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Abstract

Extracted keyphrases can enhance numer-
ous applications ranging from search to
tracking the evolution of scientific dis-
course. We present SCHBASE, a hier-
archical database of keyphrases extracted
from large collections of scientific liter-
ature. SCHBASE relies on a tendency
of scientists to generate new abbrevia-
tions that “extend” existing forms as a
form of signaling novelty. We demon-
strate how these keyphrases/concepts can
be extracted, and their viability as a
database in relation to existing collections.
We further show how keyphrases can
be placed into a semantically-meaningful
“phylogenetic” structure and describe key
features of this structure. The com-
plete SCHBASE dataset is available at:
http://cond.org/schbase.html.

1 Introduction

Due to the immense practical value to Informa-
tion Retrieval and other text mining applications,
keyphrase extraction has become an extremely
popular topic of research. Extracted keyphrases,
specifically those derived from scientific literature,
support search tasks (Anick, 2003), classification
and tagging (Medelyan et al., 2009), informa-
tion extraction (Wu and Weld, 2008), and higher-
level analysis such as the tracking of influence and
dynamics of information propagation (Shi et al.,
2010; Ohniwa et al., 2010). In our own work
we use the extracted hierarchies to predict scien-
tific emergence based on how rapidly new vari-
ants emerge. Keyphrases themselves capture a
diverse set of scientific language (e.g., methods,

techniques, materials, phenomena, processes, dis-
eases, devices).

Keyphrases, and their uses, have been stud-
ied extensively (Gil-Leiva and Alonso-Arroyo,
2007). However, automated keyphrase extrac-
tion work has often focused on large-scale statis-
tical techniques and ignored the scientific com-
munication literature. This literature points to
the complex ways in which keyphrases are cre-
ated in light of competing demands: expressive-
ness, findability, succinct writing, signaling nov-
elty, signaling community membership, and so
on (Hartley and Kostoff, 2003; Ibrahim, 1989;
Grange and Bloom, 2000; Gil-Leiva and Alonso-
Arroyo, 2007). Furthermore, the tendency to ex-
tract keyphrases through statistical mechanisms
often leads to flat keyphrase spaces that make anal-
ysis of evolution and emergence difficult.

Our contention, and the main motivation be-
hind our work, is that we can do better by lever-
aging explicit mechanisms adopted by authors
in keyphrase generation. Specifically, we focus
on a tendency to expand keyphrases by adding
terms, coupled with a pressure to abbreviate to
retain succinctness. As we argue below, scien-
tific communication has evolved the use of ab-
breviations to deal with various constraints. Ab-
breviations, and acronyms specifically, are rela-
tively new in many scientific domains (Grange and
Bloom, 2000; Fandrych, 2008) but are now ubiq-
uitous (Ibrahim, 1989; Cheng, 2010).

Keyphrase selection is often motivated by
increasing article findability within a domain
(thereby increasing citation). This strategy leads
to keyphrase reuse. A competing pressure, how-
ever, is to signal novelty in an author’s work which
is often done by creating new terminology (e.g.,
creating a “brand” around a system or idea). For
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example, a machine learning expert working on
a new type of Support Vector Machine will want
their article found when someone searches for
“Support Vector Machine,” but will also want to
add their own unique brand. In response, they will
often augment the original keyphrase (e.g., “Least-
Squares Support Vector Machine”) rather than in-
venting a completely new one. Unfortunately,
continuous expansion will soon render a paper un-
readable (e.g., one of many extensions to Poly-
merase Chain Reaction is Standard Curve Quan-
titative Competitive Reverse Transcription Poly-
merase Chain Reaction). Thus emerges a second
strategy: abbreviation.

Our assertion is that abbreviations are a key
mechanism for resolving competing demands.
Authors can simultaneously expand keyphrases,
thus maintaining both findability and novelty,
while at the same time addressing the need to be
succinct and non-repetitive. Of interest to us is
the phenomena that if a new keyphrase expands
an existing keyphrase that has an established ab-
breviation, the new keyphrase will also be ab-
breviated (e.g., LS-SVM and SVM). This ten-
dency allows us to construct hierarchies of evolved
keyphrases (rather than assuming a flat keyphrase
space) which can be leveraged to identify emer-
gence, keyphrase “mash-ups,” and perform other
high level analysis. As we demonstrate below,
edges represent the rough semantic of EXTENDS

or ISSUBTYPEOF. So if keyphrase A is connected
to B, we can say A is a subtype of B (e.g., A is
“Least-Squares Support Vector Machine” and B is
“Support Vector Machine”).

