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Abstract

This paper is concerned with building
CCG-grounded, semantics-oriented deep
dependency structures with a data-driven,
factorization model. Three types of fac-
torization together with different higher-
order features are designed to capture
different syntacto-semantic properties of
functor-argument dependencies. Integrat-
ing heterogeneous factorizations results
in intractability in decoding. We pro-
pose a principled method to obtain opti-
mal graphs based on dual decomposition.
Our parser obtains an unlabeled f-score of
93.23 on the CCGBank data, resulting in
an error reduction of 6.5% over the best
published result. which yields a signifi-
cant improvement over the best published
result in the literature. Our implementa-
tion is available at http://www.icst.
pku.edu.cn/lcwm/grass.

1 Introduction

Combinatory Categorial Grammar (CCG; Steed-
man, 2000) is a linguistically expressive gram-
mar formalism which has a transparent yet el-
egant interface between syntax and semantics.
By assigning each lexical category a dependency
interpretation, we can derive typed dependency
structures from CCG derivations (Clark et al.,
2002), providing a useful approximation to the
underlying meaning representations. To date,
CCG parsers are among the most competitive sys-
tems for generating such deep bi-lexical depen-
dencies that appropriately encode a wide range
of local and non-local syntacto-semantic infor-
mation (Clark and Curran, 2007a; Bender et al.,
2011). Such semantic-oriented dependency struc-
tures have been shown very helpful for NLP ap-
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plications e.g. Question Answering (Reddy et al.,
2014).

Traditionally, CCG graphs are generated as a
by-product by grammar-guided parsers (Clark and
Curran, 2007b; Fowler and Penn, 2010). The main
challenge is that a deep-grammar-guided model
usually can only produce limited coverage and
corresponding parsing algorithms is of relatively
high complexity. Robustness and efficiency, thus,
are two major problems for handling practical
tasks. To increase the applicability of such parsers,
lexical or syntactic pruning has been shown nec-
essary (Clark and Curran, 2004; Matsuzaki et al.,
2007; Sagae et al., 2007; Zhang and Clark, 2011).

In the past decade, the techniques for data-
driven dependency parsing has made a great
progress (McDonald et al., 2005a,b; Nivre et al.,
2004; Torres Martins et al., 2009; Koo et al.,
2010). The major advantage of the data-driven
architecture is complementary to the grammar-
driven one. On one hand, data-driven approaches
make essential uses of machine learning from lin-
guistic annotations and are flexible to produce
analysis for arbitrary sentences. On the other
hand, without hard constraints, parsing algorithms
for spanning specific types of graphs, e.g. projec-
tive (Eisner, 1996) and 1-endpoint-crossing trees
(Pitler et al., 2013), can be of low complexity.

This paper proposes a new data-driven depen-
dency parser that efficiently produces globally op-
timal CCG dependency graphs according to a dis-
criminative, factorization model. The design of
the factorization is motivated by three essential
properties of the CCG dependencies. First, all ar-
guments associated with the same predicate are
highly correlated due to the nature that they ap-
proximates type-logical semantics. Second, all
predicates govern the same argument exhibit the
hybrid syntactic/semantic, i.e. head-complement-
adjunct, relationships. Finally, the CCG depen-
dency graphs are not but look very much like
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trees, which have many good computational prop-
erties. Simultaneously modeling the three prop-
erties yields intrinsically heterogeneous factoriza-
tions over the same graph, and hence results in in-
tractability in decoding. Inspired by (Koo et al.,
2010; Rush et al., 2010), we employ dual decom-
position to perform principled decoding. Though
not always, we can obtain the optimal solution
most of time. The time complexity of our parser
is O(n3) when various 1st- and 2nd-order features
are incorporated.

We conduct experiments on English CCGBank
(Hockenmaier and Steedman, 2007). Though
our parser does not use any grammar informa-
tion, including both lexical categories and syntac-
tic derivations, it produces very accurate CCG de-
pendency graphs with respect to both token and
complete matching. Our parser obtains an unla-
beled f-score of 93.23, resulting in, perhaps sur-
prisingly, an error reduction of up to 6.5% over
the best published performance reported in (Auli
and Lopez, 2011). Our work indicates that high-
quality data-driven parsers can be built for produc-
ing more general dependency graphs, rather than
trees. Nevertheless, empirical evaluation indicates
that explicitly or implicitly using tree-structured
information plays an essential role. The result also
suggests that a wider range of complicated linguis-
tic phenomena beyond surface syntax can be well
modeled even without explicitly using grammars.
Our algorithm is also applicable to other graph-
structured representations, e.g. HPSG predicate-
argument analysis (Miyao et al., 2004).

