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Abstract
Recurrent neural network (RNN) is recog-
nized as a powerful language model (LM).
We investigate deeper into its performance
portfolio, which performs well on frequent
grammatical patterns but much less so on
less frequent terms. Such portfolio is ex-
pected and desirable in applications like
autocomplete, but is less useful in social
content analysis where many creative, un-
expected usages occur (e.g., URL inser-
tion). We adapt a generic RNN model and
show that, with variational training cor-
pora and epoch unfolding, the model im-
proves its performance for the task of URL
insertion suggestions.

1 Introduction

Just 135 most frequent words account for 50% text
of the entire Brown corpus (Francis and Kucera,
1979). But over 44% (22,010 out of 49,815) of
Brown’s vocabulary are hapax legomena1. The in-
tricate relationship between vocabulary words and
their utterance frequency results in some impor-
tant advancements in natural language process-
ing (NLP). For example, tf-idf results from rules
applied to word frequencies in global and local
context (Manning and Schütze, 1999). A com-
mon preprocessing step for tf-idf is filtering rare
words, which is usually justified for two reasons.
First, low frequency cutoff promises computa-
tional speedup due to Zipf’s law (1935). Second,
many believe that most NLP and machine learning
algorithms demand repetitive patterns and reoc-
currences, which are by definition missing in low
frequency words.

1.1 Should infrequent words be filtered?
Infrequent words have high probability of becom-
ing frequent as we consider them in a larger con-

1Words appear only once in corpus.

text (e.g., Ishmael, the protagonist name in Moby-
Dick, appears merely once in the novel’s dialogues
but is a highly referenced word in the discus-
sions/critiques around the novel). In many modern
NLP applications, context grows constantly: fresh
news articles come out on CNN and New York
Times everyday; conversations on Twitter are up-
dated in real time. In processing online social me-
dia text, it would seem premature to filter words
simply due to infrequency, the kind of infrequency
that can be eliminated by taking a larger corpus
available from the same source.

To further undermine the conventional justifica-
tion, computational speedup is attenuated in RNN-
based LMs (compared to n-gram LMs), thanks to
modern GPU architecture. We train a large RNN-
LSTM (long short-term memory unit) (Hochreiter
and Schmidhuber, 1997) model as our LM on two
versions of Jane Austen’s complete works. Deal-
ing with 33% less vocabulary in the filtered ver-
sion, the model only gains marginally on running
time or memory usage. In Table 1.1, “Filtered cor-
pus” filters out all the hapax legomena in “Full cor-
pus”.

Full corpus Filtered corpus
corpus length 756,273 751,325
vocab. size 15,125 10,177
running time 1,446 sec 1,224 sec
GPU memory 959 MB 804 MB

Table 1: Filtered corpus gains little in running time
or memory usage when using a RNN LM.

Since RNN LMs suffer only small penalty in
keeping the full corpus, can we take advantage of
this situation to improve the LM?

1.2 Improving performance portfolio of LM

One improvement is LM’s performance portfo-
lio. A LM’s performance is usually quantified as

609



perplexity, which is exponentialized negative log-
likelihood in predictions.

For our notation, let VX denote the vocabu-
lary of words that appear in a text corpus X =
{x1, x2, . . .}. Given a sequence x1, x2, . . . , xm−1,
where each x ∈ VX , the LM predicts the next
in sequence, xm ∈ VX , as a probability distribu-
tion over the entire vocabulary V (its prediction
denoted as p). If vm ∈ VX is the true token at
position m, the model’s perplexity at index m is
quantified as exp(− ln(p[vm])). The training goal
is to minimize average perplexity across X .

However, a deeper look into perplexity beyond
corpus-wide average reveals interesting findings.
Using the same model setting as for Table 1.1,
Figure 1 illustrates the relationship between word-
level perplexity and its frequency in corpus. In
general, the less frequent a word appears, the
more unpredictable it becomes. In Table 1.2, the
trained model achieves an average perplexity of
78 on filtered corpus. But also shown in Table
1.2, many common words register with perplexity
over 1,000, which means they are practically un-
predictable. More details are summarized in Table
1.2. The LM achieves exceptionally low perplex-
ity on words such as <apostr.>s (’s, the posses-
sive case), <comma> (, the comma). And these
tokens’ high frequencies in corpus have promised
the model’s average performance. Meanwhile, the
LM has bafflingly high perplexity on common-
place words such as read and considering.
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Figure 1: (best viewed in color) We look at word
level perplexity with respect to the word frequency
in corpus. The less frequent a word appears, the
more unpredictable it becomes.