In this paper we introduce SCHBASE, a hi-
erarchical database of keyphrases. We demon-
strate how we can simply, but effectively, extract
keyphrases by mining abbreviations from scien-
tific literature and composing those keyphrases
into semantically-meaningful hierarchies. We fur-
ther show that abbreviations are a viable mech-
anism for building a domain-specific keyphrase
database by comparing our extracted keyphrases
to a number of author-defined and automatically-
created keyphrase corpora. Finally, we illustrate
how authors build upon each others’ terminology
over time to create new keyphrases.1

1Full database available at: http://cond.org/schbase.html

2 Related Work

Initial work in keyphrase extraction utilized
heuristics that were based on the understood struc-
ture of scientific documents (Edmundson, 1969).
As more data became available, it was possible
to move away from heuristic cues and to lever-
age statistical techniques (Paice and Jones, 1993;
Turney, 2000; Frank et al., 1999) that could iden-
tify keyphrases within, and between, documents.
The guiding model in this approach is that phrases
that appear as statistical “anomalies” (by some
measure) are effective for summarizing a docu-
ment or corpus. This style of keyphrase extrac-
tion represents much of the current state-of-the-
art (Kim et al., 2010). Specific extensions in this
space involve the use of network structures (Mi-
halcea and Tarau, 2004; Litvak and Last, 2008;
Das Gollapalli and Caragea, 2014), part-of-speech
features (Barker and Cornacchia, 2000; Hulth,
2003), or more sophisticated metrics (Tomokiyo
and Hurst, 2003).

However, as we note above, these statistical ap-
proaches largely ignore the underlying tensions in
scientific communication that lead to the creation
of new keyphrases and how they are signaled to
others. The result is that these techniques often
find statistically “anomalous” phrases which often
are not valid scientific concepts (but are simply un-
common phrasing), are unstructured and discon-
nected, and inflexible to size variance (as in the
case of fixed length n-grams), and fail to capture
extremely rare terminology.

The idea that abbreviations may be useful for
keyphrase extraction has been partially realized.
Nguyen et al., (2007) found that they could pro-
duce better keyphrases by extending existing mod-
els (Frank et al., 1999) to include an acronym in-
dicator as a feature. That is, if a candidate phrase
had an associated parenthetical acronym associ-
ated with it in the text a binary feature would be
set. This approach has been implemented by oth-
ers (Bordea and Buitelaar, 2010). We propose to
expand on this idea by implementing a simple, but
effective, solution by performing abbreviation ex-
traction to build a hierarchical keyphrase database
– a form of open-information extraction (Etzioni
et al., 2008) on large scientific corpora.

3 Keyphrases and Hierarchies

Our high level strategy for finding an initial set
of keyphrases is to mine a corpus for abbrevia-
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tion expansions. This is a simple strategy, but
as we show below, highly effective. Though the
idea that abbreviations and keyphrases are linked
fits within our understanding of scientific writing,
we confirmed our intuition through a small exper-
iment. Specifically, we looked at the 85 unique
keyphrases (in this case, article titles) listed in
the Wikipedia entry for List of Machine Learning
Concepts (Wikipedia, 2014). These ranged from
well known terms (e.g., Support Vector Machines
and Autoencoders) to less known (e.g., Informa-
tion fuzzy networks). In all 85 cases we were able
to find an abbreviation on the Web (using Google)
alongside the expansion (e.g., searching for the
phrases “Support Vector Machines (SVMs)” or
“Information Fuzzy Networks (IFN)”). Though
there may be bias in the use of abbreviations in
the Machine Learning literature, our experience
has been that this holds in other domains as well.
When a scientific keyphrase is used often enough,
someone, somewhere, will have abbreviated it.

3.1 Abbreviation Extraction

To find all abbreviation expansions we use the un-
supervised SaRAD algorithm (Adar, 2004). This
algorithm is simple to implement, does not re-
quire extremely large amounts of data, works for
both acronyms and more general abbreviations,
and has been demonstrated as effective in various
contexts (Adar, 2004; Schwartz and Hearst, 2003).
However, our solution does not depend on a spe-
cific implementation, only that we are able to ac-
curately identify abbreviation expansions.