2 Related Work

Hockenmaier and Steedman (2007) developed lin-
guistic resources, namely CCGBank, from the
Penn Treebank (PTB; Marcus et al., 1993). In
CCGBank, PTB phrase-structure trees have been
transformed into normal-form CCG derivations,
and deep bi-lexical dependency graphs that encode
functor-argument strcutures have been extracted
from these derivations using coindexation infor-
mation. The typed dependency analysis provides
a useful approximation to the underlying meaning
representations, and has been shown very help-
ful for NLP applications e.g. Question Answering
(Reddy et al., 2014).

Traditionally, CCG graphs are generated as a
by-product by deep parsers with a core gram-
mar (Clark et al., 2002; Clark and Curran, 2007b;

Fowler and Penn, 2010). On the other hand, mod-
eling these dependencies within a CCG parser has
been shown very effective to improve the pars-
ing accuracy (Clark and Curran, 2007b; Xu et al.,
2014). Besides CCG, similar deep dependency
structures can be also extracted from parsers under
other deep grammar formalisms, e.g. LFG (King
et al., 2003) and HPSG (Miyao et al., 2004).

In recent years, data-driven dependency pars-
ing has been well studied and widely applied to
many NLP tasks. Research on data-driven ap-
proach to producing dependency graphs that are
not limited to tree or forest structures has also been
initialized. Sagae and Tsujii (2008) introduced
a transition-based parser that is able to handle
projective directed dependency graphs for HPSG-
style predicate-argument analysis. McDonald and
Pereira (2006) presented a graph-based parser that
can generate graphs in which a word may depend
on multiple heads, and evaluated it on the Danish
Treebank. Encouraged by their work, we study
factorization models as well as principled decod-
ing for CCG-grounded, graph-structured represen-
tations.

Dual decomposition, and more generally La-
grangian relaxation, is a classical method for solv-
ing combinatorial optimization problems. It has
been successfully applied to several NLP tasks,
including parsing (Koo et al., 2010; Rush et al.,
2010) and machine translation (Rush and Collins,
2011). To provide principled decoding for our fac-
torization parser, we employ the dual decomposi-
tion technique. Our work directly follows (Koo
et al., 2010). The two basic factorizations are
similar to the model introduced in (Martins and
Almeida, 2014). Lluı́s et al. (2013) introduced
a dual decomposition based joint model for joint
syntactic and semantic parsing. They are con-
cerned with shallow semantic representation, i.e.
Semantic Role Labeling, whose graphs are sparse.
Different from their concern on integrating syntac-
tic parsing and semantic role labeling under 1st-
order factorization, we are interested in designing
higher-order factorization models for more dense
and general linguistic graphs.

3 Graph Factorization

3.1 Background Notations

Consider a sentence s = 〈w,p〉 with words w =
w1w2 · · ·wn and POS-tags p = p1p2 · · · pn. First
we add one more virtual word w0 = #Wroot#
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Figure 1: Examples to illustrate the predicate-
centric view.

with POS-tag p0 = #Proot# which is convention-
ally considered as the root node of trees or graphs
on the sentence. Then we denote the index set
of all possible dependencies as I = {(i, j)|i ∈
{0, · · · , n}, j ∈ {1, · · · , n}, i 6= j}. A depen-
dency parse then can be represented as a vector

y = {y(i, j) : (i, j) ∈ I},

where y(i, j) = 1 if a dependency with predicate i
and argument j is in the graph, 0 otherwise. Note
that y is not a matrix but a long vector though we
use two indexes to index it. In this paper, we only
consider the unlabeled parsing task. Nevertheless,
it is quite straightforward to extend our models to
labeled parsing. Let Y denote the set of all possi-
ble y. Given a function f : Y → R that assigns
scores to parse graphs, the optimal parse is

y∗ = arg max
y∈Y

f(y).

