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Abstract

We propose a cross-lingual framework
for learning coreference resolvers for
resource-poor target languages, given a re-
solver in a source language. Our method
uses word-aligned bitext to project infor-
mation from the source to the target. To
handle task-specific costs, we propose a
softmax-margin variant of posterior regu-
larization, and we use it to achieve robust-
ness to projection errors. We show empir-
ically that this strategy outperforms com-
petitive cross-lingual methods, such as
delexicalized transfer with bilingual word
embeddings, bitext direct projection, and
vanilla posterior regularization.

1 Introduction

The goal of coreference resolution is to find the
mentions in text that refer to the same discourse
entity. While early work focused primarily on En-
glish (Soon et al., 2001; Ng and Cardie, 2002),
efforts have been made toward multilingual sys-
tems, this being addressed in recent shared tasks
(Recasens et al., 2010; Pradhan et al., 2012). How-
ever, the lack of annotated data hinders rapid sys-
tem deployment for new languages. Unsupervised
methods (Haghighi and Klein, 2007; Ng, 2008)
and rule-based approaches (Raghunathan et al.,
2010) avoid this data annotation bottleneck, but
they often require complex generative models or
expert linguistic knowledge.

We propose cross-lingual coreference resolu-
tion as a way of transferring information from
a rich-resource language to build coreference re-
solvers for languages with scarcer resources; as a
testbed, we transfer from English to Spanish and
to Brazilian Portuguese. We build upon the recent
successes of cross-lingual learning in NLP, which
proved quite effective in several structured predic-
tion tasks, such as POS tagging (Täckström et al.,

2013), named entity recognition (Wang and Man-
ning, 2014), dependency parsing (McDonald et
al., 2011), semantic role labeling (Titov and Kle-
mentiev, 2012), and fine-grained opinion mining
(Almeida et al., 2015). The potential of these tech-
niques, however, has never been fully exploited
in coreference resolution (despite some existing
work, reviewed in §6, but none resulting in an end-
to-end coreference resolver).

We bridge this gap by proposing a simple
learning-based method with weak supervision,
based on posterior regularization (Ganchev et
al., 2010). We adapt this framework to handle
softmax-margin objective functions (Gimpel and
Smith, 2010), leading to softmax-margin poste-
rior regularization (§4). This step, while fairly
simple, opens the door for incorporating task-
specific cost functions, which are important to
manage the precision/recall trade-offs in corefer-
ence resolution systems. We show that the result-
ing problem involves optimizing the difference of
two cost-augmented log-partition functions, mak-
ing a bridge with supervised systems based on la-
tent coreference trees (Fernandes et al., 2012;
Durrett and Klein, 2013), reviewed in §3. In-
spired by this idea, we consider a simple penal-
ized variant of posterior regularization that tunes
the Lagrange multipliers directly, bypassing the
saddle-point problem of existing EM and alternat-
ing stochastic gradient algorithms (Ganchev et al.,
2010; Liang et al., 2009). Experiments (§5) show
that the proposed method outperforms commonly
used cross-lingual approaches, such as delexical-
ized transfer with bilingual embeddings, direct
projection, and “vanilla” posterior regularization.

2 Architecture and Experimental Setup

Our methodology, outlined as Algorithm 1, is in-
spired by the recent work of Ganchev and Das
(2013) on cross-lingual learning of sequence mod-
els. For simplicity, we call the source and tar-
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Figure 1: Excerpt of a bitext document with automatic coreference annotations (from FAPESP). The English side had its
coreferences resolved by a state-of-the-art system (Durrett and Klein, 2013). The predicted coreference chains {The pulmonary
alveoli, the alveoli, their} and {The pulmonary surfactant} are then projected to the Portuguese side, via word alignments.

Algorithm 1 Cross-Lingual Coreference Resolution via
Softmax-Margin Posterior Regularization

Input: Source coreference system Se, parallel data De and
Df , posterior constraintsQ.

Output: Target coreference system Sf .
1: De↔f ← RUNWORDALIGNER(De,Df )

2: D̂e ← RUNCOREF(Se,De)

3: D̂f ← PROJECTANDFILTERENTITIES(De↔f , D̂e)

4: Sf ← LEARNCOREFWITHSOFTMARGPR(D̂f ,Q)

get languages English (e) and “foreign” (f ), re-
spectively, and we assume the existence of parallel
documents on the two languages (bitext).

The first two steps (lines 1–2) run a word aligner
and label the source side of the parallel data with
a pre-trained English coreference system. After-
wards, the predicted English entities are projected
to the target side of the parallel data (line 3), in-
ducing an automatic (and noisy) training dataset
for the foreign language. Finally, a coreference
system is trained in this dataset with the aid of
softmax-margin posterior regularization (line 4).

We next detail all the datasets and tools involved
in our experimental setup. Table 1 provides a sum-
mary, along with some statistics.

Parallel Data. As parallel data, we use a
sentence-aligned trilingual (English-Portuguese-
Spanish) parallel corpus based on the scien-
tific news Brazilian magazine Revista Pesquisa
FAPESP, collected by Aziz and Specia (2011).1

We preprocessed this dataset as follows. We la-
beled the English side with the Berkeley Corefer-
ence Resolution system v1.0, using the provided
English model (Durrett and Klein, 2013). Then,
we computed word alignments using the Berke-
ley aligner (Liang et al., 2006), intersected them
and filtered out all the alignments whose confi-

1We found that other commonly used parallel data (such
as Europarl or the UN corpus) have a predominance of direct
speech that is not suitable for our newswire test domain, so
we decided not to use these data.

