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Abstract

We consider the problem of building scal-
able semantic parsers for Freebase, and
present a new approach for learning to do
partial analyses that ground as much of the
input text as possible without requiring that
all content words be mapped to Freebase
concepts. We study this problem on two
newly introduced large-scale noun phrase
datasets, and present a new semantic pars-
ing model and semi-supervised learning
approach for reasoning with partial onto-
logical support. Experiments demonstrate
strong performance on two tasks: refer-
ring expression resolution and entity at-
tribute extraction. In both cases, the par-
tial analyses allow us to improve precision
over strong baselines, while parsing many
phrases that would be ignored by existing
techniques.

1 Introduction

Recently, significant progress has been made in
learning semantic parsers for large knowledge
bases (KBs) such as Freebase (FB) (Cai and Yates,
2013; Berant et al., 2013; Kwiatkowski et al.,
2013; Reddy et al., 2014). Although these methods
can build general purpose meaning representations,
they are typically evaluated on question answering
tasks and are designed to only parse questions that
have complete ontological coverage, in the sense
that there exists a logical form that can be executed
against Freebase to get the correct answer.1 In this
paper, we instead consider the problem of learning
semantic parsers for open domain text containing

†Now at Google, NY.
1To ensure all questions are answerable, the data is man-

ually filtered. For example, the WebQuestions dataset intro-
duced by Berant et al. (2013) contains only the 7% of the
originally gathered questions.
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Olympic gymnasts of Norway
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a major coal producing province
the relaxed seaside capital of Mozambique

Figure 1: Example noun phrases from Wikipedia
category labels and appositives in newswire text.

concepts that may or may not be representable us-
ing the Freebase ontology.

Even very large knowledge bases have two types
of incompleteness that provide challenges for se-
mantic parsing algorithms. They (1) have partial
ontologies that cannot represent the meaning of
many English phrases and (2) are typically miss-
ing many facts. For example, consider the phrases
in Figure 1. They include subjective or otherwise
unmodeled phrases such as “relaxed” and “quake-
hit.” Freebase, despite being large-scale, contains
a limited set of concepts that cannot represent the
meaning of these phrases. They also refer to enti-
ties that may be missing key facts. For example, a
recent study (West et al., 2014) showed that over
70% of people in FB have no birth place, and 99%
have no ethnicity. In our work, we introduce a new
semantic parsing approach that explicitly models
ontological incompleteness and is robust to miss-
ing facts, with the goal of recovering as much of a
sentence’s meaning as the ontology supports. We
argue that this will enable the application of se-
mantic parsers to a range of new tasks, such as
information extraction (IE), where phrases rarely
have full ontological support and new facts must
be added to the KB.

Because existing semantic parsing datasets have
been filtered to limit incompleteness, we introduce
two new corpora that pair complex noun phrases
with one or more entities that they describe. The
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ry x : Symphonic Poems by Jean Sibelius

e : {The Bard, Finlandia,Pohjola’s Daughter, En Saga, Spring Song, Tapiola... }
l0 : λx.Symphonic(x) ∧ Poems(x) ∧ by(JeanSibelius, x)
y : λx.composition.form(x, Symphonicpoems) ∧ composer(JeanSibelius, x)

x : Defunct Korean football clubs
e : { Goyang KB Kookmin Bank FC,Hallelujah FC, Kyungsung FC }
l0 : λx.defunct(x) ∧ korean(x) ∧ football(x) ∧ clubs(x)
y : λx.OpenType[defunct](x) ∧ OpenRel(x, KOREA) ∧ football clubs(x))

(b
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pp
os

x : a driving force behind the project
e : Germany
l0 : λx.driving(x) ∧ force(x) ∧ behind(x, theproject)
y : λx.OpenType[driving force](x) ∧ OpenRel[behind](x, OpenEntity[the project])

x : an EU outpost in the Mediterranean
e : Malta
l0 : λx.outpost(x) ∧ EU(x) ∧ in(x, theMediterranean)
y : λx.OpenRel(x, EU) ∧ OpenType[outpost](x) ∧ contained by(x, MediterraneanSea)

Figure 2: Examples of noun phrases x, from the Wikipedia category and apposition datasets, paired with
the set of entities e they describe, their underspecified logical form l0, and their final logical form y.

first new dataset contains 365,000 Wikipedia cate-
gory labels (Figure 1, top), each paired with the list
of the associated Wikipedia entity pages. The sec-
ond has 67,000 noun phrases paired with a single
named entity, extracted from the appositive con-
structions in KBP 2009 newswire text (Figure 1,
bottom).2 This new data is both large scale, and
unique in the focus on noun phrases. Noun phrases
contain a number of challenging compositional
phenomena, including implicit relations and noun-
noun modifiers (e.g. see Gerber and Chai (2010)).