Following recent advances in discriminative de-
pendency parsing, we build disambiguation mod-
els based on global linear models, as in (McDon-
ald et al., 2005a). In this framework, we score a
dependency graph using a linear model:

fθ(y) = θ>Φ(s,y),

where Φ(s,y) produces a d-dimensional vector
representation of the event that a CCG graph y is
assigned to sentence s. In order to perform the
decoding efficiently, we assume that the depen-
dency graphs can be factored into smaller pieces.
The main goal of this paper is to design ap-
propriate factorization models, namely different
types of fθ’s, to reflect essential properties of the
semantics-oriented CCG dependency graphs.

3.2 Predicate-Centric Factorization

The very fundamental view of the CCG de-
pendency graphs is based on their lexicalized,
predicate-centric nature. Every word is assigned

a lexical category, which directly encodes its sub-
categorization information. Due to the type-
transparency nature of the formalism, this lexi-
cal category provides sufficient information for
not only syntactic derivation but also semantic
composition. It is important to capture functor-
argument relations by putting all arguments of
one particular predicate together. Figure 1 gives
an example. The predicate “exempt” is of type
“((S\NP)/PP)/NP,” indicating that it takes three
semantic dependents. This part of information is
very similar to Semantic Role Labeling (SRL),
whose goal is to find semantic roles for ver-
bal predicates as well as their normalization.
However, functor-argument analysis grounded in
CCG is approximation of underlying logic forms
and thus provides bi-lexical relations for almost all
words. For instance, the second word in focus—
“would”—captures structural information to orga-
nize other predicates yet entities.

In order to perform maximization efficiently
in this view, we treat each predicate separately.
Given a vector yp, we define

ypiy = {y(i, j) : j ∈ {1, · · · , n}, j 6= i}

and assume that f(yp) takes the form

fp(yp) =

n∑
i=0

fpi (ypiy)

To capture the relationships of all arguments to
one particular predicate as a whole, we employ a
Markov model. Let a1, · · · , am be the sequence of
the arguments of the word wi under ypiy. To keep
the arguments in order, we constrain 1 ≤ aj1 <
aj2 ≤ n if j1 < j2. In a k-th order predicate-
centric model, we define

fpi (ypiy) =
m+k−1∑
j=1

θ>p Φp(aj−(k−1), ..., aj , i,w,p)

where aj (j ≤ 0 or j ≥ m + 1) are treated as
specific initial or end state.

Higher-order rather than arc-factored features
can be conveniently extracted from adjacent argu-
ments. This is similar to the sibling factorization
defined by a number of syntactic tree parsers, e.g.
(McDonald and Pereira, 2006), (Koo and Collins,
2010) and (Ma and Zhao, 2012).
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Figure 2: An example to illustrate the argument-
centric view.

3.3 Argument-Centric Factorization
The syntactic principle for tree annotation treats
the dependency relations between two words as
syntactic projection. In another word, the head de-
termines the syntactic category of the whole struc-
ture. The (type-logical) semantic principle deter-
mines a dependency according the types of the two
words. The two kinds of dependency are coherent
but not necessarily the same. In particular, an ad-
junct is a syntactic dependent but usually a seman-
tic predicate of its syntactic head. Figure 2 gives
an example to illustrate the idea. The argument
in focus is “review” that is the complement of the
preposition “in.” The direction of this semantic de-
pendency is the same to its corresponding syntac-
tic dependency. Other predicates that semantically
govern “review” are actually its modifiers, so the
direction of these semantic dependencies are the
opposite of their syntactic counterparts. It is im-
portant to capture head-complement-adjunct rela-
tions by putting all predicates of one particular ar-
gument together.

Similar to the predicate-centric model, we treat
the graph fragment involved by each argument as
independent, and capture the relationships among
all predicates that governs the same argument us-
ing a Markov model. In the definition of predicate-
centric model, if we exchange predicates and ar-
guments, then we get our argument-centric model.
Formally, we define

yayj = {y(i, j) : i ∈ {0, · · · , n}, j 6= i}.