Dataset # Doc. # Sent. # Tok.
EN OntoNotes (train) 2,374 48,762 1,007,359
EN OntoNotes (dev) 303 6,894 136,257
EN OntoNotes (test) 322 8,262 152,728
ES FAPESP (aligned) 2,704 142,633 3,840,936
ES AnCora (train) 875 8,999 295,276
ES AnCora (dev) 140 1,417 46,167
ES AnCora (test) 168 1,704 53,042
PT FAPESP (aligned) 2,823 166,719 4,538,147
PT Summ-It (train) 30 469 11,771
PT Summ-It (dev) 7 111 2,983
PT Summ-It (test) 13 257 6,491

Table 1: Corpus statistics. EN, ES, and PT denote English,
Spanish, and Portuguese, respectively.

dence is below 0.95. After this, we projected En-
glish mentions to the target side using the maxi-
mal span heuristic of Yarowsky et al. (2001). We
filtered out documents where more than 15% of
the mentions were not aligned. At this point, we
obtained an automatically annotated corpus D̂f
in the target language. Figure 1 shows a small
excerpt where all mentions were correctly pro-
jected. In practice, not all documents are so well
behaved: in the English-Portuguese parallel data,
only 200,175 out of the original 271,122 mentions
(about 73.8%) were conserved after the projection
step. In Spanish, this number drops to 69.9%.

Monolingual Data. We also use monolingual
data for validation and comparison with super-
vised systems. The Berkeley Coreference Reso-
lution system is trained in the English OntoNotes
dataset used in the CoNLL 2011 shared task; this
dataset is also used to train delexicalized models.

For Spanish, we use the AnCora dataset (Re-
casens and Martı́, 2010) provided in the SemEval
2010 coreference task, which we preprocessed as
follows. We split all MWEs into individual tokens
(for consistency with the other corpora). We also
removed the extra gap tokens associated with zero-
anaphoric relations, and the anaphoric annotations
associated with relative pronouns (e.g., in “[una
central de ciclo combinado [que]1 debe empezar
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a funcionar en mayo del 2002]1” we removed the
nested mention [que]1), since these are not anno-
tated in the English dataset.

For Portuguese, we used the Summ-It 3.0 cor-
pus (Collovini et al., 2007), which contains 50
documents annotated with coreferences, from the
science section of the Folha de São Paulo newspa-
per. This dataset is much smaller than OntoNotes
and AnCora, as shown in Table 1. We split the
data into train, development, and test partitions.

For both Spanish and Portuguese, we obtained
automatic POS tags and dependency parses by us-
ing TurboParser (Martins et al., 2013).

3 Coreference Resolution

3.1 Problem Definition and Prior Work

In coreference resolution, we are given a set of
mentions M := {m1, . . . ,mM}, and the goal
is to cluster them into discourse entities, E :=
{e1, . . . , eE}, where each ej ⊆ M and ej 6= ∅.
The set E must form a partition ofM, i.e., we must
have

⋃E
j=1 ej =M, and ei ∩ ej = ∅ for i 6= j.

A variety of approaches have been proposed
to this problem, including entity-centric models
(Haghighi and Klein, 2010; Rahman and Ng,
2011; Durrett et al., 2013), pairwise models
(Bengtson and Roth, 2008; Versley et al., 2008),
greedy rule-based methods (Raghunathan et al.,
2010), and mention-ranking decoders (Denis and
Baldridge, 2008; Durrett and Klein, 2013). We
chose to base our coreference resolvers on this last
class of methods, which permit efficient decoding
by shifting from entity clusters to latent corefer-
ence trees. In particular, the inclusion of lexical-
ized features by Durrett and Klein (2013) yields
nearly state-of-the-art performance with surface
information only. Given that our goal is to pro-
totype resolvers for resource-poor languages, this
model is a good fit—we next describe it in detail.

3.2 Latent Coreference Tree Models

Let x be a document containing M mentions,
sorted from left to right. We associate to the mth
mention a random variable ym ∈ {0, 1, . . . ,m−1}
to denote its antecedent, where the value ym = 0
means that m is a singleton or starts a new coref-
erence chain. We denote by Y(x) the set of coref-
erence trees that can be formed by linking men-
tions to their antecedents; we represent each tree
as a vector y := 〈y1, . . . , yM 〉. Note that each
tree y induces a unique clustering E , but that this

map is many-to-one, i.e., different trees may corre-
spond to the same set of entity clusters. We denote
by Y(E) the set of trees that are consistent with a
given clustering E .

We model the probability distribution p(y|x) as
an arc-factored log-linear model:

pw(y|x) ∝ exp
(∑M

m=1 w>f(x,m, ym)
)
, (1)

where w is a weight vector, and each f(x,m, ym)
is a local feature vector that depends on the
document x, the mention m, and its candi-
date antecedent ym. This model permits a
cheap computation of the most likely tree ŷ :=
arg maxy∈Y(x) pw(y|x): simply compute the best
antecedent independently for each mention, and
collect them to form a tree. An analogous pro-
cedure can be employed to compute the posterior
marginals pw(ym|x) for every mention m.

