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Abstract

A joint-space model for cross-lingual
distributed representations generalizes
language-invariant semantic features.
In this paper, we present a matrix co-
factorization framework for learning
cross-lingual word embeddings. We
explicitly define monolingual training
objectives in the form of matrix de-
composition, and induce cross-lingual
constraints for simultaneously factorizing
monolingual matrices. The cross-lingual
constraints can be derived from parallel
corpora, with or without word alignments.
Empirical results on a task of cross-lingual
document classification show that our
method is effective to encode cross-lingual
knowledge as constraints for cross-lingual
word embeddings.

1 Introduction

Word embeddings allow one to represent words in
a continuous vector space, which characterizes the
lexico-semanic relations among words. In many
NLP tasks, they prove to be high-quality features,
successful applications of which include language
modelling (Bengio et al., 2003), sentiment analy-
sis (Socher et al., 2011) and word sense discrimi-
nation (Huang et al., 2012).

Like words having synonyms in the same lan-
guage, there are also word pairs across lan-
guages which share resembling semantic proper-
ties. Mikolov et al. (2013a) observed a strong
similarity of the geometric arrangements of cor-
responding concepts between the vector spaces of
different languages, and suggested that a cross-
lingual mapping between the two vector spaces is
technically plausible. In the meantime, the joint-
space models for cross-lingual word embeddings
are very desirable, as language-invariant seman-
tic features can be generalized to make it easy to

transfer models across languages. This is espe-
cially important for those low-resource languages,
where it allows one to develop accurate word rep-
resentations of one language by exploiting the
abundant textual resources in another language,
e.g., English, which has a high resource density.
The joint-space models are not only technically
plausible, but also useful for cross-lingual model
transfer. Further, studies have shown that using
cross-lingual correlation can improve the quality
of word representations trained solely with mono-
lingual corpora (Faruqui and Dyer, 2014).

Defining a cross-lingual learning objective is
crucial at the core of the joint-space model. Her-
mann and Blunsom (2014) and Chandar A P et
al. (2014) tried to calculate parallel sentence (or
document) representations and to minimize the
differences between the semantically equivalen-
t pairs. These methods are useful in capturing
semantic information carried by high-level units
(such as phrases and beyond) and usually do not
rely on word alignments. However, they suffer
from reduced accuracy for representing rare to-
kens, whose semantic information may not be well
generalized. In these cases, finer-grained informa-
tion at lexical level, such as aligned word pairs,
dictionaries, and word translation probabilities, is
considered to be helpful.

Kočiskỳ et al. (2014) integrated word aligning
process and word embedding in machine transla-
tion models. This method makes full use of paral-
lel corpora and produces high-quality word align-
ments. However, it is unable to exploit the richer
monolingual corpora. On the other hand, Zou et al.
(2013) and Faruqui and Dyer (2014) learnt word
embeddings of different languages in separate s-
paces with monolingual corpora and projected the
embeddings into a joint space, but they can only
capture linear transformation.

In this paper, we address the above challenges
with a framework of matrix co-factorization. We
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simultaneously learn word embeddings in multi-
ple languages via matrix factorization, with in-
duced constraints to assure cross-lingual seman-
tic relations. It provides the flexibility of con-
structing learning objectives from separate mono-
lingual and cross-lingual corpora. Intricate rela-
tions across languages, rather than simple linear
projections, are automatically captured. Addition-
ally, our method is efficient as it learns from global
statistics. The cross-lingual constraints can be de-
rived both with or without word alignments, given
that there is a valid measure of cross-lingual co-
occurrences or similarities.

We test the performance in a task of cross-
lingual document classification. Empirical result-
s and a visualization of the joint semantic space
demonstrate the validity of our model.

2 Framework

Without loss of generality, here we only consider
bilingual embedding learning of the two languages
l1 and l2. Given monolingual corpora Dli and
sentence-aligned parallel data Dbi, our task is to
find word embedding matrices of the size |V li |×d
where each line corresponds to the embedding of
a single word. We also define vocabularies of con-
textsU li and we learn context embedding matrices
C li of the size |U li | × d at the same time. 1

These matrices are obtained by simultaneous
matrix factorization of the monolingual word-
context PMI (point-wise mutual information) ma-
trices M li . During monolingual factorization, we
put a cross-lingual constraint (cost) on it, ensuring
cross-lingual semantic relations. We formalize the
global loss function as

Ltotal =
∑

i∈{1,2}
ωi · Lmono(W

li , Cli)

+ωc · Lcross(W
l1 , Cl1 , W l2 , Cl2),

(1)

where Lmono and Lcross are the monolingual and
cross-lingual objectives respectively. ωi and ωc

weigh the contribution of the different parts to the
total objective. An overview of our algorithm is
illustrated in Figure 1.