Let p1, · · · , pm be the sequence of the predicates
(in linear word order) that semantically governs
the word j under yayj . A k-th order argument-
centric model scores the dependency graph as

fa(y) =
n∑
j=1

faj (yayj)

=

n∑
j=1

m+k−1∑
i=1

θ>a Φa(pi−(k−1), ..., pi, j,w,p)

Similarly, we define the initial and end states for
pi (i < 0 or i ≥ m+ 1).

3.4 Tree Approximation Model

Tree structures exhibit many computationally-
good properties, and have been widely applied to
model linguistic, especially syntactic, structures.
Tree-structured representation is an essential pre-
requisite for both the parsing algorithms and the
machine learning methods in state-of-the-art syn-
tactic dependency parsers. The CCG dependency
graphs are not but look very much like trees. We
thus argue that a tree-centric model can on one
hand capture some topologically essential charac-
teristics and on the other hand benefit from mature
tree parsing techniques.

To this end, we propose tree approximation to
obtain CCG sub-graphs under the factorization us-
ing tree parsing algorithms. In particular, we
introduce an algorithm to associate every graph
with a projective dependency tree, which we call
weighted conversion. The tree reflects partial in-
formation about the corresponding graph. In this
algorithm, we assign heuristic weights to all pos-
sible edges, and then find the tree with maxi-
mum weights. The key idea behind is to find a
tree frame of a given graph. Given an arbitrary
CCG graph, the conversion is perhaps imperfect in
the sense that information about a small portion of
edges is “lost.” As a result, our tree approximation
model can only generate partial graphs. Neverthe-
less, we will show (in Section 3.5 and 4.2) that
such a model can be combined with predicate- and
argument-centric factorization models in an ele-
gant way.

3.4.1 Weighted Conversion

We assign weights to all the possible edges, i.e. all
pairs of words, and then determine which edges
to be kept by finding the maximum spanning tree.
More formally, given a graph y = {y(i, j)}, each
possible edge (i, j) is assigned a heuristic weight
ω(i, j). The maximum spanning tree t = {t(i, j)}
contains the maximum sum of values of edges:

tmax = arg max
t

∑
(i,j)

t(i, j)ω(i, j)

We separate the ω(i, j) into three parts
(ω(i, j) = A(i, j) + B(i, j) + C(i, j)) that are
defined as below.



• A(i, j) = a · max{y(i, j), y(j, i)}: a is the
weight for the existing edges on graph ignor-
ing direction.

• B(i, j) = b · y(i, j): b is the weight for the
forward edges on the graph.

• C(i, j) = n−|i− j|: This term estimates the
importance of an edge where n is the length
of the given sentence. For dependency pars-
ing, we consider edges with short distance to
be more important because those edges can
be predicted more accurately in future pars-
ing process.

• a � b � n or a > bn > n2: The converted
tree should contain arcs in original graph as
many as possible, and the direction of the arcs
should not be changed if possible. The rela-
tionship of a, b, and c guarantees this.

After all edges are weighted, we can use max-
imum spanning tree (MST) algorithms to get the
converted tree. To get the projective tree, we
choose Eisner’s algorithm. However, the obtained
tree must be labeled in order to encode the origi-
nal graph. Here we introduce a label vector l =
{l(i, j)}. For each (i, j) ∈ I, we assign a label
l(i, j) to edge (i, j) as follows.

Case y(i, j) = 1: label “X”;

Case y(i, j) = 0 ∧ y(j, i) = 1: label “X∼R”;

Case y(i, j) = 0 ∧ y(j, i) = 0: label “None”.

We can convert the labeled tree back to graph and
obtain yt. Tough some edges are lost during the
conversion, a lot more are kept. In fact, according
to our evaluation, 92.74% of edges in the training
set are retained after conversion.

3.4.2 Factorizing Trees
We use the tree parsing model proposed in
(Bohnet, 2010) to score the converted trees. The
model factorizes a tree into 1st-order and 2nd-
order factors. When decoding, the model searches
for a tree with the best score. The score defined
for graphs as well as trees is

f t(yt) = gt(t, l) = θ>t Φt(s, t, l)

= θ1>t Φ1
t (s, t, l) + θ2>t Φ2

t (s, t, l)

=
( ∑
(i,j)∈I

t(i, j)θ1>t Φ1
t (l(i, j),w,p)

)
+θ2>t Φ2

t (s, t, l),

where Φ1
t is the 1st-order features and Φ2

t is the
2nd-order features.