To better model text with only partial ontologi-
cal support, we present a new semantic parser that
builds logical forms with concepts from a target
ontology and open concepts that are introduced
when there is no appropriate concept match in
the target ontology. Figure 2 shows examples of
the meanings that we extract. Only the first of
these examples can be fully represented using Free-
base, all other examples require explicit modeling
of open concepts. To build these logical forms,
we follow recent work for Combinatory Categori-
cal Grammar (CCG) semantic parsing with Free-
base (Kwiatkowski et al., 2013), extended to model
when open concepts should be used. We develop
a two-stage learning algorithm: we first compute
broad coverage lexical statistics over all of the data,
which are then incorporated as features in a full
parsing model. The parsing model is tuned on a
hand-labeled data set with gold analyses.

Experiments demonstrate the benefits of the new
approach. It significantly outperforms strong base-

2All new data is available on the authors’ websites.

lines on both a referring expression resolution task,
where much like in the QA setting we directly eval-
uate if we recover the correct logical form for each
input noun phrase, and on entity attribute extrac-
tion, where individual facts are extracted from the
groundable part of the logical form. We also see
that modeling incompleteness significantly boosts
precision; we are able to more effectively deter-
mine which words should not be mapped to KB
concepts. When run on all of the Wikipedia cat-
egory data, we estimate that the learned model
would discover 12 million new facts that could be
added to Freebase with 72% precision.

2 Overview

Semantic Parsing with Open Concepts Our
goal is to learn to map noun phrase referring ex-
pressions x to logical forms y that describe their
meaning. In this work, y is built using both con-
cepts from a knowledge base K and open concepts
that lie outside of the scope of K. For example,
in Figure 2 the phrase “Defunct Korean football
clubs” is modeled using a logical form y that con-
tains the K concept football clubs(x) as well
as the open concepts OpenType[defunct](x).

In this paper we describe a new method for learn-
ing the mapping from x to y from corpora of refer-
ring expression noun phrases, paired with a sets of
entities e that these referring expressions describe.
Figure 2 shows examples of these data drawn from
two sources.

Tasks We introduce two new datasets (Sec. 3)
that pair referring noun phrases x with one or more
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entities e that they describe. These data support
evaluation for two tasks: referring expression reso-
lution and information extraction.

In referring expression resolution, the parser is
given x and is used to predict the referring expres-
sion logical form y that describes e. Since the
majority of our data cannot be fully modeled with
Freebase, we evaluate each y against a hand labeled
gold standard instead of trying to extract e from K.

The entity attribute extraction task also involves
mapping phrases x to logical forms y, with the
goal of adding new facts to the knowledge base K.
To do this, we assume each x is additionally paired
with an set of entities e. We also define an entity
attribute to be a literal in y that uses only concepts
from K. Finally, we extract, for each entity in
e, all of the attributes listed in y. For example,
the first logical form y in Figure 2 has two
entity attributes: composer(JeanSibelius, x)
and composition.form(x, Symphonic poems)
which can be added to K for the entities
{TheBard, Finlandia}.

Model and Learning Our approach extends
the two-stage semantic parser introduced by
Kwiatkowski et al (2013). We use CCG to build
domain-independent logical forms l0 and then in-
troduce a new method for reasoning about how
to map this intermediary representation onto both
open concepts and K concepts (Sec. 4).

To learn this model, we assume access to data
with two different types of annotations. The first
contains noun phrase descriptions x and described
entity sets e (as in Figure 2), which can be eas-
ily gathered at scale with no manual data labeling
effort. However, this data, in general, has signif-
icant amount of knowledge base incompleteness;
many described concepts and entity attributes will
be missing from K (see Sec. 3 for more details).
Therefore, to support effective learning, we will
also use a small hand-labeled dataset containing
x, e, a gold logical form y, an intermediary CCG
logical form l0, and a mapping from words in x to
constants inK and open concepts. Our full learning
approach (Sec. 5) estimates a linear model on the
small labeled dataset, with broad coverage features
derived from the larger dataset.