2 Methodology

We describe a novel approach of constructing and
utilizing pre-training corpus that eventually reduce
LMs’s high perplexity on rare tokens. The stan-
dard way to utilize a pre-training corpus W is to

Token Freq. Perplexity 1 Perplexity 2
corpus avg. N/A 78 82
<apostr.>s 4,443 1.1 1.1
of 23,046 4.9 5.0
<comma> 57,552 5.2 5.1
been 3,452 5.4 5.7
read 224 3,658 3,999
quiet 108 6,807 6,090
returning 89 7,764 6,268
considering 80 9,573 8,451

Table 2: A close look at RNN-LSTM’s perplexity
at word level. “Perplexity 1” is model perplexity
based on filtered corpus (c.f., Table 1.1) and “Per-
plexity 2” is based on full corpus.

first train the model on W then fine-tune it on tar-
get corpus X . Thanks to availability of text, W
can be orders of magnitude larger than X , which
makes pre-training on W challenging.

A more efficient way to utilize W is to construct
variational corpora based on X and W . In the fol-
lowing subsections, we first describe how replace-
ment tokens are selected from a probability mass
function (pmf), which is built from W ; then ex-
plain how the variational corpora variates with re-
placement tokens through epochs.

2.1 Learn from pre-training corpus

One way to alleviate the impact from infrequent
vocabulary is to expose the model to a larger
and overarching pre-training corpus (Erhan et al.,
2010), if available. Let W be a larger corpus
than X and assume that VX ⊆ VW . For exam-
ple, if X is Herman Melville’s Moby-Dick, W
can be Melville’s complete works. Further, we
use VX,1 to denote the subset of VX that are ha-
pax legonema in corpus X; similarly, VX,n (for
n = 2, 3, . . .) denotes the subset of VX that occur
n times in X . Many hapax legomena in VX,1 are
likely to become more frequent tokens in VW .

Suppose that x ∈ VX,1. Denoted by
ReplacePMF(W, VW , x) in Algorithm 1, we rep-
resent x as a probability mass function (pmf) over
{x′1, x′2, . . .}, where each x′i is selected from VW ∩
VX,n for n > 1 using one of the two methods be-
low. For illustration purpose, suppose the hapax
legomenon, x, in question is matrimonial:

1) e.g., matrimony. Words that have very high
literal similarity with x. We measure literal sim-
ilarity using Jaro-Winkler measure, which is an
empirical, weighted measure based on string edit
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distance. We set the measure threshold very high
(> 0.93), which minimizes false positives as well
as captures many hapax legonema due to adv./adj.,
pl./singular (e.g, -y/-ily and -y/-ies).

2) e.g., marital Words that are direct syno/hypo-
nyms to x in the WordNet (Miller, 1995).

getContextAround(x′) function in Algorithm 1
simply extracts symmetric context words from
both left and right sides of x′. Although the in-
vestigated LM only uses left context in predicting
word x′, context right of x′ is still useful informa-
tion in general. Given a context word c right of x′,
the LM can learn x′’s predictability over c, which
is beneficial to the corpus-wide perplexity reduc-
tion.

In practice, we select no more than 5 substitu-
tion words from each method above. The prob-
ability mass on each x′i is proportional to its fre-
quency in W and then normalized by softmax:
pmf(x′i) = freq(x′i)/

∑5
k=1 freq(x′k). This sub-

stitution can help LMs learn better because we re-
place the un-trainable VX,1 tokens with tokens that
can be trained from the larger corpus W . In con-
cept, it is like explaining a new word to school kids
by defining it using vocabulary words in their ex-
isting knowledge.

2.2 Unfold training epochs

Epoch in machine learning terminology usually
means a complete pass of the training dataset.
many iterative algorithms take dozens of epochs
on the same training data as they update the
model’s weights with smaller and smaller adjust-
ments through the epochs.

We refer to the the training process proposed
in Figure 2 (b) as “variational corpora”. Com-
pared to the traditional structure in Figure 2 (a),
the main advantage of using variational corpora is
the ability to freely adjust the corpus at each ver-
sion. Effectively, we unfold the training into sep-
arate epochs. This allows us to gradually incorpo-
rate the replacement tokens without severely dis-
torting the target corpus X , which is the learning
goal. In addition, variational corpora can further
regularize the training of LM in batch mode (Sri-
vastava et al., 2014).