Gold coreference tree annotations are rarely
available; datasets usually consist of documents
annotated with entity clusters, {〈x(n), E(n)〉}Nn=1.
Durrett and Klein (2013) proposed to learn the
probabilistic model in Eq. 1 by maximizing condi-
tional log-likelihood, treating the coreference trees
as latent variables. They also found advantageous
to incorporate a cost function `(y,Y(E)), measur-
ing the extent to which a prediction y differs from
the ones that are consistent with the gold entity set
E .2 Putting these pieces together, we arrive at the
following loss function to be minimized:

L(w) = −∑N
n=1 log

(∑
y∈Y(E(n)) p

′
w(y|x(n))

)
,

(2)
where p′w is the cost-augmented distribution:

p′w(y|x) ∝ pw(y|x)e`(y,Y(E)). (3)

The loss function in Eq. 2 can be seen as a prob-
abilistic analogous of the hinge loss of support
vector machines, and a model trained this way
is called a softmax-margin CRF (Gimpel and
Smith, 2010). Note that L(w) is non-convex, cor-
responding to the difference of two log-partition
functions (both convex on w),

L(w) =
∑N

n=1

(
logZ ′(w, x(n))− log Ẑ(w, x(n))

)
;

(4)
above we denoted

Z ′(w, x) =
∑

y∈Y(x) e
w>f(x,y)+`(y,Y(E)) (5)

Ẑ(w, x) =
∑

y∈Y(E) e
w>f(x,y), (6)

2A precise definition of this cost is provided in §4.3.
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where f(x, y) :=
∑M

m=1 f(x,m, ym).3 Evaluat-
ing the gradient of the loss in Eq. 4 requires com-
puting marginals for the candidate antecedents of
each mention, which can be done in a mention-
synchronous fashion. This enables a simple
stochastic gradient descent algorithm, which was
the procedure taken by Durrett and Klein (2013).

Another way of regarding this framework, ex-
pressed through the marginalization in Eq. 2, is to
“pretend” that the outputs we care about are the
actual coreference trees, but that the datasets are
only “weakly labeled” with the entity clusters. We
build on this point of view in §4.1.

4 Cross-Lingual Coreference Resolution

We now adapt the framework above to learn coref-
erence resolvers in a cross-lingual manner.

4.1 Softmax-Margin Posterior Regularization

In the weakly supervised case, the training data
may only be partially labeled or contain annota-
tion errors. For taking advantage of these data, we
need a procedure that handles uncertainty about
the missing data, and is robust to mislabelings. We
describe next an approach based on posterior reg-
ularization (PR) that fulfills these requirements.

For ease of explanation, we introduce corpus-
level counterparts for the variables in §3.2. We
use bold capital letters X := {x(1), . . . , x(N)} and
Y := {y(1), . . . , y(N)} to denote the documents
and candidate coreference trees in our corpus. We
denote by pw(Y|X) :=

∏N
n=1 pw(y|x(n)) the

conditional distribution of trees over the corpus,
induced by a model w, and similarly for the cost-
augmented distribution p′w(Y|X).

In PR, we define a vector g(X,Y) of corpus-
level constraint features, and a vector b of upper
bounds for those features. We consider the family
of distributions over Y (call itQ) that satisfy these
constraints in a posteriori expectation,

Q := {q | Eq[g(X,Y)] ≤ b}. (7)

To make the analysis simpler, we assume that 0 ≤
b ≤ 1, and that for every j, minY gj(X,Y) = 0
and maxY gj(X,Y) = 1, where the min/max
above are over all possible coreference trees Y
that can be build from the documents X in the cor-

3Note that the scope of the sum is different in Eqs. 5 and 6:
Z′(w, x) sums over all coreference trees, while Ẑ(w, x)
sums only over those consistent with the gold clusters.

pus.4 Under this assumption, the two extreme val-
ues of the upper bounds have a precise meaning: if
bj = 0, the jth feature becomes a hard constraint,
(i.e., any feasible distribution inQwill vanish out-
side {Y | gj(X,Y) = 0}), while bj = 1 turns it
into a vacuous feature.

We also make the usual assumption that the
constraint features decompose over documents,
g(X,Y) :=

∑N
n=1 g(x(n), y(n)); if this were not

the case, decoding would be much harder, as the
documents would be coupled.

In vanilla PR (Ganchev et al., 2010), one seeks
the model w minimizing the Kullback-Leibler di-
vergence between the set Q and the distribution
pw. Here, we go one step farther to consider the
cost-augmented distribution in Eq. 3. That is, we
minimize KL(Q||p′w) := minq∈QKL(q‖p′w).
The next proposition shows that this expression
also corresponds to a difference of two log-
partition functions, as in Eq. 4.

Proposition 1. The (regularized) minimization of
the cost-augmented KL divergence is equivalent to
the following saddle-point problem:

minw KL(Q‖p′w) + γ
2‖w‖2 = (8)

minw maxu≥0 F (w,u)− b>u + γ
2‖w‖2,

where F (w,u) :=∑N
n=1

(
logZ ′(w, x(n))− logZ ′u(w, x(n))

)
,
(9)

with Z ′(w, x) as in Eq. 5, and

Z ′u(w, x) :=
∑

y∈Y(x)

ew
>f(x,y)+`(y,Y(E))−u>g(x,y).

(10)

Proof. See Appendix A.

In sum, what Proposition 1 shows is that we
can easily extend the vanilla PR framework of
Ganchev et al. (2010) to incorporate a task-specific
cost: by Lagrange duality, the resulting optimiza-
tion problem still amounts to finding a saddle
point of an objective function (Eq. 8), which in-
volves the difference of two log-partition func-
tions (Eq. 9). The difference is that these par-
tition functions now incorporate the cost term
`(y,Y(E)). If this cost term has a factorization
compatible with the features and the constraints,
this comes at no additional computational burden.