Adar (2004) presents the full details for the al-
gorithm, but for completeness we present the high
level details. The algorithm progresses by identi-
fying abbreviations inside of parentheses (defined
as single words with at least one capital letter).
The algorithm then extracts a “window” of text
preceding the parenthesis, up to n words long
(where n is the character length of the abbrevia-
tion plus padding). This window does not cross
sentence boundaries. Within the window all possi-
ble “explanations” of the abbreviation are derived.

An explanation consists of a continuous sub-
sequence of words that contain all the characters
of the original abbreviation in order. For example,
the window “determine the geographical distribu-
tion of ribonucleic acid” preceding the abbrevia-
tion “RNA” includes the explanations: “determine
the geographical,” “graphical distribution of ri-

bonucleic acid” and “ribonucleic acid” (matching
characters in italics). In the example above there
are ten explanations (five unique). Each explana-
tion is scored heuristically: 1 point for each ab-
breviation character at the start of a word; 1 point
subtracted for every word between the explanation
and the parenthesis; 1 point bonus if the explana-
tion is adjacent to the parenthesis; 1 point sub-
tracted for each extra word beyond the abbrevia-
tion length. For the explanations above, the scores
are −4, 0, and 3 respectively. The highest scor-
ing match (we require a minimum of 1 point) is
returned as the mostly likely expansion.

In practice, pairs of extracted abbrevia-
tions/expansions are pulled from a large textual
corpus. This both allows us to identify vari-
ants of expansions (e.g., different pluralization,
spelling, hyphenation, etc.) as well as finding
more plausible expansions (those that are repeated
multiple times in a corpus). Thus, each ex-
pansion/abbreviation pair has an associated count
which can be used to threshold and filter for in-
creased quality. To discard units of measurement,
single letter abbreviations and single word expan-
sions are removed. We return to this decision
later, but our experience is also that single word
keyphrases are rare. Additionally, expansions con-
taining brackets are not considered as they usually
represent mathematical formulae.

3.1.1 The ABBREVCORPUS

In our experiments we utilize the ACM Digital Li-
brary (ACMDL) as our main corpus. Though the
ACMDL is more limited than other collections,
it has a number of desirable properties: spanning
nearly the entire history (1954-2011) of a domain
(Computer Science) with full-text and clean meta-
data. The corpus itself contains both journal and
conference articles (77k and 197k, respectively).

In addition to the filtering rules described
above, we manually constructed a set of fil-
ter terms to remove publication venues, agen-
cies, and other institutions: ‘university’, ‘confer-
ence’, ‘symposium’, ‘journal’, ‘foundation’, ‘con-
sortium’, ‘agency’, ‘institute’ and ‘school’ are dis-
carded. We further normalize our keyphrases by
lowercasing, removing hyphens, and using the
Snowball stemmer (Porter, 2001) to merge plu-
ral variants. After stemming and normalizing, we
found a total of 155,957 unique abbreviation ex-
pansions. Among these, 48,890 expansions occur
more than once, 25,107 expansions thrice or more
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and 16,916 expansions four or more times. We re-
fer to this collection as the ABBREVCORPUS.

For each keyphrase we search within the full-
text corpus to identify set of documents containing
the keyphrase. This allowed us to find both the
earliest mention of the keyphrase (the expansion,
not the abbreviation) as well as overall popularity
of keyphrases. We do not argue that abbreviations
are the norm in the introduction of new keyphrases
and may, in fact, only happen much later when the
domain is familiar enough with the phrase.

To find the expansions in the full-text we uti-
lize a modified suffix-tree that greedily finds
the longest-matching phrase and avoids “double-
counting”. For example, if the text contains
the phrase, “. . . we utilize a Least-Squares Sup-
port Vector Machine for . . . ” it will match
against Least-Squares Support Vector Machine but
not Least Squares, Support Vector Machines, or
Support Vector (also keyphrases in our collec-
tion). The distribution of keyphrase frequency is a
power-law (many keyphrases appearing once with
a long tail) with exponent (α) of 2.17 (fit using
Clauset et al., (2009)).

