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Abstract 

Many queries in web search are ambiguous or 

multifaceted. Identifying the major senses or 
facets of queries is very important for web 

search. In this paper, we represent the major 

senses or facets of queries as subtopics and re-

fer to indentifying senses or facets of queries 

as query subtopic mining, where query subtop-

ic are represented as a number of clusters of 

queries. Then the challenges of query subtopic 

mining are how to measure the similarity be-

tween queries and group them semantically. 

This paper proposes an approach for mining 

subtopics from query log, which jointly learns 

a similarity measure and groups queries by 
explicitly modeling the structure among them. 

Compared with previous approaches using 

manually defined similarity measures, our ap-

proach produces more desirable query subtop-

ics by learning a similarity measure. Experi-

mental results on real queries collected from a 

search engine log confirm the effectiveness of 

the proposed approach in mining query sub-

topics. 

1 Introduction 

Understanding the search intents of queries is 

essential for satisfying users’ information needs 

and is very important for many search tasks such 

as personalized search, query suggestion, and 
search result presentation. However, it is not a 

trivial task because the underlying intents of the 

same query may be different for different users. 
Two well-known types of such queries are am-

biguous queries and multifaceted queries. For 

example, the ambiguous query ‘michael jordon’ 

may refer to a basketball player or a professor of 
statistics in Berkeley. The multifaceted query 

‘harry potter’ may refer to different search in-

tents such as films, books, or games and so on. 
Many approaches have been proposed to identi-

fy the search intents of a query which are repre-

sented by search goals, topics, or subtopics. For 
example, Broder (2002) classified query intents 

into three search goals: informational, naviga-

tional, and transactional. Broder et al. (2007) and 

Li et al. (2005) represented query intents by top-

ics. Clarke et al. (2009) represented query intents 

by subtopics which denote different senses or 
multiple facets of queries. 

Previous work on query subtopic mining is 

mostly based on clustering framework by manu-
ally defining a similarity measure with few fac-

tors. Hu et al. (2012) employed an agglomerative 

clustering algorithm with a similarity measure 

combining string similarities, click similarities, 
and keyword similarities linearly. Wang et al. 

(2013) applied affinity propagation algorithm 

(Frey and Dueck, 2009) with a sense-based simi-
larity. Tsukuda et al. (2013) used a hierarchical 

clustering algorithm with the similarity measure 

based on search results. 
In this paper, we argue that the similarity be-

tween queries is affected by many different fac-

tors and it could produce more desirable query 

subtopics by learning a similarity measure. To 
learn a similarity measure for query subtopic 

mining, a natural approach is to use a binary 

classifier, that is, the classifier targets pairs of 
queries and makes predictions about whether 

they belong to the same subtopic. However, be-

cause such pairwise classifiers assume that pairs 
are independent, they might make inconsistent 

predictions: e.g., predicting queries qi and qj, qj 

and qk to belong to the same subtopic, but qi and 

qk to belong to different subtopics. For example, 
given three queries, ‘luxury car’, ‘sport car’ and 

‘XJ sport’, for the query ‘jaguar’, a lexicon-

similarity-based classifier is easy to learn that 
‘luxury car’ and ‘sport car’, and ‘sport car’ and 

‘XJ sport’ belong to the same subtopic; but diffi-

cult to learn that ‘luxury car’ and ‘XJ sport’ be-

long to the same subtopic. From this example, 
we can see that a learner should exploit these 

transitive dependencies among queries to learn a 

more effective similarity measure. Hence, in this 
paper, our first contribution is that we learn a 

similarity measure by explicitly modeling the 

dependencies among queries in the same subtop-
ic. The second contribution is that we analyze the 

performance of the proposed approach with dif-

ferent dependencies among queries. The third 

contribution is that we conduct experiments on 
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real-world data and the experimental results con-

firm the effectiveness of the proposed approach 

in mining query subtopics. 

2 Learning to Mine Query Subtopics 

In this section, we present our approach in details. 

First, we collect queries as subtopic candidates 
from query log using a heuristic method. Then, 

we learn a similarity measure to mine query sub-

topics from these candidates. 

2.1 Collecting Subtopic Candidates from 

Query Log 

In web search, users usually add additional 

words to clarify the underlying intents of a query 

(Hu et al., 2012). For example, if the ambiguous 
query ‘jaguar’ does not satisfy a user’s infor-

mation need, he/she may submit ‘jaguar sport 

car’ as an expanded query to specify the subtopic. 