3 Data

We gathered two new datasets that pair complex
noun phrases with one or more Freebase entities.

The Wikipedia category dataset contains
365,504 Wikipedia category names paired with the
list of entities in that category. 3 Table 1 shows the
details of this dataset and examples are given in
Figure 2. For each development and test data, we
randomly select 500 categories consisted of 3-10
words and describing fewer than 100 entities.

The apposition dataset is a large set of com-
plex noun phrases paired with named entities, ex-
tracted from appositive constructions such as “Gus-
tav Bayer, a former Olympic gymnast for Norway.”
For this example, we extract the entity “Gustav
Bayer” and pair it with the noun phrase “a former
Olympic gymnast for Norway.” To identify apposi-
tive constructions, we ran the Stanford dependency
parser on the newswire section of the KBP 2009
source corpus,4 and selected noun phrases com-
posed of 3 to 10 words, starting with an article, and
paired with a named entity that is in Freebase.

This procedure of identifying complex entity de-
scriptions allows for information extraction from
a wide range of sources. However, it is also noisy
and challenging. The dependency parser makes er-
rors, for example “the next day against the United
States, Spain” is falsely detected as an apposition.
Furthermore, addressing context and co-reference
is often necessary. For example, “Puerto Montt, a
city south of the capital” or “the company’s par-
ent, Shenhua Group” requires reference resolution.
We gathered 67 thousand appositions, which will
be released to support future work, and randomly
selected 300 for testing.

Measuring Incompleteness To study the
amount of incompleteness in this data, we hand
labeled logical forms for 500 Wikipedia categories
in the development set. Examples of annotations
are given in the rows labeled y in Figure 2. We
use these to measure the schema and fact coverage
of Freebase. Many of the entities in this dataset
do not have the Freebase attributes described by
the category phrases. When a concept is not in
Freebase, we annotate it as OpenType or OpenRel,
as shown in Figure 2. On average, each Wikipedia
category name describes 2.58 Freebase attributes,
and 0.39 concepts that cannot be mapped to FB.
Overall, 27.2% of the phrases contain concepts
that do not exist in the Freebase schema.

3Compiled by the YAGO project, available at: www.mpi-
inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago/downloads/

4http://www.nist.gov/tac/2009/
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entire set dev test
# categories 365,504 500 500
# words per category 4.1 4.4 4.3
# unique words 84,996 1,100 1,063
# entities per category 19.9 19.1 18.7
# entities 2,813,631 9,511 9,281
# entity-category pairs 7,292,326 9,549 9,331

Table 1: Wikipedia category data statistics.

entire set test set
# appositions 66,924 300
# unique words 25,472 817
# words per apposition 5.73 5.93

Table 2: Appositive data statistics.

Each category may have multiple correct logical
forms. For example, “Hotels” can be mapped to:
hotel(x), accomodation.type(x, hotel), or
building function(x, hotel). There are also
genuine ambiguities in meaning. For example,
“People from Bordeaux” can be interpreted as
people(x) ∧ place lived(x, Bordeaux) or
people(x) ∧ place of birth(x, Bordeaux).
We made a best effort attempt to gather as many
correct logical forms as possible, finding on
average 1.8 logical forms per noun phrase. There
were 97 unique binary relations, and 247 unique
unary attributes in the annotation.

Given these logical forms, we also measured
factual coverage. For the 72.8% of phrases that
can be completely represented using Freebase, we
executed the logical forms and compared the result
to the labeled entity set. In total, 56% of the queries
returned no entities and those that did return results
have on average 15% overlap with the Wikipedia
entity set. We also measured how often attributes
from the labeled logical forms were assigned to the
Wikipedia entities in FB, finding that only 33.6%
were present. Given this rate, we estimate that it is
possible to add 12 million new facts into FB from
the 7 million entity-category pairs.

4 Mapping Text to Meaning

We adopt a two-stage semantic parsing ap-
proach (Kwiatkowski et al., 2013). We first use
a CCG parser to define a set CCG(x) of possible
logical forms l0. Then we will choose the logical
form l0 that closely matches the linguistic struc-
ture of the input text x, according to a learned
linear model, and use an ontological match step
that defines a set of transformations ONT(l0,K) to
map this meaning to a Freebase query y. Figure 2
shows examples of x, l0 and y. In this section we
describe our approach with the more detailed ex-

ample derivation in Figure 3. We also describe the
parameterization of a linear model that scores each
derivation.