3.2 Building Keyphrase Hierarchies

We employ a very simple method of text con-
tainment to build keyphrase hierarchies from AB-
BREVCORPUS. If a keyphrase A is a substring
of keyphrase B, A is said to be contained by B
(B → A). If a third keyphrase, C, contains
B and is contained by A, the containment link
between A and B is dropped and two new ones
(A→ C and C → B) are added. For example for
the keyphrases, circuit switching, optical circuit
switching and dynamic optical circuit switching,
there are links from optical circuit switching to cir-
cuit switching, and dynamic optical circuit switch-
ing to optical circuit switching, but there is no link
from dynamic optical circuit switching to circuit
switching. The hierarchies formed in this manner
are mostly trees, but in rare cases a keyphrase can
have links to multiple branches. Example hierar-
chies are displayed in Figure 1.

For efficiency we sort all keyphrases by length
(from largest to shortest) and iterate over each one,
testing for containment in all previously “seen”
keyphrases. This is computationally intensive,
O(n2), but can be parallelized.

A potential issue with string containment is
that negating prefixes can also appear (e.g., non-

monotonic reasoning and monotonic reasoning).
Our algorithm uses a dictionary of negations and
can annotate the results. However, in practice
we find that only .6% of our data has a leading
negating-prefix (“internal” negating prefixes can
also be caught in this way, but are similarly rare).
It is an application-specific question if we want to
consider such pairs as “siblings” or “parent-child”
(with both supported).

4 Overlap with Keyphrase Corpora

To test our newly-constructed keyphrase database
we generate a mixture of human- and machine-
built datasets to compare. Our goal is to char-
acterize both the intersection (keyphrases appear-
ing in our corpus as well as the external datasets)
as well as those keyphrases uniquely captured by
each dataset.

4.1 ACM Author keyphrases (ACMCORPUS)
The metadata for articles in ACM corpus contain
author-provided keyphrases. In the corpus de-
scribed above, we found 145,373 unique author-
provided keyphrases after stemming and normal-
ization. We discard 16,418 single-word keywords
and those that do not appear in the full-text of any
document. We retain 116,246 keyphrases which
we refer to as the ACMCORPUS.

ACMCORPUS

WIKICORPUS

MSRACORPUS

MESHCORPUS

M
ESHC

O
RPUS

W
IKIC

ORPUS

MSRAC
O

RPUS

ACMC
O

RPUS

Figure 2: Keyphrase counts for the ACMCOR-
PUS (powerlaw α = 2.36), WIKICORPUS (2.49),
MSRACORPUS (2.55) and MESHCORPUS (2.7)
within the ACM full-text.

4.2 Microsoft Academic (MSRACORPUS)
Our second keyphrase dataset comes from the Mi-
crosoft Academic (MSRA) search corpus (Mi-
crosoft, 2015). While particularly focused on
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fault tolerance (1969)

fault tolerance index (2006)

software fault tolerance (1973)

algorithm based fault tolerance (1984)

partial fault tolerance (1975)

byzantine fault tolerance (1991)practical byzantine fault tolerance (2000)

geographic information (1973)

volunteered geographic information (2008)

geographic information network (2011)

geographic information science (1996)geographic information science and technology (2010)

geographic information services (2000)

geographic information system (1975)

geographic information retrieval (1976)

geographic information systems and science (2003)

Figure 1: Keyphrase hierarchy for Fault Tolerance (top) and Geographic Information (Bottom). Colors
encode earliest appearance (brighter green is earlier)

Computer Science, this collection contains arti-
cles and keyphrases from over a dozen domains2.
MSRA provides a list of keyphrases with unique
IDs and different stemming variations of each
keyphrase. There are a total of 46,978 (without
counting stemming variations) of which 30,477
keyphrases occur in ACM full-text corpus after
stemming and normalization (64% coverage).

4.3 MeSH (MESHCORPUS)

Medical Subject Headings (MeSH) (Lipscomb,
2000) is set of subject headings or descriptors in
the life sciences domain. For the purpose of our
work, we use the 27,149 keyphrases from the 2014
MeSH dataset. Similar to the other keyphrase lists
we only use stemmed and normalized multi-word
keywords that occur in in the ACM full-text cor-
pus, which is 4,363 in case of MeSH.