Therefore, for a given query q, we collect its re-
formulations with additional words from query 

log as query subtopic candidates, e.g., we collect 

{‘jaguar sports car’, ‘jaguar XJ sport’, ‘jaguar 
diet’, …} for query ‘jaguar’. We say query q’ is a 

subtopic candidate of q if (1) q’
 is superset of q 

(e.g. q’
= ’jaguar sports car’ and q = ’jaguar’), and 

(2) q’ occurred at least five times in query log. In 

this way, we collect a series of subtopic candi-

dates for each query. Many subtopic candidates, 

however, belong to the same subtopic, e.g., ‘jag-
uar sports car’ and ‘jaguar XJ sport’. Thus, to 

obtain the subtopics of a query, we need to group 

its subtopic candidates into clusters, each of 
which corresponds to an individual subtopic. 

2.2 Mining Query Subtopics 

As we described above, we need to group the 

subtopic candidates of a query into clusters to 

obtain its subtopics. The key to producing desir-
able subtopics is how to measure the similarity 

between subtopic candidates. In this paper, we 

learn a similarity measure by exploiting the de-
pendencies among subtopic candidates in the 

same subtopic. 

We represent each pair of subtopic candidates 

qi and qj as a feature vector ϕ(qi, qj), each dimen-

sion of which describes a factor. The similarity 

measure Simw parameterized by w is defined as 

Simw(qi, qj) = wT∙ϕ(qi, qj), which maps pairs of 
subtopic candidates to a real number indicating 

how similar the pair is: positive for similar and 

negative for dissimilar. As argued in the intro-
duction, the dependencies among subtopic can-

didates within the same subtopic are useful for 

learning an effective similarity measure. We de-

note the dependencies among subtopic candi-

dates as a graph h, whose vertices are subtopic 

candidates and edges connect two vertices be-
longing to the same subtopic. In this paper, we 

employ two different graphs. The first one is the 

all-connection structure, where all subtopic can-
didates belonging to the same subtopic associate 

with each other. Figure 1 gives an example of the 

all-connection structure. The second one is the 
strong-connection structure, where each subtopic 

candidate only associates with its ‘most similar’ 

subtopic candidate within the same subtopic. 

Figure 2 gives an example. 
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Figure 1. An example of the all-connection struc-
ture. The dashed circles denote the subtopics. 

The subtopic candidates (small solid circles) in 

the same dashed circle belong to the same sub-

topic. The weights indicate how similar the pair 
of two vertices is. 
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Figure 2. An example of the strong-connection 

structure. 

Formally, we denote the set of subtopic candi-

dates for a given query q as S = {q1, q2, …, qN}. 
The label y is a partition of the N subtopic candi-

dates into subtopic clusters. h is the correspond-

ing graph that is consistent with y. h is consistent 
with a clustering y if every cluster in y is a con-

nected component in h, and there are no edges in 

h that connect two distinct clusters in y. Given S, 

our approach makes predictions by maximizing 
the sum of similarities for subtopic candidate 

pairs that are adjacent in h, that is, 

T

w i j i j
( , ) ( , )(i, j) (i,j)

arg max ( , ) arg max w ( , )
y h Y H y h Y Hh h

Sim q q q q
    

  

 
where Y and H are the sets of possible y and h 

respectively. (i, j) ∈h denotes qi and qj are di-

rectly connected in h. 

(1) 
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To predict a partition y with the all-connection 

structure, we use the algorithm in (Bansal et al., 

2002) with the objective function Eq (1). To pre-

dict a partition y with the strong-connection 
structure, we run Kruskal’s algorithm on h and 

each tree corresponds to a subtopic, as shown in 

Algorithm 1. 

Algorithm 1: Mining Query Subtopic with Strong-

connection Structure 

Input: the set of query subtopic candidates S = {q1, 
q2, …, qN}, feature vectors ϕ(qi, qj) (1≤i, j≤N,                  
i≠j) and the weight w 
Output: the partition y 

//search for the strong-connection structure h, MST-
KRUSKAL(G) denotes the Minimum Spanning Tree 
algorithm- Kruskal’s algorithm 

for i = 1…N-1 do 
      for j = i+1…N do 
            sim = wT∙ ϕ(qi, qj); 
            G(i, j)=−sim;  
      end 
end 
h’= MST-KRUSKAL(G); 
for i = 1…N-1 do 
      for j = i+1…N do 
            if h’(i, j)<0 then 
               h(i, j) = 1; 
            end 
      end 
end 

// construct the partition y 
t = 0; 
y(1)=0; 
for i = 2…N do 
       j = 1; 
      while j ≤ i-1 do 
            if h(j, i) = 1 then 
               y(i)= y(j); 
               break; 
            end 
            j = j+1; 
      end 
      if j ≥ i then 
         t = t + 1; 
         y(i) = t; 
      end 
end 
return y 