Algorithm 1 constructs variational corpora
X(s) at epoch s. Assuming X(s + 1) being avail-
able, Algorithm 1 appends snippets, which are
sampled from W , into X(s) for the sth epoch. For
the last epoch s = S, X(S) = X . As the epoch
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Figure 2: Unfold the training process in units of
epochs. (a) Typical flow where model parses the
same corpus at each epoch. (b) The proposed
training architecture with variational corpora to in-
corporate the substitution algorithm.

Algorithm 1: Randomly constructs varia-
tional corpus at epoch s.
Input: W, X, VW , VX , VX,n, n, as defined in

Section 1.2&2.1,
s, S, current and max epoch number.
Output: X(s), variational corpus at epoch s

1 X(s)← X(s + 1)
2 for each x ∈ VX,n do
3 p← ReplacePMF(W, VW , x)
4 i← Dirichlet(p).generate()
5 while i← X .getNextIdxOf(x) do
6 x′ ← i.draw()
7 c←W .getContextAround(x′)
8 c.substr(

[
0, uniformRnd

(
0, S−s

S |c|
)]

)
9 X(s).append(c)

10 return X(s)

number increases, fewer and shorter snippets are
appended, which alleviates training stress. By fix-
ing an n value, the algorithm applies to all words
in VX,n.

In addition, as a regularization trick (Mikolov
et al., 2013; Pascanu et al., 2013) , we use a uni-
form random context window (line 8) when inject-
ing snippets from W into X(s).
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Freq. nofilter 3filter ptw vc
10 28,542 (668.1) 23,649 (641.2) 27,986 (1,067.2) 20,994 (950.9)
100 1,180.3 (21.7) 1,158.2 (19.2) 735.8 (29.8) 755.8 (31.5)
1K 163.2 (12.9) 163.9 (12.2) 138.5 (14.1) 137.7 (15.7)
5K 47.5 (3.3) 47.2 (3.1) 40.2 (3.2) 40.2 (3.3)
10K 16.4 (0.31) 16.7 (0.29) 14.4 (0.42) 14.1 (0.41)
40K 7.6 (0.09) 7.6 (0.09) 7.0 (0.09) 7.0 (0.10)
all tokens 82.1 (2.0) 77.9 (1.9) 68.6 (2.1) 68.9 (2.1)
GPU memory 959MB 783MB 1.8GB 971MB
running time 1,446 sec 1,181 sec 9,061 sec 6,960 sec

Table 3: Experiments compare average perplexity produced by the proposed variational corpora approach
and other methods on a same test corpus. Bold fonts indicate best. “Freq.” indicates the average corpus-
frequency (e.g., Freq.=1K means that words in this group, on average, appear 1,000 times in corpus).
Perplexity numbers are averaged over 5 runs with standard deviation reported in parentheses. GPU
memory usage and running time are also reported for each method.

Err. type Context before True token LM prediction
False neg. <unk>, via, <unk>, banana, muffin, chocolate, URL to a cooking blog recipe
False neg. sewing, ideas, <unk>, inspiring, picture, on, URL to favim.com esty
False neg. nike, sports, fashion, <unk>, women, <unk>, URL to nelly.com macy
False pos. new, york, yankees, endless, summer, tee, <unk>, shop <url>
False pos. take, a, rest, from, your, #harrodssale, shopping <url>

Table 4: False positives and false negatives predicted by the model in the Pinterest application. The
context words preceding to token in questions are provided for easier analysis3.

3 Experiments

3.1 Perplexity reduction
We validate our method in Table 3 by showing per-
plexity reduction on infrequent words. We split
Jane Austen’s novels (0.7 million words) as tar-
get corpus X and test corpus, and her contem-
poraries’ novels4 as pre-training corpus W (2.7
million words). In Table 3, nofilter is the unfil-
tered corpus; 3filter replaces all tokens in VX,3

by <unk>; ptw performs naive pre-training on W
then on X; vc performs training with the proposed
variational corpora. Our LM implements the RNN
training as described in (Zaremba et al., 2014). Ta-
ble 3 also illustrates the GPU memory usage and
running time of the compared methods and shows
that vc is more efficient than simply ptw.

vc has the best performance on low-frequency
words by some margin. ptw is the best on frequent
words because of its access to a large pre-training

3Favim.com is a website for sharing crafts, creativity
ideas. Esty.com is a e-commerce website for trading hand-
made crafts. Nelly.com is Scandinavia’s largest online fash-
ion store. Macy’s a US-based department store. Harrod’s is a
luxury department store in London.