CCG parsing We use a CCG (Steedman, 1996)
semantic parser (Kwiatkowski et al., 2013) to gen-
erate an underspecified logical form l0. Figure 3a
shows an example parse. The constants Former,
Municipalities, in, Brandenburgh in l0 are not
tied to the target knowledge base, causing the logi-
cal form to be underspecified. They can be replaced
with Freebase constants in the later ontology match-
ing step.

Ontological Matching The ontological match
step has structural match and constant match com-
ponents. Structural match operators can collapse
or expand sub-expressions in the logical forms
to match equivalent typed concepts in the target
knowledge base. We adopt existing structural
match operators (Kwiatkowski et al., 2013) and
refer readers to that work for details.

Constant match operators replace underspeci-
fied constants in the underspecified logical form
l0 with concepts from the target knowledge base.
There are four constant match operations used in
Figure 3. The first two constant matches, shown be-
low, match underspecified constants with constants
of the same type from Freebase.

in→ location.containedby

Brandenburgh→ BRANDENBURGH

However, because we are modeling the semantics
of phrases that are not covered by the Freebase
schema, we also require the following two constant
matches:

Former(x)→ OpenType

municipalities(x)→ OpenRel(x, Municipality)

Here, the word ‘former’ has been associated with
a placeholder typing predicate since Freebase has
no way of expressing end dates of administrative
divisions. There is also no Freebase type repre-
senting the concept ‘municipalities.’ However, this
word is associated with an entity in Freebase. Since
there is no suitable linking predicate for the entity
Municipality, we introduce a placeholder link-
ing predicate OpenRel in the step from l2 → l3.
Our constant match operators can also introduce
placeholder entities OpenEntity when there is no
good match in Freebase.
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(a) CCG parse builds an underspecified semantic representation of the sentence.

Former municipalities in Brandenburgh

N/N N N\N/NP NP
λfλx.f(x) ∧ former(x) λx.municipalities(x) λfλxλy.f(y) ∧ in(y, x) Brandenburg

> >
N N\N

λx.former(x) ∧municipalities(x) λfλy.f(y) ∧ in(y,Brandenburg)
<

N
l0 = λx.former(x) ∧municipalities(x) ∧ in(x,Brandenburg)

(b) Constant matches replace underspecified constants with Freebase concepts

l0 = λx.former(x) ∧municipalities(x) ∧ in(x,Brandenburg)

l1 = λx.former(x) ∧municipalities(x) ∧ in(x, Brandenburg)

l2 = λx.former(x) ∧municipalities(x) ∧ location.containedby(x, Brandenburg)

l3 = λx.former(x) ∧ OpenRel(x, Municipality) ∧ location.containedby(x, Brandenburg)

l4 = λx.OpenType(x) ∧ OpenRel(x, Municipality) ∧ location.containedby(x, Brandenburg)

Figure 3: Derivation of the analysis for “Former municipalities in Brandenburgh”. This analysis contains
a placeholder type and a placeholder relation as described in Section 4.

We also allow the creation of typing predicates
from matched entities through the introduction of
linking predicates. For example, there is no native
type associated with the word ‘actor’ in Freebase.
Instead we create a typing predicate by matching
the word to a Freebase entity Actor using Free-
base API and allowing the introduction of linked
predicates such as person.profession :

actor(x)→ person.profession(x, Actor)

Scoring Full Parses Our goal in this paper is to
learn a function from the phrase x to the correct
analysis y. We score each parse using a linear
model with features that signal attributes of the
underspecified parse φp and those that signal at-
tributes of the ontological match φont. Since the
model factors over the two stages of parser, we split
the prediction problem similarly. First, we select
the maximum scoring underspecified logical form:

l∗ = arg max
l∈CCG(x)

(θp · φp(l))

and then we select the highest scoring Freebase
analysis y∗ that can be built from l∗:

y∗ = arg max
r∈ONT(l∗,K)

(θont · φont(r))

We describe an approach to learning the parameter
vectors θp and θont below.

5 Learning

We introduce a learning approach that first collates
aggregate statistics from the 7 million Wikipedia
entity-category pairs and existing facts in FB, and
then uses a small labeled training set to tune the
weights for features that incorporate these statistics.