3.5 Parsing as Optimization

Motivated by linguistic properties of the
semantics-oriented CCG dependencies, we
have designed three single factorization models
from heterogeneous views. Our single models
exhibit different predictive strengths considering
that they are designed to capture different prop-
erties separately. Integrating them can generate
better graphs, but is provably hard. To this end,
we formulate the parsing problem as the following
constrained optimization problem.

maximize fp(yp) + fa(ya) + f t(yt)
subject to yp(i, j) = ya(i, j),

yp(i, j) ≥ yt(i, j),
ya(i, j) ≥ yt(i, j) for all (i, j)

The equality constraint says that the graph given
by the predicate- and the argument-centric model
must be identical, while the inequality constraints
say that the frame of graph given by the tree ap-
proximation model must be a subgraph of what is
given by the first two models.

4 Decoding

4.1 Easiness and Hardness of Decoding

The three factorization models are all solvable in
polynomial time. The predicate-centric model and
the argument-centric model can be decoded us-
ing dynamic programming. We provide the de-
tailed description of such an algorithm in our sup-
plementary note. The decoding method for k-th
(k ≥ 2) order model costs time of O(nk+1) where
n is the length of the sentence. The tree approxi-
mation model can re-use existing dependency tree
parsing algorithms.

Unfortunately, the exact joint decoding of 2nd-
order predicate- and argument-centric models is
already NP-hard, not to mention other model com-
binations. The following gives a brief proof for
the problem of combining the 2nd-order predicate-
and argument-centric models.

Proof. Formally, we want to find a graph y which
maximizes F (y) = fp(y)+fa(y). We can design
the feature function Φa and the parameter θa, such



that for all 1 ≤ i1 ≤ i2 ≤ n,
θ>a Φa(0, i1, j,w,p) = 0
θ>a Φa(i1, n+ 1, j,w,p) = 0
θ>a Φa(i1, i2, j,w,p) = −∞
θ>a Φa(0, n+ 1, j,w,p) = −∞

where n is the length of the sentence. Note that
those 4 equations make the nodes except the root
node in the optimal graph each have exactly one
incoming edge. So the problem of finding a tree
t maximizing fp(t) is reduced to this problem.
Moreover, the NP-hard problem 3DM can be re-
duced to the problem of finding a tree t maxi-
mizing fp(t) (see McDonald and Pereira (2006)),
leading to the NP-hardness of both of the prob-
lems.

4.2 Decoding via Dual Decomposition
To solve the joint decoding problem, optimization
techniques based on decomposition with coupling
variables are applicable. In this paper, we propose
to solve it via dual decomposition. The experiment
results show that though not always, we can obtain
the optimal solution most of time. To simplify the
description, we only consider the 2nd-order case
for all three models.

4.2.1 Lagrangian Relaxation
Notice that yp(i, j) ≥ yt(i, j) can be written as

yp(i, j) =

{
1, if yt(i, j) = 1;
arbitrary, if yt(i, j) = 0.

So the constraint can be written asApyp+Aaya+
Atyt = 0, where

Ap =

 I
Dyt

0

Aa =

 −I0
Dyt

At =

 0
−Dyt

−Dyt


I is the identity matrix and Dyt is a diagonal ma-
trix whose main diagonal is the vector yt.

The Lagrangian of the optimization problem is

L(yp,ya,yt;u) = fp(yp) + fa(ya) + f t(yt)

+u>(Apyp +Aaya +Atyt),

where u is the Lagrangian multiplier.
Omitting the constraints, the dual objective is

L(u) = max
yp,ya,yt

L(yp,ya,yt;u)

= max
yp

(fp(yp) + u>Apyp)

+ max
ya

(fa(ya) + u>Aaya)

+ max
yt

(f t(yt) + u>Atyt)

Let L∗ be the maximized value of L(yp,ya,yt;u)
subjected to the constraints, then L∗ =
minu L(u), according to the duality principle.