4We can always reduce the problem to this case by scaling
and adding a constant to the constraint feature vectors.
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4.2 Penalized Variant

In their discriminative PR formulation for learning
sequence models, Ganchev and Das (2013) opti-
mize an objective similar to Eq. 8 by alternating
stochastic gradient updates with respect to w and
u. In their procedure, b was chosen a priori via
linear regression (see their Figure 2).

Here, we propose a different strategy, based on
Proposition 1 and a simple observation: while the
constraint values b have a more intuitive meaning
than the Lagrange multipliers u (since they may
correspond, e.g., to proportions of events observed
in the data), choosing these upper bounds is often
no easier than tuning u. In this case, a preferable
strategy is to specify u directly—this leaves this
variable fixed in Eq. 8, and allows us to get rid of
b. The resulting problem becomes

minw F (w,u) + γ
2‖w‖2, (11)

which is a penalized variant of PR and no longer a
saddle point problem. This variant requires tuning
the Lagrange multipliers uj in the range [0,+∞],
for every constraint. The two extreme cases of
bj = 0 and bj = 1 correspond respectively to
uj = +∞ and uj = 0.5 Note that this grid search
is only appealing for a small number of posterior
constraints at corpus-level (since document-level
constraints would require tuning separate coeffi-
cients for each document).

The practical advantages of the penalized vari-
ant over the saddle-point formulation are illus-
trated in Figure 2, which compares the perfor-
mance of stochastic gradient algorithms for the
two formulations (there, η2 = 1− b2).

An interesting aspect of this penalized formula-
tion is its resemblance to latent variable models.
Indeed, the objective of Eq. 11 is also a differ-
ence of log-partition functions, as the latent-tree
supervised case (cf. Eq. 4). The noticeable differ-
ence is that now both partition functions include
extra cost terms, either task-specific (`(y,Y(E))
in Z ′) or with soft constraints (u>g(x, y) in Z ′u).
In particular, if we set a single constrained feature
g1(x, y) := I(`(y,Y(E)) 6= 0) with weight u1 →
+∞, all non-zero-cost summands in Z ′u(w, x)

5This follows from Lagrange duality. If bj = 1, the
constraint is vacuous and by complementary slackness we
must have uj = 0. If bj = 0, this becomes a hard con-
straint, so for the nth document, any coreference tree y for
which gj(x

(n), y) 6= 0 must have probability zero—this cor-
responds to setting uj → +∞ in Eq. 10.

Figure 2: Comparison of saddle-point and penalized PR for
Spanish, using the setup in §5.5. Left: variation of the mul-
tiplier u2 over gradient iterations, with strong oscillations in
initial epochs and somewhat slow convergence. Right: im-
pact in the averaged F1 scores (on the dev-set). Contrast with
the more “stable” scores achieved by the penalized method.

vanish and we get Z ′u(w, x) = Ẑ(w, x), recov-
ering the supervised case (see Eq. 6).

Intuitively, this formulation pushes probability
mass toward structures that respect the constraints
in Eq. 7, while moving away from those that have a
large task-specific cost. A similar idea, but applied
to the generative case, underlies the framework of
constrastive estimation (Smith and Eisner, 2005).

4.3 Cost Function
Denote by Em the entire coreference chain of the
mth mention (so E =

⋃
m∈M{Em}), and by

Msing := {m ∈M | Em = {m}} the set of men-
tions that are projected as singleton in the data (we
call this gold-singleton mentions).

We design a task-specific cost `(ŷ,Y(E)) as
in Durrett and Klein (2013) to balance three
kinds of mistakes: (i) false anaphora (ŷm 6=
0 while m ∈ Msing); (ii) false new (ŷm =
0 while m /∈ Msing); and (iii) wrong link
(ŷm 6= 0 but Em 6= Eŷm

). Letting IFA(ŷm, E),
IFN(ŷm, E), and IWL(ŷm, E) be indicators for
these events, we define a weighted Hamming cost
function: `(ŷ,Y(E)) :=

∑M
m=1(αFAIFA(ŷm, E)+

αFNIFN(ŷm, E) + αWLIWL(ŷm, E)). We set
αFA = 0.0, αFN = 3.0, and αWL = 1.0.6 Since
this cost decomposes as a sum over mentions, the
computation of cost-augmented marginals (neces-
sary to evaluate the gradient of Eq. 11) can still be
done with mention-ranking decoders.

4.4 Constraint Features
Finally, we describe the constraint features (Eq. 7)
used in our softmax-margin PR formulation.

Constraint #1: Clusters should not split. Let
|M| − |E| be the number of anaphoric mentions

6The only difference with respect to Durrett and Klein
(2013) is that they set αFA = 0.1. We set this coefficient
to zero so that all configurations licensed by the constraint
features (to be made precise in §4.4) will have zero cost.
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in the projected data. We push these mentions to
preserve their anaphoricity (ym 6= 0) and to have
their antecedent in the projected coreference chain
(Em = Eym). To do so, we force the fraction of
mentions satisfying these properties to be at least
η1. This can be enforced via a constraint feature

g1(X,Y) := (12)

−∑N
n=1

∑M(n)

m=1 I(y(n)
m 6= 0 ∧ E(n)

m = E(n)
ym ),

and an upper bound b1 := −η1
∑N

n=1(|M(n)| −
|E(n)|). (These quantities are summed by a con-
stant and rescaled to meet the assumption in §4.1.)
In our experiments, we set η1 = 1.0, turning this
into a hard constraint. This is equivalent to setting
u1 = +∞ in the penalized formulation.