Wikipedia Category
Wars involving the Grand Duchy of Lituania
Entity Attribute

BattleOfGrunwald type(x, military.conflict)
GollubWar type(x, military.conflict)
BattleOfGrunwald time.event.loc(x, Grunwald)
. . . . . .

Entity Relation
BattleOfGrunwald military conflict.combatants
GollubWar time.event.start time
BattleOfGrunwald military conflict.commanders
. . . . . .

Figure 4: Labeled entities are associated with at-
tributes and relations.

Broad Coverage Lexical Statistics Each
Wikipedia category is associated with a number
of entities, most of which exist in FB. We use
these entities to extract relations and attributes in
FB associated with that category. For example,
in Figure 4 the category ‘Wars involving the
Grand Duchy of Lithuania’ is associated with
the relation military conflict.combatants
and the attribute type(x, military.conflict)
multiple times, because they are present in many of
the category’s entities. For each of the sub-phrases
in the category name we count these associations
over the entire Wikipedia category set.

We use these counts to calculate Pointwise
Mutual Information (PMI) between words and
Freebase attributes or relations. We choose PMI to
avoid overcompensating common words, attributes,
or relations. For example, the word ‘Wars’ is seen
with the incorrect analysis type(x, time.event)
more frequently than the correct analysis
type(x, military.conflict). However, PMI
penalizes the attribute type(x, time.event) for
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its popularity and the correct analysis is preferred.
As PMI has a tendency to emphasize rare counts,
we chose PMI squared, which takes the squared
value of the co-occurence count (PMI2(a, b) =
log count(a∧b)2

count(a)∗count(b) ), as a feature.

Structural KB Statistics Existing semantic
parsers typically make use of type constraints
to limit the space of possible logical forms.
These strong type constraints are not fea-
sible when the knowledge base is incom-
plete. For example, in Freebase the relation
military conflict.combatants expects an en-
tity of type military conflict.combatant as
its object. However, many countries that have been
involved in wars are not assigned this type.

We instead calculate type overlap statistics for
all Freebase entities, to find likely missing types.
For example, including the fact that the object of
military conflict.combatants is very often
of type location.country.

Learning from Labeled Data We train each
half of the prediction problem separately, as de-
fined in Section 4, using the labeled training data
introduced in Section 3. We use structured max-
margin perceptrons to learn feature weights for
both the underspecified parse and the ontological
match step following (Kwiatkowski et al., 2013).
The aggregate statistics collected from 7 million
category-entity pairs produce very useful lexical
features. We integrate these statistics into our linear
model by summing their values for each derivation
and treating them as a feature. All of the other fea-
tures described in Section 6 are not word specific
and are therefore far less sparse.

6 Features
We include a number of features that enable soft
type checking on the output logical form, described
first below, along with other features that measure
different aspects of the analysis.

Coherency features For example, con-
sider the phrase “The UK home city of
the Queen,” with Freebase logical form
y = λx.home(QEII, x) ∧ in(x, UK) ∧ city(x).
Each of the relations has expected types for
their argument: the relation 〈home〉 expects
a subject of type 〈person〉 and an object
of type 〈location〉. Each type in Freebase
lives in a hierarchy, so the type city implies
{location, administrative division, . . . }.

The next four features test agreement of these
types on different parts of the output logical form.

Relation arguments trigger a feature if their
type is in the set of types expected by the relation.
QEII is a person so this feature is triggered for the
relation-argument application in home(QEII, x).

Relation-relation pairs can share variable argu-
ments. For example, the variable x is the object
of 〈home〉 and the subject of 〈in〉. Each relation
expects a set of types of x. We have features to
signal if: these sets are disjoint; one set subsumes
the other; and the PMI between the highest level
expected type (described in Section 5) if the sets
are disjoint. In the example given here, the type
〈location〉 expected by 〈in〉 subsumes the type
〈city〉 expected by 〈home〉 so the second feature
fires. We treat types such as city(x) as unary
relations and include them in this feature set.

Type domain measures compatibility among do-
mains in Freebase. Freebase is split into high-level
domains and some of these are relevant, such as
‘football’ and ‘sports’. We identify those by count-
ing their co-occurrences. This becomes an indica-
tor feature that signals their co-occurrence in y.