4.4 Wikipedia (WIKICORPUS)

Scientific article headings in Wikipedia can often
be used as a proxy for keyphrases. To collect rele-
vant titles, we find Wikipedia articles that exactly
match (in title name) existing MeSH and MSRA
keyphrases. For these “seed” articles, we com-
pile their categories and mark all the articles in
these categories as potentially “relevant.” How-
ever, as this also captures scientist names (e.g., a

2We know these keyphrases are algorithmically derived,
but the details are not disclosed.

researcher’s page may be placed under the “Com-
puter Science” category), research institutes and
other non-keyphrase matches, we use the page’s
infobox as a further filter. Pages containing “per-
son,” “place,” infoboxes, in “book,” “video game,”
“TV show” or other related “media” category, and
those with geographical coordinates are removed.
After applying these filters, we obtain 110,102
unique article titles (after stemming) which we
treat as keyphrases. Of these, 39,974 occur in the
ACM full-text corpus.

4.5 Results
The total overlap for ACMCORPUS, MESH-
CORPUS, MSRACORPUS and WIKICORPUS are
14.12%, 12.28%, 32.33% and 17.41% respec-
tively. While these numbers seem low, it is worth
noting that many of these terms only appear once
in the ACM full-text corpus (see Figure 2).

Figure 3 illustrates the relationship between
the number of times a keyphrase appears in the
full-text and the probability that it will appear
in ABBREVCORPUS. In all cases, the more of-
ten a keyphrase appears in the corpus, the more
likely it is to have an abbreviation. If we quali-
tatively examine popular phrases that do not ap-
pear in ABBREVCORPUS we find mathematical
forms (e.g., of-the-form, well-defined or a priori),
and nouns/entities that are largely unrelated to sci-
entific keyphrases (e.g., New Jersey, Government
Agency, and Private Sector). More importantly,
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the majority of phrases that are never abbreviated
are simply not Computer Science keyphrases (we
return to this in Section 4.6).

We were somewhat surprised by the poor over-
lap of the ACMCORPUS, even for terms that were
very common in the full-text. We found that the
cause was a large set of “bad” keyphrases. Specif-
ically, 69.3k (69.5%) of author-defined keyphrases
(occurring in ACMCORPUS but not in AB-
BREVCORPUS) are used as a keyword in only one
paper. However, they appear more than once in
the full-text – often many times. For example,
one author (and only one) used if and only if as
a keyphrase, which matched a great many articles.
The result is that there is little correlation between
the number of times a keyphrase appears in the
full-text and how many times it used explicitly as
a keyphrase in the document metadata. Because
these will never be found as an abbreviation, they
“pull” the mean probability down.

Instead of counting the number of times a
keyphrase occurs in the full-text we generate a fre-
quency count based on the number of times au-
thors explicitly use it in the metadata. This new
curve, labeled as ACMCORPUS (KEY) in Figure 3
displays a very different tendency, with a rapid
upward slope that peaks at 100% for frequently-
occurring keyphrases. Notably, only 16k (16%)
keyphrases appear once in full-text but are never
abbreviated (far fewer than the 69.5% above).

It is worth briefly considering those terms
that appear in ABBREVCORPUS and not in the
other keyphrases lists. We find roughly 17.6k,
24.7k, 19.4k, and 21.4k terms that appear in AB-
BREVCORPUS (with a threshold of 2 to elimi-
nate “noisy” expansions), but not in ACMCOR-
PUS, MESHCORPUS, MSRACORPUS, and WI-
KICORPUS respectively. As MeSH keyphrases
tend to be focused on the biological keyphrases
this is perhaps unsurprising but the high numbers
for the author-provided ACM keyphrases is unex-
pected. We find that some of the keyphrases that
are in ABBREVCORPUS but not in ACMCORPUS

are highly specific (e.g., Multi-object Evolutionary
Algorithm Based on Decomposition or Stochastic
Variable Graph Model). However, many are also
extremely generic terms that one would expect to
find in a computer science corpus: Run-Time Er-
ror Detection, Parallel Execution Tree, and Little
Endian. Our hypothesis is that these are often not
the focus of a paper and are unlikely to be selected
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Figure 3: The probability of inclusion of
keyphrases in ABBREVCORPUS based on fre-
quency of appearance in full text or, in the case if
ACMCORPUS (KEY), frequency of use as a key-
word. At frequency x, the y value represents prob-
ability of appearence in ABBREVCORPUS if we
only consider terms that appear at least x times in
the other corpus.

by the author. We believe this provides further evi-
dence of the viability of the abbreviation approach
to generating good keyphrase lists.