2.3 Solving the Proposed Approach 

For a given set of subtopic candidates with anno-
tated subtopics, {(Sn, yn)} (1≤n≤N), we need to 

estimate the optimal weight w. Empirically, the 

optimal weight w should minimize the error be-
tween the predicted partition y’ and the true parti-

tion y, and it should also have a good generaliza-

tion capability. Therefore, it is learnt by solving 

the following optimization problem (Yu and Joa-
chims, 2009): 

' '
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where ∆(yn, y
’, h’) indicates a loss between a true 

partition yn and the predicted partition y’ speci-

fied by h’, ξn (1≤n≤N) is a set of slack variables 

to allow errors in the training data, and C con-

trols the trade-off between empirical loss and 
model complexity.  

Intuitively, the loss function ∆(yn, y
’, h’) should 

satisfy that ∆(yn, y
’, h’) = 0 if yn = y’, and rises as 

yn and y’ become more dissimilar. Because the 

all-connection structure is observable in the 

training data while the strong-connection struc-

ture is hidden, we define different loss functions 
for them. For the all-connection structure, we 

define the loss function as, 

 ' '

n( , , ) 10
D

y y h
T

   

where T is the total number of pairs of subtopic 

candidates in the set partitioned by yn and y’, and 

D is the total number of pairs where yn and y’ 

disagree about their cluster membership. 
Since the strong-connection structure hn for yn 

is hidden in the training data, we cannot measure 

the loss between (yn, hn) and (y’, h’). According to 
(Yu and Joachims, 2009), we define the loss 

function based on the inferred structure h’ as, 

'

' '

n n n n

(i, j)

( , , ) ( ) ( ) ( , (i, j))
h

y y h n y k y l y


    
 

where n(yn) and k(yn) are the number of subtopic 

candidates and the number of clusters in the cor-

rect clustering yn. l(yn, (i, j) ) = 1 if qi and qj are in 
the same cluster in yn, otherwise  l(yn, (i, j) ) = −1. 

Then the optimization problem introduced in Eq. 

(2) can be solved by the Concave-Convex Proce-

dure (CCCP) (Yuille and Rangarajan, 2003). 

2.4 Pairwise Similarity Features 

The proposed approach requires a set of features 

to measure the similarity between two subtopic 

candidates. Table 1 lists the features employed in 
our approach. These features are categorized into 

two types: lexicon-based similarity and URL-

based similarity. The lexicon-based similarity 
features are employed to measure the string simi-

larity between two subtopic candidates. And the 

URL-based similarity features are used to meas-

ure the semantic similarity between two subtopic 
candidates. The basic idea is that if two queries 

share many clicked URLs, they have similar 

search intent to each other (Li et al., 2008). To 

(2) 

(3) 

(4) 
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make the features comparable with each other, 

we normalize them into range of [0, 1] accord-

ingly. 

Feature Description 

COS cosine similarity between qi and qj 

EUC Euclidean distance between qi and qj 

JAC Jaccard coeff between qi and qj 

EDIT norm edit distance between qi and qj 
LEN |length(qi)-length(qj)|  

SUBSET whether one is a subset of the other 

UCOS cosine similarity between the clicked 

URL sets of qi and qj 

UJAC Jaccard coeff between the clicked URL 

sets of qi and qj 

Table 1: pairwise similarity features employed in 

our approach 

3 Experiments 

3.1 Data Set 

To illustrate the effectiveness of our approach, 

we use 100 ambiguous/multifaceted queries pro-
vided by the NTCIR-9 intent task as original 

queries and collect their subtopic candidates 

from SogouQ dataset (http://www.sogou.com) 
using the method mentioned in section 2.1. For 

the 100 queries, we totally collect 2,280 query 

subtopic candidates. Three annotators manually 
label these candidates with their subtopics ac-

cording to the content words of these candidates 

and their clicked web pages (if there are clicked 

URLs for the candidate in query log). A candi-
date belongs to a specific subtopic if at least two 

annotators agree with it. At last we obtain 1,086 

subtopics. We randomly split the original queries 
into two parts: half used for training and the rest 

for testing. 