Constraint #2: Most projected singletons
should become non-anaphoric. We define a
soft constraint so that a large fraction of the gold-
singleton mentions m ∈ Msing satisfy ym = 0.
This can be done via a constraint feature

g2(X,Y) := (13)

−∑N
n=1

∑M(n)

m=1 I(y(n)
m = 0 ∧ E(n)

m = {m}),

and an upper bound b2 := −η2
∑N

n=1 |M(n)
sing|. In

our experiments, we varied η2 in the range [0, 1],
either directly or via the dual variable u2, as de-
scribed in §4.1. The extreme case η2 = 0 corre-
sponds to a vacuous constraint, while for η2 = 1
this becomes a hard constraint which, combined
with the previous constraint, recovers bitext direct
projection (see §5.3). The intermediate case makes
this a soft constraint which allows some single-
tons to be attached to existing entities (therefore
introducing some robustness to non-aligned men-
tions), but penalizes the number of reattachments.

5 Experiments

We now present experiments using the setup in
§2. We compare our coreference resolvers trained
with softmax-margin PR (§5.5) with three other
weakly-supervised baselines: delexicalized trans-
fer with cross-lingual embeddings (§5.2), bitext
projection (§5.3), and vanilla PR (§5.4). We also
run fully supervised systems (§5.1), to obtain up-
per bounds for the level of performance we expect
to achieve with the weakly-supervised systems.

An important step in coreference resolution sys-
tems is mention prediction. For English, mention
spans were predicted from the noun phrases given

by the Berkeley parser (Petrov and Klein, 2007),
the same procedure as Durrett and Klein (2013).
For Spanish and Portuguese, this prediction relied
on the output of the dependency parser, using a
simple heuristic: besides pronouns, each maximal
span formed by contiguous descendants of a noun
becomes a candidate mention. This heuristic is
quite effective, as shown by Attardi et al. (2010).

5.1 Supervised Systems

Table 2 shows the performance of supervised sys-
tems for English, Spanish and Portuguese. All op-
timize Eq. 4 appended with an extra regularization
term γ

2‖w‖2, by running 20 epochs of stochastic
gradient descent (SGD; we set γ = 1.0 and se-
lected the best epoch using the dev-set). All lexi-
calized systems use the same features as the SUR-
FACE model of Durrett and Klein (2013), plus fea-
tures for gender and number.7 We collected a list
of pronouns for all languages along with their gen-
der, number, and person information. For English,
we trained on the WSJ portion of the OntoNotes
dataset, and for Spanish and Portuguese we trained
on the monolingual datasets described in §2.

We observe that the Spanish system obtains av-
eraged F1 scores around 44%, a few points below
the English figures.8 In Portuguese, these scores
are significantly lower (in the 37–39% range),
which is explained by the fact that the training
dataset is much smaller (cf. Table 1).

For English, we also report the performance of
delexicalized systems, i.e., systems where all the
lexical features were removed. The second row
of Table 2 shows a drop of 2–2.5 points with re-
spect to the lexicalized system. For the third and
fourth rows, the lexical features were replaced
by bilingual word embeddings (either English-
Spanish or English-Portuguese; a detailed descrip-
tion of these embeddings will be provided in §5.2).
Here the drop is small, and for English-Spanish it
looks on par with the lexicalized system.

7For English, the gender and number of nominal and
proper mentions were obtained from the statistics collected
by Bergsma and Lin (2006). For Spanish and Portuguese we
used a simple heuristic for nominal mentions, based on the
determiner preceding the noun (when there is one).

8We point out that the supervised Spanish system we
present here is strong enough to outperform all participating
systems in the SemEval 2010’s closed regular track. When
trained on the original Spanish SemEval data (with zero- and
relative pronoun anaphoras) and evaluated in the provided
scorer, it achieves 53.0% averaged F1 in the test partition; for
comparison, TALN-1 (Attardi et al., 2010), the best system at
the shared task, achieved 49.6% averaged F1.
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Dev Test
MUC B3 CEAFe Avg. MUC B3 CEAFe Avg.

EN lexicalized 58.35 50.75 52.08 53.73 59.07 49.25 48.78 52.37
EN delexicalized, no embed. 56.59 48.81 49.95 51.78 55.96 46.94 46.19 49.70
EN delexicalized, emb. EN-ES 57.55 49.83 51.21 52.86 59.00 49.25 49.00 52.42
EN delexicalized, emb. EN-PT 57.91 49.67 51.01 52.86 58.03 48.16 48.33 51.51
ES lexicalized 48.24 40.97 43.59 44.27 47.03 40.68 44.09 43.93
PT lexicalized 35.60 34.47 42.56 37.54 41.61 36.91 40.96 39.83

Table 2: Results for the supervised systems. We show also the performance of delexicalized English systems, with and without
cross-lingual embeddings. Shown are MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), and CEAFe (Luo, 2005), as
well their averaged F1 scores, all computed using the reference implementation of the CoNLL scorer (Pradhan et al., 2014).

Dev Test
MUC B3 CEAFe Avg. MUC B3 CEAFe Avg.