4.6 Domain keyphrases
When looking at keyphrases that appear in MESH-
CORPUS but not in the ABBREVCORPUS we find
that many phrases do, in fact, appear in the full
text but are never abbreviated. For example, Color
Perception and Blood Cell both appear in ACM
articles but are not abbreviated. Our hypothesis—
which is motivated by the tendency of scientists to
abbreviate terms that are deeply familiar to their
community (Grange and Bloom, 2000)—is that
terms that are possibly distant from the core do-
main focus tend not to be abbreviated. This is sup-
ported by the fact that these terms are abbreviated
in other collections (e.g., one can find CP as an ab-
breviation for Color Perception in psychology and
cognition work and BC, for Blood Cell, in medi-
cal and biological journals). Additional evidence
is apparent in Figure 3 which shows that ACM-
CORPUS keyphrases are more likely to be abbre-
viated (with far fewer repeats necessary). MSRA-
CORPUS, which contains many Computer Science
articles, also has higher probabilities (though not
nearly matching the ACM).

To test this systematically, we calculated se-
mantic similarity between each keyphrase in
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the WikiCorpus dataset to “computer science.”
Specifically, we utilize Explicit Semantic Anal-
ysis (Gabrilovich and Markovitch, 2009) to cal-
culate similarity. In this method, every segment
of text is represented in a very high dimensional
space in terms of keyphrases (based on Wikipedia
categories). The similarity score for each term is
between 0 (unrelated) and 1 (very similar).

Figure 4 demonstrates that with increasing sim-
ilarity, the likelihood of abbreviation increases.
From this, one may infer that to generate a
domain-specific database that excludes unrelated
keyphrases, the abbreviation-derived corpus is
highly appropriate. Conversely, to get coverage of
keyphrases from all scientific domains it is insuffi-
cient to mine for abbreviations in one specific do-
main’s text. Even though a keyphrase may appear
in the full-text it will simply never be abbreviated.

Figure 4: Probability of a keyphrase appearing in
ABBREVCORPUS (y-axis) based on semantic sim-
ilarity of the keyphrase to “Computer Science” (x-
axis, binned exponentially for readability).

4.7 Keyphrase Hierarchies

Our hierarchy generation process (see Section 3.2)
generated 1716 hierarchies accounting for 8661
unique keyphrases. Most of the hierarchies (1002
or 58%) only contained two nodes (a root and one
child). The degree distribution, aggregated across
all hierarchies, is again power-law (α = 2.895).
Hierarchy sizes are power-law distributed (α =
2.807) and an average “diameter” (max height) of
1.135. The hierarchies contain a giant component
with 2302 nodes and 2436 edges.

While most of our hierarchies are trees,
keyphrases can connect to two independent
branches. For example, Least-Squares Support
Vector Machines (LS-SVMs) appears in both the
Least Squares and Support Vector hierarchies.
In total, 649 keyphrases appear in multiple hi-
erarchies, the majority appearing 2. Only 17

keyphrases appear in 3 hierarchies. For exam-
ple, the particularly long Single Instruction Mul-
tiple Thread Evolution Strategy Pattern Search
appears in the Evolution(ary) Strategy, Pattern
Search, and Single-Instruction-Multiple-Thread
hierarchies. These collisions are interesting in
that they reflect a mash-ups of different concepts,
and by extension, different sub-disciplines or tech-
niques. In some situations, where there is an
overlap in many sub-keyphrases, this may indicate
that two root keyphrases are in fact equivalent or
highly related (e.g., likelihood ratio and log likeli-
hood). We do not currently handle such ambiguity
in SCHBASE.

To test the semantic interpretation of edges as
EXTENDS/ISSUBTYPEOF we randomly sampled
200 edges and manually checked these. We found
that in 92% (184) this interpretation was cor-
rect. The remaining 16 were largely an artifact
of normalization errors rather than a wrong “type”
(e.g., “session identifier” and “session id” where
clearly a more accurate interpretation is ISEXPAN-
SIONOF). We believe it is fair to say that the hier-
archies we construct are the “skeleton” of a full
EXTENDS hierarchy but one that is nonetheless
fairly encompassing. Our qualitative analysis is
that most keyphrases that share a type also share a
root keyphrase (e.g., “classifier”).

It is interesting to consider if edges which are
derived by “containment” reflect a temporal pat-
tern. That is, if keyphrase A EXTENDS B, does
the first mention of A in the literature happen af-
ter B? We find that this is almost always the case.
Among the 7136 edges generated by our algorithm
only 165 (2.3%) are “reversed.” Qualitatively, we
find that these instances appear either due to miss-
ing data (the parent keyphrase first appeared out-
side the ACM) or publication ordering (in some
cases the difference in first-appearance is only a
year). In most situations the date is only 1-2 years
apart. This high degree of consistency lends fur-
ther support to the tendency of scientists to expand
upon keyphrases over time.