Named entity type features test if the entity e
that we are extracting attributes for have Freebase
type “person”, “location” or “organization”. If it
does, we have a feature indicating if y defines a
set of the same type. This features is not used in
the referring expression task presented in Section 7
since we cannot assume access to the entities that
are described.

CCG parse feature signals which lexical items
were used in the CCG parse. Another feature fires
if capitalized words map to named entities.

String similarity features signal exact string
match, stemmed string match, and length weighted
string edit distance between a phrase in the sen-
tence and the name of the Freebase element it was
matched on. We also use the Freebase search API
to generate scores for phrase, entity pairs and in-
clude the log of this score as a features.

Lexical PMI feature includes the lexical Point-
wise Mutual Information described in Section 5.

Freebase constant features signal the use of
linking predicates, as defined in Section 4, and
the log frequency count of the Freebase attributes
across all entities in the Wikipedia category set.
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Other features indicate the use of OpenRel,
OpenEntity, OpenType in y and count repetitions
of Freebase concepts in y.

7 Experimental Setup

Knowledge base We use the Jan. 26, 2014 Free-
base dump. After pruning binary predicates taking
numeric values, it contains 9351 binary predicates,
2754 unary predicates, and 1.2 billion assertions.

Pruning and Feature Initialization We per-
form beam search at each semantic parsing stage,
using the Freebase search API to determine candi-
date named entities (10 per phrase), binary predi-
cates (300 per phrase), and unary predicates (500
per phrase). The ontology matching stage consid-
ers the highest scored underspecified parse.

The features are initialized to prefer well-typed
logical forms. Type checking features are initially
set to -2 for mismatch. Features signalling incom-
patible topic domains and repetition are initialized
as -10. All other initial feature weights are set to 1.

Datasets and Annotation We evaluate on the
Wikipedia category and appositive datasets intro-
duced in Sec. 3. On the Wikipedia development
data, we annotated 500 logical forms, underspeci-
fied logical forms and constant mappings for ontol-
ogy matching. The Wikipedia test data is composed
of 500 unseen categories. We did not train on the
appositive dataset, as it contains challenges such
as co-reference and parsing errors as described in
Sec. 3. Instead, we chose 300 randomly selected ex-
amples for evaluation, and ran on the model trained
on the Wikipedia development data.

Evaluation Metrics We report five-fold cross
validation for development but ran the final model
once on the test data, manually scoring the output.

For evaluation on the referring expression resolu-
tion performance (as defined in Sec. 2), we include
accuracy for the final logical form (Exact Match).
We also evaluate precision and recall for predicting
individual literals in this logical form on the devel-
opment set. To control for missing facts, we did
not evaluate the set of returned entities.

To evaluate entity attribute extraction perfor-
mance (as defined in Sec. 2), we identified three
classes of predictions. Extractions can be correct,
benign, or false. Correct attributes are actually
described in the phrase, benign extraction may
not have been described but are still true, and
false extractions are not true. For example, if

System Exact Partial Match
Match P R F1

KCAZ13 1.4 9.6 6.3 7.0
IE Baseline 6.8 37.0 23.3 28.6
NoPMI 11.0 23.7 20.8 21.6
NoOpenSchema 13.7 35.8 30.0 31.1
NoTyping 9.6 37.6 29.3 31.8
Our Approach 15.9 39.3 33.5 35.1
with Gold NE 20.8 46.6 40.5 42.3

Table 3: Referring expression resolution perfor-
mance on the development set on gold references.

Data System Exact Match Accuracy

Wikipedia IE Baseline 21.8%
Our Approach 28.4%

Appos IE Baseline 0.0%
Our Approach 4.7%

Table 4: Manual evaluation for referring expression
resolution on the test sets.

the phrase “the capital of the communist-ruled
nation” is mapped to the pair of attributes
capital of administrative division(x) ,
location(x), the first is correct and the second is
benign. Other incorrect facts would be false.

On the development set, we report precision and
recall against the union of the FB attributes in our
annotations without adjusting for benign extrac-
tions or the fact that the annotations are not com-
plete. For the test sets, we computed precision
(P) where benign extractions are considered to be
wrong, as well as an adjusted precision metric (P*)
where benign extractions are counted as correct. As
we do not have full test set annotations, we cannot
report recall. Finally, we report the average number
of facts extracted per noun phrase (fact #).