3 Monolingual Objective

Our monolingual objective follows the GloVe
model (Pennington et al., 2014), which learns
from global word co-occurrence statistics. For a
word-context pair (j, k) in language li, we try to

1In this paper, we let U li = V li .
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Figure 1: The framework of cross-lingual word embedding
via matrix co-factorization.

minimize the difference between the dot produc-
t of the embeddings wli

j · clik and their PMI value

M li
jk. M li

jk =
X
li
jk·

∑
j,k X

li
jk∑

j X
li
jk·

∑
k X

li
jk

, where X li is the

matrix of word-context co-occurrence counts. As
Pennington et al. (2014), we add separate terms
bliwj , b

li
ck

for each word and context to absorb the
effect of any possible word-specific biases. We al-
so add an additional matrix bias bli for the ease
of sharing embeddings among matrices. The loss
function is written as the sum of the weighted
square error,

Llimono =
∑
j,k

f(Xli
jk)
(
wlij · clik + bliwj

+ blick
+ bli − M li

jk

)2

,

(2)

where we choose the same weighting function as
the GloVe model to place less confidence on those
word-context pairs with rare occurrences,

f(x) =

{
(x/xmax)

α if x < xmax

1 otherwise
. (3)

Notice that we only have to optimize those X li
jk 6=

0, which can be solved efficiently since the matrix
of co-occurrence counts is usually sparse.

4 Cross-lingual Objectives

As the most important part in our model, the cross-
lingual objective describes the cross-lingual word
relations and sets constraints when we factorize
monolingual co-occurrence matrices. It can be de-
rived from either cross-lingual co-occurrences or
similarities between cross-lingual word pairs.

4.1 Cross-lingual Contexts
The monolingual objective stems from the distri-
butional hypothesis (Harris, 1954) and optimizes
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words in similar contexts into similar embeddings.
It is natural to further extend this idea to define
cross-lingual contexts, for which we have multi-
ple choices.

For the definition of cross-lingual contexts, we
have multiple choices. A straightforward option
is to count all the word co-occurrences in aligned
sentence pairs, which is equivalent to a uniform
word alignment model adopted by Gouws et al.
(2015). For the sentence-aligned bilingual corpus
Dbi = {(Sl1 , Sl2)}, where each Sli is a monolin-
gual sentence, we count the co-occurrences as

Xbi
jk =

∑
(Sl1 ,Sl2 )∈Dbi

#(j, Sl1)×#(k, Sl2), (4)

where Xbi is the matrix of cross-lingual co-
occurrence counts, and #(j, S) is a function
counting the number of j’s in the sequence S. We
then use a similar loss function as Equation 2, with
the exception that we optimize for the dot product-
s of wl1

j · wl2
k . This method works without word

alignments and we denote it as CLC-WA (Cross-
lingual context without word alignments).

We can also leverage word alignments and de-
fine CLC+WA (Cross-lingual context with word
alignments). The idea is to count those word-
s co-occurring with k as the context of j, where
k ∈ V l2 is the translationally equivalent word
of j ∈ V l1 . An example is shown in Figure 2.
CLC+WA is expected to contain more precise in-
formation than CLC-WA, and we will compare the
two definitions in the following experiments.

Once we have counted the co-occurrences, a
naı̈ve solution is to concatenate the bilingual vo-
cabularies and perform matrix factorization as a
whole. To induce additional flexibility, such as
separate weighting, we divide the matrix into three
parts. It is also more reasonable to calculate PMI
values without mixing the monolingual and bilin-
gual corpora.