ES simple baseline 25.73 24.73 27.89 26.12 26.06 26.12 29.87 27.35
ES baseline #1 (delex. transfer) 33.04 27.47 32.71 31.07 34.35 28.69 34.42 32.49
ES baseline #2 (bitext dir. proj.) 39.42 30.04 38.25 35.90 37.21 29.72 35.97 34.30
ES baseline #3 (vanilla PR) 41.29 33.68 38.56 37.84 39.34 32.95 38.23 36.84
ES softmax-margin PR 42.34 35.53 39.95 39.27 41.22 35.30 39.94 38.82
PT simple baseline 26.04 26.67 33.19 28.63 22.72 23.91 27.35 24.66
PT baseline #1 (delex. transfer) 22.51 23.27 33.27 26.35 31.11 27.36 32.78 30.42
PT baseline #2 (bitext dir. proj.) 30.43 27.37 36.47 31.42 31.93 27.97 35.40 31.77
PT baseline #3 (vanilla PR) 30.97 27.82 35.14 31.31 38.39 33.34 38.73 36.82
PT softmax-margin PR 33.43 31.00 38.82 34.42 38.18 34.05 39.47 37.23

Table 3: Results for all the cross-lingual systems. Bold indicates the overall highest scores. As a lower bound, we show a simple
deterministic baseline that, for pronominal mentions, selects the closest non-pronominal antecedent, and, for non-pronominal
mentions, selects the closest non-pronominal mention that is a superstring of the current mention.

5.2 Baseline #1: Delexicalized Transfer With
Cross-Lingual Embeddings

We now turn to the cross-lingual systems. Delex-
icalized transfer is a popular strategy in NLP (Ze-
man and Resnik, 2008; McDonald et al., 2011),
recently strengthened with cross-lingual word rep-
resentations (Täckström et al., 2012). The proce-
dure works as follows: a delexicalized model for
the source language is trained by eliminating all
the language-specific features (such as lexical fea-
tures); then, this model is used directly in the tar-
get language. We report here the performance of
this baseline on coreference resolution for Span-
ish and Portuguese, using the delexicalized models
trained on the English data as mentioned in §5.1.

To achieve a unified feature representation, we
mapped all language-specific POS tags to univer-
sal tags (Petrov et al., 2012). All lexical features
were replaced either by cross-lingual word em-
beddings (for words that are not pronouns); or by
a universal representation containing the gender,
number, and person information of the pronoun.
To obtain the cross-lingual word embeddings, we
ran the method described by Hermann and Blun-
som (2014) for the English-Spanish and English-
Portuguese pairs, using the parallel sentences in
§2. When used as features, these 128-dimensional
continuous representations were scaled by a factor
of 0.5 (selected on the dev-set), using the proce-

dure of Turian et al. (2010).
The second and seventh rows in Table 3 show

the performance of this baseline, which is rather
disappointing. For Spanish, we observe a large
drop in performance when going from supervised
training to delexicalized transfer (about 11–13%
in averaged F1). For Portuguese, where the super-
vised system is not so accurate, the difference is
less sharp (about 9–11%). These drops are mainly
due to the fact that this method does not take into
account the intricacies of each language—e.g.,
possessive forms have different agreement rules in
English and in Romance languages;9 those, on the
other hand, have clitic pronouns that are absent in
English. Feature weights that promote certain En-
glish agreement relations may then harm perfor-
mance more than they help.

5.3 Baseline #2: Bitext Direct Projection

Another popular strategy for cross-lingual learn-
ing is bitext direct projection, which consists in
projecting annotations through parallel data in
the source and target languages (Yarowsky et al.,
2001; Hwa et al., 2005). This is essentially the
same as Algorithm 1, except that line 4 is replaced
by simple supervised learning, via a minimization

9For example, in Figure 1, their agrees in number with
the possessor (the alveoli), but the corresponding sua agrees
in number and gender with the thing possessed (função).
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of the loss function in Eq. 4 with `2-regularization.
This procedure has the disadvantage of being very
sensitive to annotation errors, as we shall see. For
Portuguese, this baseline is a near-reproduction of
Souza and Orăsan (2011)’s work, discussed in §6.

The third and eighth rows in Table 3 show
that this baseline is stronger than the delexicalized
baseline, but still 6–8 points away from the super-
vised systems. This gap is due to a mix of two
factors: prediction errors in the English side of
the bitext, and missing alignments. Indeed, when
automatic alignments are used, false negatives for
coreferent pairs of mentions are common, due to
words that have not been aligned with sufficiently
high confidence. The direct projection method is
not robust to these annotation errors.

5.4 Baseline #3: Vanilla PR
Our last baseline is a vanilla PR approach; this
is an adaptation of the procedure carried out by
Ganchev and Das (2013) to our coreference reso-
lution problem. The motivation is to increase the
robustness of bitext projection to annotation er-
rors, which we do by applying the soft constraints
in §4.4. We seek a saddle-point of the PR objec-
tive by running 20 epochs of SGD, alternating w-
updates and u-updates. The best results in the dev-
set were obtained with η1 = 1.0 and η2 = 0.9.

By looking at the fourth and ninth rows of Ta-
ble 3, we observe that vanilla PR manages to re-
duce the gap to supervised systems, obtaining con-
sistent gains over the bitext projection baseline
(with the exception of the Portuguese dev-set).
This confirms the ability of PR methods to handle
annotation mistakes in a robust manner.