4.2.2 Decoding Algorithm
There are two challenges in solving the dual prob-
lem. One challenge is to find the minimum value
of the dual objective. For this, we can use subgra-
dient method, as is demonstrated in Algorithm 1.
The other is the evaluation of L(u). For this, we
decompose the dual objective into three optimiza-
tion problems. Let Bp = u>Ap, Ba = u>Aa,
Bt = u>At, and

Ctl (i, j) =

{
Bt(i, j), if l(i, j) = X;
Bt(j, i), if l(i, j) = X ∼ R;

we can just redefine

fpi (yiy) =

m+1∑
j=1

(
θ>p Φp(aj−1, aj , i,w,p)

+Bp(i, j)
)

faj (yyj) =
m+1∑
i=1

(
θ>a Φa(pi−1, pi, j,w,p)

+Ba(i, j)
)

f t(y) =
( ∑

(i,j)∈I

t(i, j)
(
θ1>t Φ1

t (l(i, j),w,p)

+Ctl (i, j)
))

+ θ2>t Φ2
t (s, t, l),

and decode according to the new scores. In fact,
this equals to attach some new weights to 1st-order
factors, without changing the decoding algorithms
for the subproblems. This nice property also al-
lows using higher-order models for subproblems.

Algorithm 1: Joint decoding algorithm

Initialization: set u(0) to 0
for k = 1 to K do

yp(k) ← arg maxy f
p(y) + u(k)A

py

ya(k) ← arg maxy f
a(y) + u(k)A

ay

yt(k) ← arg maxy f
t(y) + u(k)A

ty

if Apyp(k) +Aaya(k) +Atyt(k) = 0 then
return ya

u(k) ← u(k−1)
−αk(Apyp(k) +Aaya(k) +Atyt(k))

Algorithm 1 is our decoding algorithm. In ev-
ery iteration, we first compute the optimal y’s of



the three subproblems. If the y’s satisfies the con-
straints, then we’ve find the optimal solution for
the original problem. If not, we update the La-
grangian multiplier u, towards the negative sub-
gradient. We initialized u to be a zero vector,
and use αk to be the step length of each iteration.
When we decode the subproblems, the Dyc in Ap

and Aa is derived from the yc obtained in the cur-
rent iteration.

We can also assign weights to different factor-
ization models. If we choose to do so, the La-
grangian becomes

L(yp,ya,yc;u) = wpfp(yp) + wafa(ya)

+wcf t(yt) + u>(Apyp +Aaya +Atyt).

And the decoding of subproblems in our algorithm
becomes

yp(k) ← arg max
y

fp(y) +
1

wp
u(k)A

py;

ya(k) ← arg max
y

fa(y) +
1

wa
u(k)A

ay;

yt(k) ← arg max
y

f t(y) +
1

wc
u(k)A

ty.

The algorithm we give here is the joint decod-
ing for all the three models. We can also decode
using any two of them, and it is trivial to adapt the
algorithm to the decoding.

4.3 Pruning
In order to improve the efficiency of the algorithm,
we also do some pruning. One idea is that, in
predicate-centric model, different type of predi-
cates has different number of arguments. For ex-
ample, the predicates POS-tagged “DT” each has
only one argument in most cases. Therefore, we
assign each POS-tag a max number of arguments.
When decoding, we search at most those number
of arguments instead of all the words in the sen-
tence. This pruning method can also be applied
to the argument-centric model. The other idea is
that, some pairs of types never form a predicate-
argument relation. So we can skip extracting fea-
ture of those POS-tag pairs, just take −∞ to be
their scores.

5 Evaluation and Analysis

5.1 Experimental Setup
CCGbank is a translation of the Penn Treebank
into a corpus of CCG derivations (Hockenmaier

Devel. Test
HMM Tagger 96.74% 97.23%
Transition-based Parser 93.48% 93.09%
Graph-based Parser 93.47% 93.19%

Table 1: The accuracy of the POS tagger and the
UAS of the syntax tree parsers.

and Steedman, 2007). CCGbank pairs syntac-
tic derivations with sets of word-word dependen-
cies which approximate the underlying functor-
argument structure. Our experiments were per-
formed using CCGBank which was split into three
subsets for training (Sections 02-21), development
testing (Section 00) and the final test (Section 23).
We also use the syntactic dependency trees pro-
vided by the CCGBank to obtain necessary in-
formation for graph parsing. However, different
from experiments in the CCG parsing literature, we
use no grammar information. Neither lexical cate-
gories nor CCG derivations are utilized.