4.2 Cross-lingual Similarities
An alternative way to set cross-lingual constraints
is to minimize the distances between similar word
pairs. Here the semantic similarities can be mea-
sured by equivalence in translation, sim(j, k),
which is produced by a machine translation sys-
tem. In this paper, we use the translation proba-
bilities produced by a machine translation system.
Minimizing the distances of related words in the
two languages weighted by their similarities gives
us the cross-lingual objective

…   we    must    do    all    we    can,    not    just    to   …

…   wir    alles    daran    setzen    müssen, nicht nur …

Figure 2: An example of CLC+WA, where we show the
cross-lingual context of the German word “müssen” in the
dashed box.

Table 1: Accuracy for cross-lingual classification.

Model en→de de→en
Machine translation 68.1 67.4

Majority class 46.8 46.8
Klementiev et al. 77.6 71.1

BiCVM 83.7 71.4
BAE 91.8 74.2

BilBOWA 86.5 75.0
CLC-WA 91.3 77.2
CLC+WA 90.0 75.0

CLSim 92.7 80.2

Lcross =
∑

j∈V l1 ,k∈V l2

sim(j, k) · distance(wl1j , wl2k ), (5)

where wl1
j and wl2

k are the embeddings of j and k
in l1 and l2 respectively. In this paper, we choose
the distance function to be the Euclidean distance,
distance(wl1

j , w
l2
k ) = ||wl1

j − wl2
k ||2. Notice that

similar to the monolingual objective, we may op-
timize for only those sim(j, k) 6= 0, which is ef-
ficient as the matrix of translation probabilities or
dictionary is sparse. We call this method CLSim.

5 Experiments

To evaluate the quality of the relatedness between
words in different languages, we induce the task
of cross-lingual document classification for the
English-German language pair, where a classifier
is trained in one language and later used to classi-
fy documents in another. We exactly replicated the
experiment settings of Klementiev et al. (2012).

5.1 Data and Training
For optimizing the monolingual objectives, We
used exactly the same subset of RCV1/RCV2 cor-
pora (Lewis et al., 2004) as by Klementiev et al.
(2012), which were sampled to balance the num-
ber of tokens between languages. Our preprocess-
ing strategy followed Chandar A P et al. (2014),
where we lowercased all words, removed punctu-
ations and used the same vocabularies (|V en| =
43, 614 and |V de| = 50, 110). When counting
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Figure 3: Cross-lingual document classification accuracy, with (a) varying weighting of cross-lingual objective (b) varying size
of training monolingual corpora, and (c) varying size of training bilingual corpus.

word co-occurrences, we use a decreasing weight-
ing function as Pennington et al. (2014), where d-
word-apart word pairs contribute 1/d to the total
count. We used a symmetric window size of 10
words for all our experiments.

The cross-lingual constraints were derived us-
ing the English and German sections of the Eu-
roparl v7 parallel corpus (Koehn, 2005), which
were similarly preprocessed. For CLC+WA and
CLSim, we obtained word alignments and trans-
lation probabilities with SyMGIZA++ (Junczys-
Dowmunt and Szał, 2012). We did not use Eu-
roparl for monolingual training.

The documents for classification were ran-
domly selected by Klementiev et al. (2012)
from those in RCV1/RCV2 that are assigned
to only one single topic among the four:
CCAT (Corporate/Industrial), ECAT (Economics),
GCAT (Government/Social), and MCAT (Market-
s). 1,000/5,000 documents in each language were
used as a train/test set and we kept another 1,000
documents as a development set for hyperparame-
ter tuning. Each document was represented as an
idf-weighted average embedding of all its tokens,
and a multi-class document classifier was trained
for 10 epochs with an averaged perceptron algo-
rithm as by Klementiev et al. (2012). A classifier
trained with English documents is used to classify
German documents and vice versa.

We trained our models using stochastic gradient
descent. We run 50 iterations for all of our exper-
iments and the dimensionality of the embeddings
is 40. We set xmax to be 100 for cross-lingual co-
occurrences and 30 for monolingual ones, while
α is fixed to 3/4. Other parameters are chosen
according to the performance on the development
set.

5.2 Results

We present the empirical results on the task of
cross-lingual document classification in Table 1,
where the performance of our models is compared
with some baselines and previous work. The effec-
t of weighting between parts of the total objective
and the amount of training data on the quality of
the embeddings is demonstrated in Figure 3.

The baseline systems are Majority class where
test documents are simply classified as the class
with the most training samples, and Machine
translation where a phrased-based machine trans-
lation system is used to translate test documents
into the same language as the training documents.