5.5 Our Proposal: Softmax-Margin PR
Finally, the fifth and last rows in Table 3 show the
performance of our systems trained with softmax-
margin PR, as described in §4.1. We optimized the
loss function in Eq. 11 with γ = 1.0 by running 20
epochs of SGD, setting u1 = +∞ and u2 = 1.0
(cf. §4.4)—the last value was tuned in the dev-set.
As shown in Figure 2, this penalized variant was
more effective than the saddle point formulation.

From Table 3, we observe that softmax-margin
PR consistently beats all the baselines, narrow-
ing the gap with respect to supervised systems to
about 5 points for Spanish, and 2–3 points for Por-
tuguese. Gains over the vanilla PR procedure (the
strongest baseline) lie in the range 0.5–3%. These
gains come from the ability of softmax-margin PR

to handle task-specific cost functions, enabling a
better management of precision/recall tradeoffs.

5.6 Error Analysis

We carried out some error analysis, focused on
the Spanish development dataset, to better under-
stand where the improvements of softmax-margin
PR come from. The main conclusions carry out to
the Portuguese case, with a few exceptions, mostly
due to different human annotation criteria.

Table 4 shows the precision and recall scores
for mention prediction and the different corefer-
ence evaluation metrics. Note that all systems pre-
dict the same candidate mentions; however a final
post-processing discards all mentions that ended
up in singleton entities, for compliance with the
official scorer. Therefore, the mention prediction
score reflects how well a system does in predicting
if a mention is anaphoric or not. The first thing to
note is that the PR methods, due to their ability
to create new links during training (via constraint
#2) tend to predict fewer singletons than the direct
projection method. Indeed, we observe that soft
max-margin PR achieves 47.1% mention predic-
tion recall, which is more than 5% above the di-
rect projection method, and 10% above the delex-
icalized transfer method. Note also that, while
the vanilla PR method achieves higher recall than
the two other baselines, it is still almost 5% be-
low the system trained with soft-max margin PR.
This is because vanilla PR does not benefit from
the cost function in §4.3—such cost is able to pe-
nalize false non-anaphoric mentions and encour-
age larger clusters, allowing softmax-margin PR
to achieve a better precision-recall trade-off. From
Table 4, we can see that this improvement in men-
tion recall consistently translates into higher recall
for the MUC, B3 and CEAFe coreference metrics.

Further analysis revealed that a major source of
error for the delexicalized baseline is its inabil-
ity to handle pronominal mentions robustly across
languages—as hinted in footnote 9. In practice,
we found the delexicalized systems to be quite
conservative with possessive pronouns: for the
Spanish dataset, where the vast majority of pos-
sessive pronouns are anaphoric, the delexicalized
model incorrectly predicts 53.3% of these pro-
nouns as non-anaphoric. The direct projection
model is slightly less conservative, missing 30.1%
of the possessives (arguably due to its inability to
recover missing links in the projected data, dur-
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Mention MUC B3 CEAFe

delex. 37.1 / 62.2 25.6 / 46.5 19.6 / 45.7 27.9 / 39.5
dir. proj. 41.7 / 77.5 29.3 / 60.4 19.2 / 69.5 31.8 / 47.9

vanilla PR 42.2 / 78.0 30.9 / 62.3 23.2 / 61.7 31.9 / 48.8
our PR 47.1 / 74.1 33.7 / 57.1 26.0 / 56.1 34.9 / 46.7

Table 4: Recall/precision scores for mention prediction,
MUC, B3 and CEAFe, all computed in the Spanish dev set.

ing training). By comparison, the vanilla and soft-
max margin PR models only miss 4.9% and 3.4%
of the possessives, respectively. In Portuguese,
where many possessives are not annotated in the
gold data, we observe a similar but much less pro-
nounced trend.

6 Related Work

While multilingual coreference resolution has
been the subject of recent SemEval and CoNLL
shared tasks, no submitted system attempted
cross-lingual training. As shown by Recasens and
Hovy (2010), language-specific issues pose a chal-
lenge, due to phenomena as pronoun dropping and
grammatical gender that are absent in English but
exist in other languages. We have discussed some
of these issues in the scope of the present work.

Harabagiu and Maiorano (2000) and Postolache
et al. (2006) projected English corpora to Roma-
nian to bootstrap human annotation, either manu-
ally or via automatic alignments. Rahman and Ng
(2012) applied translation-based projection at test
time (but require an external translation service).
Hardmeier et al. (2013) addressed the related task
of cross-lingual pronoun prediction. While all
these approaches help alleviate the corpus annota-
tion bottleneck, none resulted in a full coreference
resolver, which our work accomplished.

The work most related with ours is Souza and
Orăsan (2011), who also used parallel data to
transfer an English coreference resolver to Por-
tuguese, but could not beat a simple baseline that
clusters together mentions with the same head.
Their approach is similar to our bitext direct pro-
jection baseline, except that they used Reconcile
(Stoyanov et al., 2010) instead of the Berkeley
Coreference System, and a smaller version of the
FAPESP corpus. We have shown that our softmax-
margin PR procedure is superior to this approach.

Discriminative PR has been proposed by
Ganchev et al. (2010). The same idea underlies
the generalized expectation criterion (Mann and
McCallum, 2010; Wang and Manning, 2014). An
SGD algorithm for solving the resulting saddle

point problem has been proposed by Liang et al.
(2009), and used by Ganchev and Das (2013) for
cross-lingual learning of sequence models. We ex-
tended this framework in two aspects: by incorpo-
rating a task-specific cost in the objective function,
and by formulating a penalized variant of PR.