All experiments were performed using automat-
ically assigned POS-tags that are generated by a
symbol-refined generative HMM tagger1 (Huang
et al., 2010), and automatically parsed dependency
trees that are generated by our in-house implemen-
tation of the transition-based model presented in
(Zhang and Nivre, 2011) as well as a 2nd-order
graph-based parser2 (Bohnet, 2010). The accu-
racy of these preprocessors is shown in Table 1.
We ran 5-fold jack-knifing on the gold-standard
training data to obtain imperfect dependency trees,
splitting off 4 of 5 sentences for training and the
other 1/5 for testing, 5 times. For each split, we
re-trained the tree parsers on the training portion
and applied the resulting model to the test portion.

Previous research on dependency parsing shows
that structured perceptron (Collins, 2002) is one of
the strongest discriminative learning algorithms.
To estimate θ’s of different models, we utilize the
averaged perceptron algorithm. We implement our
own the predicate- and argument-centric models.
To perform tree parsing, we re-use the open-source
implementation provided by the mate-tool. See
the source code attached for details. We set it-
eration 5 to train predicate- and argument-centric
models and 10 for the tree approximation model.
To perform dual decomposition, we set the maxi-
mum iteration 200.

1www.code.google.com/p/
umd-featured-parser/

2www.code.google.com/p/mate-tools/

www.code.google.com/p/umd-featured-parser/
www.code.google.com/p/umd-featured-parser/
www.code.google.com/p/mate-tools/


Tree Model UP UR UF UEM

No

PC 91.85 87.26 89.50 18.77
AC 91.94 87.06 89.43 16.47
TA 92.85 86.39 89.51 14.48

PC+AC 93.84 88.18 90.93 23.05
PC+TA 91.80 91.69 91.74 27.29
AC+TA 90.19 92.88 91.52 25.51

PC+AC+TA 93.01 92.08 92.54 32.83

Gr

PC 94.01 90.76 92.36 30.16
AC 94.14 90.44 92.25 27.71
TA 93.07 86.59 89.71 15.16

PC+AC 94.66 91.09 92.84 33.19
PC+TA 92.98 92.68 92.83 35.02
AC+TA 92.47 93.13 92.80 33.93

PC+AC+TA 93.66 92.73 93.19 37.64

Tr

PC 93.93 90.85 92.37 30.21
AC 93.94 90.66 92.27 28.23
TA 93.19 86.68 89.82 14.79

PC+AC 94.58 91.14 92.83 31.94
PC+TA 92.93 92.71 92.82 35.34
AC+TA 92.33 93.16 92.74 33.61

PC+AC+TA 93.50 92.73 93.11 37.69

Table 2: Parsing performance on the development
data. The column “Tree” denotes the parsers that
give dependency tree of development set: no tree
(No), transition-based (Tr) or graph-based (Gr).
“PC,” “AC” and “TA” in the second column de-
notes the predicate-centric, the argument-centric
and the tree approximation models, respectively.

5.2 Effectiveness of Data-driven Models

Table 2 summarizes parsing performance on de-
velopment set with different configurations. We
report unlabeled precision (UP), recall (UR), f-
score (UF) as well as complete match (UEM). It
can be clearly seen that the data-driven models
obtains high-quality graphs with respect to token
match. Even without any syntactic information
(see the top block associated with “No Tree”), our
parser with all three factorization models obtains
an f-score of 92.5. when assisted by a syntac-
tic parser, this figure goes up to over 93.1. If the
predicate- or argument-centric model is applied by
itself, either one can achieve a competitive accu-
racy, especially when syntactic features are uti-
lized.