We also summarize the classification accuracy
reported in some previous work, including Multi-
task learning (Klementiev et al., 2012), Bilingual
compositional vector model (BiCVM) (Herman-
n and Blunsom, 2014), Bilingual autoencoder for
bags-of-words (BAE) (Chandar A P et al., 2014),
and BilBOWA (Gouws et al., 2015). A more re-
cent work of Soyer et al. (2015) developed a com-
positional approach and reported an accuracy of
90.8% (en→de) and 80.1% (de→en) when using
full RCV and Europarl corpora.

Our method outperforms the previous work and
we observe improvements when we exploit word
translation probabilities (CLSim) over the mod-
el without word-level information (CLC-WA).
The best result is achieved with CLSim. It
is interesting to notice that CLC+WA, which
makes use of word alignments in defining cross-
lingual contexts, does not provide better perfor-
mance than CLC-WA. We guess that sentence-
level co-occurrence is more suitable for captur-
ing sentence-level semantic relations in the task of
document classification.
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Figure 4: A visualization of the joint vector space.

5.3 Visualization

Figure 4 gives a visualization of some selected
words using t-SNE (Van der Maaten and Hin-
ton, 2008) where we observe the topical nature of
word embeddings. Regardless of their source lan-
guages, words sharing a common topic, e.g. econ-
omy, are closely aligned with each other, revealing
the semantic validity of the joint vector space.

6 Related Work

Matrix factorization has been successfully applied
to learn word representations, which use several
low-rank matrices to approximate the original ma-
trix with extracted statistical information, usually
word co-occurrence counts or PMI. Singular value
decomposition (SVD) (Eckart and Young, 1936),
SVD-based latent semantic analysis (LSA) (Lan-
dauer et al., 1998), latent semantic indexing (LSI)
(Deerwester et al., 1990), and the more recently-
proposed global vectors for word representation
(GloVe) (Pennington et al., 2014) find their wide
applications in the area of NLP and information
retrieval (Berry et al., 1995). Additionally, there is
evidence that some neural-network-based models,
such as Skip-gram (Mikolov et al., 2013b) which
exhibits state-of-the-art performance, are also im-
plicitly factorizing a PMI-based matrix (Levy and
Goldberg, 2014). The strategy for matrix factor-
ization in this paper, as Pennington et al. (2014),
is in a stochastic fashion, which better handles un-
observed data and allows one to weigh samples ac-
cording to their importance and confidence.

Joint matrix factorization allows one to decom-
pose matrices with some correlational constraints.
Collective matrix factorization has been develope-
d to handle pairwise relations (Singh and Gordon,
2008). Chang et al. (2013) generalized LSA to
Multi-Relational LSA, which constructs a 3-way
tensor to combine the multiple relations between

words. While matrix factorization is widely used
in recommender systems, matrix co-factorization
helps to handle multiple aspects of the data and
improves in predicting individual decisions (Hong
et al., 2013). Multiple sources of information,
such as content and linkage, can also be connected
with matrix co-factorization to derive high-quality
webpage representations (Zhu et al., 2007). The
advantage of this approach is that it automatical-
ly finds optimal parameters to optimize both sin-
gle matrix factorization and relational alignments,
which avoids manually defining a projection ma-
trix or transfer function. To the best of our knowl-
edge, we are the first to introduce this technique to
learn cross-lingual word embeddings.

7 Conclusions

In this paper, we introduced a framework of matrix
co-factorization to learn cross-lingual word em-
beddings. It is capable of capturing the lexico-
semantic similarities of different languages in a
unified vector space, where the embeddings are
jointly learnt instead of projected from separate
vector spaces. The overall objective is divided into
monolingual parts and a cross-lingual one, which
enables one to use different weighting and learn-
ing strategies, and to develop models either with
or without word alignments. Exploiting global
context and similarity information instead of local
ones, our proposed models are computationally ef-
ficient and effective.

With matrix co-factorization, it allows one to
integrate external information, such as syntactic
contexts and morphology, which is not discussed
in this paper. Its application in statistical ma-
chine translation and cross-lingual model transfer
remains to be explored. Learning multiple em-
beddings per word and compositional embeddings
with matrix factorization are also interesting fu-
ture directions.
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