3.2 Evaluation Metrics and Baselines 

To evaluate the performance of our approach, we 

employ the measures in (Luo, 2005), which are 
computed as follows, 

' ' ' '

' '

( , ( )) ( , ( ))
,

( , ))( , )

i i i ii i

j ji i ji

R g R R g R
p r

R RR R

 
 



 


 

where R’ is the predicted partition and R is the 

ground-truth partition; π(A, B) is a similarity 

measure between set A and B, which is Jaccard 
coefficient in this paper; and g(.) is the optimal 

mapping between R’ and R. Based on p and r, f-

measure can be calculated as, 

2 p r
f measure

p r

 
 


 

The higher the f-measure score is, the better per-
formance an approach achieves. 

We used the following approaches as baselines: 

 K-means: we perform the standard k-means 

clustering algorithm with different manually 

defined similarity measures to mine query sub-

topics. COS, JAC, EUC, EDIT refer to cosine 
similarity, Jaccard similarity, Euclidean dis-

tance, and edit distance, respectively. 

 Binary Classification Cluster with the all-

connection structure (BCC-AC): BCC-AC uses 
a SVM classifier to learn the weight w and 

clusters with correlation clustering method. 

 Binary Classification Cluster with the strong-

connection structure (BCC-SC): BCC-SC uses 
a SVM classifier to learn the weight w and 

clusters with the method presented in Algo-

rithm 1. 

For the proposed methods, we denote the 
method with the all-connection structure as AC 

and the method with the strong-connection struc-

ture as SC. The parameter C in Eq. (2) is picked 
from10-2 to 104 using a 10-fold cross validation 

procedure. 

3.3 Experimental Results 

Methods p r f-measure 

K-Means-COS 0.6885 0.6589 0.6734 

K-Means-JAC 0.6872 0.6616 0.6742 

K-Means-EUC 0.6899 0.6652 0.6774 

K-Means-EDIT 0.6325 0.6275 0.6300 

BCC-AC 0.7347 0.7263 0.7305 

BCC-SC 0.7406 0.7258 0.7331 

AC 0.8027 0.7911 0.7968 

SC 0.8213* 0.8187* 0.8200* 

Table2: the performance of all methods. “*” in-

dicates significant difference at 0.05 level using a 
paired t-test. 

Table 2 presents the experimental results. Com-

pared with K-Means methods with different 
manually defined similarity measures, SC 

achieves at least 13.14% precision improvement, 

15.35% recall improvement, and 14.26% F-
Measure improvement. And AC achieves at least 

11.28% precision improvement, 12.59% recall 

improvement, and 11.94% F-Measure improve-

ment. These results confirm that the similarity 
between two subtopic candidates is affected by 

many factors and our methods can achieve more 

desirable query subtopics by learning a similarity 
measure. 

Compared with BCC-AC and BCC-SC, SC 

achieves at least 8.07% precision improvement, 

9.29% recall improvement, and 8.69% F-
Measure improvement. And AC achieves at least 

6.21% precision improvement, 6.53% recall im-
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provement, and 6.37% F-Measure improvement. 

These results confirm that the dependencies 

among the subtopic candidates within the same 

subtopic are useful for learning a similarity 
measure for query subtopic mining.  

Compared with AC, SC achieves 1.86% preci-

sion improvement, 2.76% recall improvement, 
and 2.32% F-Measure improvement. These re-

sults confirm that a subtopic candidate belonging 

to a given query subtopic does not need to simi-
lar with all subtopic candidates within the given 

subtopic.  

In order to understand which pairwise similari-

ty feature is important for the problem of query 
subtopic mining, we list the features and their 

weights learned by SC, AC, and BCC (Binary 

Classification Cluster) in Table 3. 

 
SC AC BCC 

COS 0.08 0.04 0.19 

EUC −1.74 −1.07 −0.73 

JAC 4.44 4.73 4.90 

EDIT −1.60 −1.01 −0.48 

LEN −1.34 −0.91 −1.07 

SUBSET 0.21 0.11 −0.05 

UCOS 0.01 0.01 0.04 

UJAC 0.06 0.07 0.09 

Table 3: the features and their weights learned by 

the different methods. 

As can be seen in Table 3, JAC has the largest 

importance weight for mining query subtopics in 

the three methods. The URL-based features 
(UCOS and UJAC) have small importance 

weight. The reason is that clicked URLs are 

sparse in our query log and many long-tail sub-
topic candidates in the same subtopic do not 

share any common URLs. 

4 Conclusions 

In this paper, we propose an approach for mining 

query subtopics from query log. Compared with 

previous approaches, our approach learns a simi-
larity measure by explicitly modeling the de-

pendencies among subtopic candidates within the 

same subtopic. Experimental results on real que-

ries collected from a search engine log confirm 
our approach produces more desirable query sub-

topics by using the learned similarity measure. 
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