5.3 Effectiveness of Multiple Factorization

We use dual decomposition to perform joint de-
coding. First we combine the predicate-centric
model and the argument-centric model. Compared
to each single model, an error reduction of about
7% on f-score (UF) on average is achieved. Fur-
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Figure 3: The exact decoding rate.

thermore, we ensemble all the three models. If no
syntactic features are extracted, the “TA” model
brings in a remarkable further absolute gain of
1.02 with respect to token match. If syntactic
features are used, the “PC” and “AC” models al-
ready achieves relatively good performance, and
the “TA” model does not contribute much consid-
ering token match. The join of the tree approxi-
mation model lowers the precision, it increases the
recall further, resulting in a modest improvement
of the f-score. Nonetheless, the “TA” model still
significantly improve the complete match metric.
It is noticeable that in all setting, the “TA” model
result in very significant boost in complete match.

The dual decomposition does not guarantee to
find an exact solution (in a limited number of it-
erations) in theory but usually works very well in
practice. We calculate the percentage of finding
exact decoding below k iterations, and the result is
show in Figure 3. The transition-based tree parser
is utilized here. We can see that for most sen-
tences, dual decomposition practically gives the
exact solutions.

5.4 Importance of Tree Structures
Our factorization parser (with best experimental
setting) does not utilize a grammar but do use
syntactic information in the dependency formal-
ism. In particular, the parser extracts the so-called
path features from dependency trees. The syntac-
tic trees is very importance to our parser, which
provide a critical set of features for the predicate-
centric and the argument-centric models. With-
out the syntactic trees, their performances de-
crease significantly. We try two different parsers
to obtain the syntax tree parses. One is of the
transition-based architecture, and the other graph-



Tree Model UP UR UF UEM
No PC+AC+TA 93.03 92.03 92.53 32.61
Gr PC+AC+TA 93.71 92.72 93.21 38.14
Tr PC+AC+TA 93.63 92.83 93.23 37.47
Auli and Lopez 93.08 92.44 92.76 -

Xu et al. 93.15 91.06 92.09 37.56

Table 3: Comparing the state-of-art with our mod-
els on test set.

based. The architecture of the syntactic tree parser
does not affect the results much. The two tree
parsers give identical attachment scores, and lead
to similar graph parsing accuracy. This result is
somehow non-obvious given that the combination
of a graph-based and transition-based parser usu-
ally gives significantly better parsing performance
(Nivre and McDonald, 2008; Torres Martins et al.,
2008).

Although the target representation of our parser
is general graphs rather trees, implicitly or explic-
itly using tree-structured information plays an es-
sential role. Syntactic features are able to im-
prove the f-score achieved by the “PC+AC” model
from 90.9 to 92.8, while the “TA” model can bring
in an absolute gain of 1.6. Note that the “TA”
model does not utilize any syntactic tree infor-
mation. The converted trees are automatically in-
duced from the CCG graphs. Even when syntactic
trees are available, the automatically induced trees
can still significantly improve the complete match
with respect to the whole sentence.

5.5 Comparison to the State-of-the-art

We compare our results with the best published
CCG parsing performance obtained by the models
presented in (Auli and Lopez, 2011) and (Xu et al.,
2014)3. Auli and Lopez (2011) reported best nu-
meric performance. The performance is evaluated
on sentences that can be parsed by their model.
Xu et al. (2014) reported the best published results
for sentences with full coverage. All results on the
test set is shown in Table 3. Even without any syn-
tactic features, our parser achieves accuracies that
are superior to Xu et al.’s parser and comparable
to Auli and Lopez’s system. When unlabeled syn-
tactic trees are provided, our parser outperform the
state-of-the-art.

3The unlabeled parsing results are not reported in the orig-
inal paper. The figures presented in are provided by Wenduan
Xu.

6 Conclusion

In this paper, we have presented a factoriza-
tion parser for building CCG-grounded depen-
dency graphs. It achieves substantial improvement
over the state-of-the-art. Perhaps surprisingly, our
data-driven, grammar-free parser yields a supe-
rior accuracy to all CCG parsers in the literature.
Our work indicates that high-quality data-driven
parsers can be built for producing more general
dependency graphs, rather than trees. Our method
is also applicable to other deep dependency struc-
tures, e.g. HPSG predicate-argument analysis
(Miyao et al., 2004), as well as other graph-
structured semantic representations, e.g. Abstract
Meaning Representations (Banarescu et al., 2013).
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