Figure 5 depicts the mean change in length of
“children” in keyphrase hierarchies. The numbers
depicted are relative change. Thus, at year “0”,
the year the root keyphrase is introduced, there is
no relative increase. Within 1 year, new children
of that root are 50% larger in character length and
after that children continue to “grow” as authors
add additional keyphrases. A particularly obvious
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example of this is the branch for Petri Net (PN)
which was extended as Queueing Petri Net (QPN)
and then Hierarchically Combined Queueing Petri
Nets (HCQPN) and finally Extended Hierarchi-
cally Combined Queueing Petri Nets (EHCQPN).
Notably, this may have implications to other ex-
tractors that assume fixed-sized entities over the
history of the collection.

Figure 5: Average increase in character length of
sub-keyphrases over time

5 Discussion and Future Work

Our decision to eliminate single-word keyphrases
from consideration is an explicit one. Of the
145k keyphrases in the original ACMCORPUS

(pre-filtering), 16,418 (11.29%) were single-word
keyphrases. Our experience with the ACM author-
defined keyphrases is that such terms are too
generic to be useful as “scientific” keyphrases. For
example, In all the ACM proceedings, the top-
5 most common single-word keyphrases are se-
curity, visualization, evaluation, design, and pri-
vacy. Even in specific sub-domains, such as rec-
ommender systems (Proceedings of Recsys), the
most popular single-word keyphrases are person-
alization, recommendation, evaluation, and trust.
Contrast these to the most popular multi-word
terms: recommender system(s), collaborative fil-
tering, matrix factorization, and social network(s).

Notably, in the MSRA corpus, which is algo-
rithmically filtered, only .46% (226 keyphrases)
were single word. MeSH, in contrast, has a full
37% of keyphrases as single-term. In most sit-
uations these reflect chemical names (e.g., 382
single-word enzymes) or biological structures. In
such a domain, and if these keyphrases are desir-
able, it may be advisable to retain single-word ab-
breviations. While it may seem surprising, even

single words are often abbreviated (e.g., Transal-
dolase is “T” and Ultrafiltration is “U” or “U/F”).

A second key observation is that while the
ACM full-text corpus is large, it is by no means
“big.” We selected to use it because it controlled
and “clean.” However, we have also run our al-
gorithms on the MSRA Corpus (which contains
only abstracts) and CiteSeer (which contains full-
text). Because the corpora contain more text we
find significantly higher overlap with the differ-
ent keyphrase corpora. However, this comes at
the cost of not being able to isolate the domain-
specific keyphrases. To put it differently, the
broader full-text collections enable to us gener-
ate a more fleshed out keyphrase hierarchies that
tracks keyphrases across all domains but which
may not be appropriate for certain workloads.

Finally, it is worth considering the possibility
of building hierarchies (and connecting them) by
relations other than “containment.” We have be-
gun to utilize metrics such as co-occurrence of
keyphrases (e.g., PMI) as well as higher level cita-
tion and co-citation structure in the corpora. Thus,
we are able to connect terms that are highly related
but are textually dissimilar. When experimenting
with PMI, for example, we have found a diverse
set of edge types including ISUSEDFOR (e.g., “n-
gram language model” and “machine translation”)
or ISUSEDIN (e.g., “Expectation Maximization”
and “Baum-Welch” or “euclidean algorithm” and
“k-means”). By necessity, edges generated by this
technique require an additional classification.

6 Summary

We have introduced SCHBASE, a simple, robust,
and highly effective system and database of sci-
entific concepts/keyphrases. By leveraging the
incentive structure of scientists to expand exist-
ing ideas while simultaneously signaling novelty
we are able to construct semantically-meaningful
hierarchies of related keyphrases. The further
tendency by authors to succinctly describe new
keyphrases results in a general habit of utilizing
abbreviations. We have demonstrated a mecha-
nism to identify these keyphrases by extracting ab-
breviation expansions and have shown that these
keyphrases cover the bulk of “useful” keyphrases
within the domain of the corpus. We believe
that SCHBASE will enable a number of appli-
cations ranging from search, categorization, and
analysis of scientific communication patterns.
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