Comparison Systems We compare performance
to a number of ablated versions of the full system,
where we have removed the open-constant ontology
matching operators (NoOpenSchema), the PMI fea-
tures (NoPMI), or the type checking features (No-
Typing). For the referring expression resolution
task, we excluded the named entity type feature, as
this assumes typing information about the entity
we are extracting attributes for.

We report results without the PMI features and
the open schema matching operators (KCAZ13),
which is a reimplementation of a recent Freebase
QA model (Kwiatkowski et al., 2013). We also
learn with gold named entity linking (Gold NE).

For the entity attribute extraction, we built a su-
pervised learning baseline that combines the output
of two discrete SVMs, one for predicting unary re-
lations and one for binary relations. Each classifier
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System Top n P R F1 fact #
IE Baseline - 37.3 26.5 30.6 1.6

Our Approach

1 44.2 32.8 37.7 1.9
2 36.9 38.0 37.5 2.6
3 30.7 42.7 35.7 3.6
4 27.0 44.7 33.6 4.2
5 23.7 47.2 31.6 5.1
10 15.9 52.0 24.3 8.5

Table 5: Entity attribute extraction performance on
the Wikipedia category development set.

Data System P P* fact #

Wikipedia IE Baseline 56.7 58.7 1.6
Our Approach 61.2 72.6 2.0

Appos IE Baseline 4.9 13.9 1.3
Our Approach 33.2 61.4 0.9

Table 6: Manual evaluation for entity attribute ex-
traction on the test sets.

is trained using the annotated Wikipedia categories.
This dataset contains hundreds of unary and bi-
nary relations, which the IE baseline can predict.
Each classifier is further anchored on a specific
word, and includes n-gram and POS context fea-
tures around that word, following features from
Mintz et al (2009). To predict binary relations, we
used named entities as anchors. For unary attributes
we anchored on all possible nouns and adjectives.
The final logical form includes the best relation
predicted by each classifier. We use the Stanford
CoreNLP5 toolkit for tokenization, named entity
recognition, and part-of-speech tagging.

8 Results

Tables 3 and 4 show performance on the referring
expression resolution task. Tables 5 and 6 show
performance on the extraction task. Reported pre-
cision is lower on the labeled development set than
on the test set, where predicted logical forms are
manually evaluated. This reflects the fact that, de-
spite our best attempts, the development set labels
are incomplete, as discussed in Section 3.

Referring expression resolution The systems
retrieve the full meaning with 28.4% accuracy on
the Wikipedia test set, and 15.9% on the develop-
ment set. The gold named entity input improves
performance by modest amounts. This suggests
that the errors stem from ontology mismatches, as
we will describe in more detail later in the qualita-
tive analysis. We also see that all of the ablations

5http://nlp.stanford.edu/software/corenlp.html

hurt performance, and that the KCAZ13 model per-
forms extremely poorly. The independent classifier
baseline performs well at the sub-clause level, but
fails to form a full logical form of the referring
expression. Partial grounding and broad-coverage
data statistics are essential for this problem.

Entity attribute extraction In the two test sets,
the approach achieves high benign precision lev-
els (P*) of 72.6 and 61.4. However, the apposi-
tives data is significantly more challenging, and the
model misses many of the true facts that could be
extracted. Many errors comes in the early stages of
the pipeline, which can be attributed at least in part
to both (1) the higher levels of noise in the input
data (see Section 3), and (2) the fact that the CCG
parser was developed on the Wikipedia category la-
bels. While the IE baseline performs reasonably on
the Wikipedia test data, its performance degrades
significantly on appositions. As it is trained to pre-
dict pre-determined relations, it does not generalize
to different domains.

For the development set, Table 5 also shows the
precision-recall trade off for the set of Freebase
attributes that appear in the top-n predicted logical
forms. Precision drops quickly but recall can be
improved significantly, showing that the model can
produce many of the labeled facts.

Qualitative evaluation We sampled 100 errors
from the Wikipedia test set for qualitative analy-
sis. 10% came from entity linking. About 30%
come from choosing a superset or subset of the
desired meaning, for example by mapping “novel”
to book. About 10% of the errors are from do-
main ambiguity, such as mapping “stage actor” to
film.film actor. 10% of the cases are from spu-
rious string similarity, such as mapping “Hungarian
expatriates“ to nationality(x, Hungary). 15%
of the failures were due to incorrect underspecified
logical forms and, finally, about 10% of the errors
were because the typing features encouraged com-
pound nouns to be split into separate attributes. On
the apposition dataset, 65% of errors stems from
parsing, either in apposition detection or CCG pars-
ing. Better modeling the complex attachment deci-
sions for the noun phrases in the apposition dataset
remains an area for future work.