4Dickens and the Bronte sisters

corpus. But somewhat to our surprise, ptw per-
forms badly on low-frequency words, which we
reckon is due to the rare words introduced in W :
while pre-training on W helps reduce perplexity
of words in VX,1 but also introduces additional ha-
pax legomena in VW,1 \ VX,1.
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Figure 3: Accuracy of suggested URL positions
across different categories of Pinterest captions.

3.2 Locating URLs in Pinterest captions

Beyond evaluations in Table 3. We apply our
method to locate URLs in over 400,000 Pinterest
captions. Unlike Facebook, Twitter, Pinterest is
not a “social hub” but rather an interest-discovery
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site (Linder et al., 2014; Zhong et al., 2014). To
maximally preserve user experience, postings on
Pinterest embed URLs in a natural, nonintrusive
manner and a very small portion of the posts con-
tain URLs.

In Figure 3, we ask the LM to suggest a po-
sition for the URL in the context and verify the
suggest with test data in each category. For ex-
ample, the model is presented with a sequence
of tokens: find, more, top, dresses, at, afford-
able, prices, <punctuation>, visit, and is asked
to predict if the next token is an URL link. In
the given example, plausible tokens after visit can
be either <http://macys.com> or nearest, Macy,
<apostr.>s, store. The proposed vc mechanism
outperforms others in 5 of the 6 categories. In
Figure 3, accuracy is measured as the percentage
of correctly suggested positions. Any prediction
next to or close to the correct position is counted
as incorrect.

In Table 4, we list some of the false nega-
tive and false positive errors made by the LM.
Many URLs on Pinterest are e-commerce URLs
and the vendors often also have physical stores. So
in predicting such e-commerce URLs, some mis-
takes are “excusable” because the LM is confused
whether the upcoming token should be an URL
(web store) or the brand name (physical store)
(e.g, http://macys.com vs. Macy’s).

4 Related work

Recurrent neural network (RNN) is a type of neu-
ral sequence model that have high capacity across
various sequence tasks such as language model-
ing (Bengio et al., 2000), machine translation (Liu
et al., 2014), speech recognition (Graves et al.,
2013). Like other neural network models (e.g.,
feed-forward), RNNs can be trained using back-
propogation algorithm (Sutskever et al., 2011).
Recently, the authors in (Zaremba et al., 2014)
successfully apply dropout, an effective regular-
ization method for feed-forward neural networks,
to RNNs and achieve strong empirical improve-
ments.

Reducing perplexity on text corpus is proba-
bly the most demonstrated benchmark for mod-
ern language models (n-gram based and neural
models alike) (Chelba et al., 2013; Church et al.,
2007; Goodman and Gao, 2000; Gao and Zhang,
2002). Based on Zipf’s law (Zipf, 1935), a fil-
tered corpus greatly reduces the vocabulary size

and computation complexity. Recently, a rigor-
ous study (Kobayashi, 2014) looks at how per-
plexity can be manipulated by simply supplying
the model with the same corpus reduced to vary-
ing degrees. Kobayashi (2014) describes his study
from a macro point of view (i.e., the overall corpus
level perplexity). In this work, we present, at word
level, the correlation between perplexity and word
frequency.

Token rarity is a long-standing issue with n-
gram language models (Manning and Schütze,
1999). Katz smoothing (Katz, 1987) and Kneser-
Ney based smoothing methods (Teh, 2006) are
well known techniques for addressing sparsity in
n-gram models. However, they are not directly
used to resolve unigram sparsity.

Using word morphology information is another
way of dealing with rare tokens (Botha and Blun-
som, 2014). By decomposing words into mor-
phemes, the authors in (Botha and Blunsom, 2014)
are able to learn representations on the morpheme
level and therefore scale the language modeling to
unseen words as long as they are made of previ-
ously seen morphemes. Shown in their work, this
technique works with character-based language in
addition to English.
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6 Conclusions & future work

This paper investigates the performance portfolio
of popular neural language models. We propose
a variational training scheme that has the advan-
tage of a large pre-training corpus but without us-
ing as much computing resources. On low fre-
quency words, our proposed scheme also outper-
forms naive pre-training.

In the future, we want to incorporate WordNet
knowledge to further reduce perplexity on infre-
quent words.
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