tweet: A Twitterbot for Tweets Named Entity Extraction and Disambiguation
	Visual Error Analysis for Entity Linking
	A Web-based Collaborative Evaluation Tool for Automatically Learned Relation Extraction Patterns
	A Dual-Layer Semantic Role Labeling System
	A system for fine-grained aspect-based sentiment analysis of Chinese
	Plug Latent Structures and Play Coreference Resolution
	SCHNÄPPER: A Web Toolkit for Exploratory Relation Extraction
	OMWEdit - The Integrated Open Multilingual Wordnet Editing System
	SACRY: Syntax-based Automatic Crossword puzzle Resolution sYstem
	LEXenstein: A Framework for Lexical Simplification
	Sharing annotations better: RESTful Open Annotation
	A Data Sharing and Annotation Service Infrastructure
	JoBimViz: A Web-based Visualization for Graph-based Distributional Semantic Models
	End-to-end Argument Generation System in Debating
	Multi-level Translation Quality Prediction with QuEst++
	WA-Continuum: Visualising Word Alignments across Multiple Parallel Sentences Simultaneously
	A Domain-independent Rule-based Framework for Event Extraction
	Storybase: Towards Building a Knowledge Base for News Events
	WriteAhead: Mining Grammar Patterns in Corpora for Assisted Writing
	NiuParser: A Chinese Syntactic and Semantic Parsing Toolkit