One advantage of our approach, especially in
comparison to classifier based models like the IE
baseline, is the ability to predict previously unseen
relations. Counting only the correctly predicted
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triples, we see that over 40% of the unique rela-
tions we predict is not in the development set; our
model learns to generalize based on the learned
PMI features and other lexical cues.

Finally, our approach extracted 2.0 entity at-
tributes per Wikipedia phrase and 0.9 per appo-
sition on average. This matches our intuition that
the apposition dataset contains many more words
that cannot be modeled with concepts in Freebase.

9 Related Work

Recent work has begun to study the problem of
knowledge base incompleteness and reasoning with
open concepts. Joshi et al. (2014) describes an
approach for mapping short search queries to a
single Freebase relation, that benefits from model-
ing schema incompleteness. Additionally, Krish-
namurthy et al. (2012; 2014) present a semantic
parser that builds partial meaning representations
with Freebase for information extraction applica-
tions. This is similar in spirit to the approach we
present here, however they focus on a small, fixed,
set of binary relations while we aim to represent as
much of the text as possible using the entire Free-
base ontology. Krishnamurthy and Mitchell (2015)
have also studied semantic parsing with open con-
cepts via matrix factorization. They use Freebase
entities but do not include Freebase concepts.

The problem of building complete sentence anal-
yses using all of the Freebase ontology has re-
cently received attention within the context of ques-
tion answering systems (Cai and Yates, 2013;
Kwiatkowski et al., 2013; Berant et al., 2013; Be-
rant and Liang, 2014; Reddy et al., 2014). Since
they do not model KB incompleteness, these mod-
els will not work well on data that cannot be fully
modeled by Freebase. In section 7, we report re-
sults using one of these systems to provide a refer-
ence point for our approach. There has also been
other work on Freebase question answering (Yao
and Van Durme, 2014; Bordes et al., 2014; Wang
et al., 2014) that directly searches the facts in the
KB to find answers without explicitly modeling
compositional semantic structure. Therefore, these
methods will suffer when facts are missing.

The syntactic and semantic structure of noun
phrases has been extensively studied. For example,
work on NomBank (Meyers et al., 2004; Gerber
and Chai, 2010) focus on the challenge of modeling
implicit arguments introduced by nominal predi-
cates. In a manual study, we discovered that the

65% of our noun phrases contain implicit relations.
We build on insights from Vadas and Curran (2008),
who studied how to model the syntactic structure
of noun phrases in CCGBank. While we are, to the
best of our knowledge, the first to study compound
noun phrases for semantic parsing to knowledge-
bases, semantic parsers for noun phrase referring
expressions have been built for visual referring ex-
pression (FitzGerald et al., 2013).

There has been little work on IE from compound
noun phrases. Most existing IE algorithms extract
a single relation, usually represented as a verb that
holds between a pair of named entities, for exam-
ple with supervised learning techniques (Freitag,
1998) or via distant supervision (Mintz et al., 2009;
Riedel et al., 2013; Hoffmann et al., 2011). We aim
to go beyond relations between entity pairs, and to
retrieve full semantics of noun phrases, extracting
unary and binary relations for a single entity. A
notable exception to this trend is the ReNoun sys-
tem (Yahya et al., 2014) which models noun phrase
structure for open information extraction. They
report that 97% of the attributes in Freebase are
commonly expressed as noun phrases. However,
unlike our work, they considered open information
extraction and did not ground the extractions in an
external KB.

10 Conclusion
In this paper, we present a semantic parsing ap-
proach with knowledge base incompleteness, ap-
plied to the problem of information extraction from
noun phrases. When run on all of the Wikipedia
category data, the approach would extract up to 12
million new Freebase facts at 72% precision.

There is significant potential for improving the
parsing models, as well as better optimizing the
precision recall trade-off for the extracted facts. It
would also be interesting to gather data with com-
positional phenomena, such as negation and dis-
junction, and study its impact on the performance
of the semantic parser.
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