7 Conclusions

We presented a framework for cross-lingual trans-
fer of coreference resolvers. Our method uses
word-aligned bitext to project information from
the source to the target language. Robust-
ness to projection errors was achieved via a
PR framework, which we generalized to handle
task-specific costs, yielding softmax-margin PR.
We also proposed a penalized formulation that
is effective for a small number of corpus-based
constraints. Empirical gains were shown over
three popular cross-lingual methods: delexicalized
transfer, bitext direct projection, and vanilla PR.
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A Proof of Proposition 1
Let us fix w and see how to evaluate KL(Q||p′w) =
minq∈QKL(q‖p′w). We have:

KL(q‖p′w) = −H(q)−∑
Y q(Y) log p′w(Y|X)

= −H(q) +
∑

n logZ′(w, x(n))−∑
Y q(Y)(w>f(X,Y) + `(Y)),

where `(Y) :=
∑N

n=1 `(y,Y(E(n))) and f(X,Y) :=∑N
n=1 f(x(n), y(n)). Introducing Lagrange multipliers u for

the posterior constraints, we get the Lagrangian function:

L(q,u) = −H(q) +
∑

n logZ′(w, x(n))− b>u

−∑
Y q(Y)(w>f(X,Y)+`(Y)−u>g(X,Y)).

By standard variational arguments (namely, Fenchel duality
between the the log-partition function and the negative en-
tropy; see e.g. Martins et al. (2010)), we have that the optimal
q∗ that minimizes the Lagrangian is

q∗(Y) =
ew
>f(X,Y)+̀ (Y)−u>g(X,Y)∏N

n=1 Z
′
u(w, x(n))

.

Plugging this in the Lagrangian yields Eq. 8.
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dro Mendes, and André F. T. Martins. 2015. Aligning
opinions: Cross-lingual opinion mining with dependen-
cies. In Proc. of the Annual Meeting of the Association
for Computational Linguistics.

Giuseppe Attardi, Stefano Dei Rossi, and Maria Simi. 2010.
TANL-1: coreference resolution by parse analysis and
similarity clustering. In Proc. of the International Work-
shop on Semantic Evaluation.

Wilker Aziz and Lucia Specia. 2011. Fully automatic com-
pilation of a Portuguese-English parallel corpus for statis-
tical machine translation. In STIL 2011.

Amit Bagga and Breck Baldwin. 1998. Algorithms for scor-
ing coreference chains. In Proc. of International Confer-
ence on Language Resources and Evaluation: Workshop
on Linguistics Coreference.

Eric Bengtson and Dan Roth. 2008. Understanding the value
of features for coreference resolution. In Proc. of Empiri-
cal Methods in Natural Language Processing.

Shane Bergsma and Dekang Lin. 2006. Bootstrapping path-
based pronoun resolution. In Proc. of the Annual Meeting
of the Association for Computational Linguistics.

Sandra Collovini, Thiago Carbonel, Juliana Thiesen Fuchs,
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Ruy Luiz Milidiú. 2012. Latent structure perceptron with
feature induction for unrestricted coreference resolution.
In Joint Conference on EMNLP and CoNLL-Shared Task,
pages 41–48.

Kuzman Ganchev and Dipanjan Das. 2013. Cross-lingual
discriminative learning of sequence models with posterior
regularization. In Proc. of Empirical Methods in Natural
Language Processing.

Kuzman Ganchev, João Graça, Jennifer Gillenwater, and Ben
Taskar. 2010. Posterior regularization for structured latent
variable models. Journal of Machine Learning Research,
11:2001–2049.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-Margin
CRFs: Training Log-Linear Models with Loss Functions.
In NAACL.

Aria Haghighi and Dan Klein. 2007. Unsupervised coref-
erence resolution in a nonparametric bayesian model. In
Proc. of Annual Meeting of the Association for Computa-
tional Linguistics.

Aria Haghighi and Dan Klein. 2010. Coreference resolution
in a modular, entity-centered model. In Proc. of Annual
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics.

Sanda M Harabagiu and Steven J Maiorano. 2000. Multilin-
gual coreference resolution. In Proc. of the Conference on
Applied Natural Language Processing.

Christian Hardmeier, Jörg Tiedemann, and Joakim Nivre.
2013. Latent anaphora resolution for cross-lingual pro-
noun prediction. In Proc. of Empirical Methods in Natural
Language Processing.

Karl Moritz Hermann and Phil Blunsom. 2014. Multilingual
Models for Compositional Distributional Semantics. In
Proc. of the Annual Meeting of the Association for Com-
putational Linguistics.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas,
and Okan Kolak. 2005. Bootstrapping parsers via syn-
tactic projection across parallel texts. Natural language
engineering, 11(3):311–325.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Alignment
by agreement. In Proc. of North American Chapter of the
Association of Computational Linguistics.

Percy Liang, Michael I Jordan, and Dan Klein. 2009. Learn-
ing from measurements in exponential families. In Proc.
of International Conference on Machine Learning, pages
641–648.

Xiaoqiang Luo. 2005. On coreference resolution perfor-
mance metrics. In Proc. of Empirical Methods in Natu-
ral Language Processing. Association for Computational
Linguistics.

Gideon Mann and Andrew McCallum. 2010. General-
ized expectation criteria for semi-supervised learning with
weakly labeled data. Journal of Machine Learning Re-
search, 11:955–984.
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