
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 534–542,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

A Strategic Reasoning Model for Generating Alternative Answers

Jon Scott Stevens
Center for General Linguistics, Berlin
stevens@zas.gwz-berlin.de

Anton Benz
Center for General Linguistics, Berlin

Sebastian Reuße
Ruhr University Bochum

sebastian.reusse@rub.de
Ralf Klabunde

Ruhr University Bochum

Abstract

We characterize a class of indirect an-
swers to yes/no questions, alternative an-
swers, where information is given that is
not directly asked about, but which might
nonetheless address the underlying moti-
vation for the question. We develop a
model rooted in game theory that gener-
ates these answers via strategic reasoning
about possible unobserved domain-level
user requirements. We implement the
model within an interactive question an-
swering system simulating real estate dia-
logue. The system learns a prior probabil-
ity distribution over possible user require-
ments by analyzing training dialogues,
which it uses to make strategic deci-
sions about answer selection. The system
generates pragmatically natural and inter-
pretable answers which make for more ef-
ficient interactions compared to a baseline.

1 Introduction

In natural language dialogue, questions are often
answered indirectly. This is particularly apparent
for yes/no questions, where a wide range of re-
sponses beyond literal “yes” and “no” answers is
available. Sometimes indirect answers serve to an-
ticipate the next step of the hearer’s plan, as in (1)
(Allen and Perrault, 1980), where the literal an-
swer is entailed by the supplied answer, and some-
times indirect answers leave it to the hearer to in-
fer the literal answer from common contextual as-
sumptions, as in (2) (de Marneffe et al., 2009).

(1) Q: Has the train to Windsor left yet?
A: It’s leaving soon from gate 7.

(2) Q: Is Sue at work?
A: She’s sick with the flu.

But other times there is no semantic link between
the question and the supplied answer. Rather, the

answer must be interpreted in light of the task-
specific goals of the interlocutors. Consider (3)
in a context where a customer is posing questions
to a real estate agent with the aim of renting an
apartment.

(3) Q: Does the apartment have a garden?
A: Well, it has a large balcony.

Whether there is a balcony has no logical bear-
ing on whether there is a garden. Intuitively, the
realtor is inferring that the customer’s question
might have been motivated by a more general re-
quirement (perhaps the customer wants a place
to grow flowers) and supplying an alternative at-
tribute to satisfy that requirement. In this case
the answerer must reason about which attributes of
an apartment might satisfy a customer who would
ask about a garden. Note that multiple motivating
requirements are possible (perhaps the customer
just wants to relax outside), such that the answerer
might just as easily have said, “It has a large bal-
cony, and there is a park close by.” In either case,
the hearer can infer from the lack of a direct an-
swer that the apartment must not have a garden,
because if it did, to say so would have been more
obviously helpful.

This paper focuses on this class of answers,
which we call alternative answers. We character-
ize these as indirect answers to yes/no questions
that offer attributes of an object under discussion
which might satisfy an unobserved domain-level
requirement of the questioner. We conceive of a
requirement as a set of satisfying conditions, such
that a particular domain-related need would be met
by any one member of the set. For example, in the
context of (3) we can encode a possible customer
requirement of a place to grow flowers in an apart-
ment, FLOWERS = {GARDEN, BALCONY}, such
that either GARDEN or BALCONY would suffice
to satisfy the requirement.

534

In order to generate alternative answers auto-
matically, we must first solve two problems: (i)
how does one learn and represent a space of likely
user requirements?, and (ii) how does one use such
a space to select indirect answers? To do this
in a natural, pragmatically interpretable way, we
must not only derive answers like in (3), but cru-
cially, also rule out infelicitous responses like the
following, where a logically possible alternative
leads to incoherence due to the low probability of
an appropriate requirement like {GARDEN, BASE-
MENT}. (In other words, wanting a garden has
little effect on the probability of wanting a base-
ment.)

(4) Q: Does the apartment have a garden?
A: #Well, it has a large basement.

To solve these problems, we propose an approach
rooted in decision-theoretic and game-theoretic
analyses of indirectness in natural language (van
Rooij, 2003; Benz and van Rooij, 2007; Benz et
al., 2011; Stevens et al., 2014) whereby a system
uses strategic reasoning to derive an optimal re-
sponse to a yes/no question given certain domain
assumptions. The model operates by assuming
that both the questioner and the answerer are ratio-
nal, i.e. that both participants want to further their
own goals, and will behave so as to maximize the
probability of success at doing so.

One appeal of the strategic approach is its rela-
tive simplicity: the model utilizes a learned prob-
ability distribution over possible domain-level re-
quirements of the questioner and applies simple
probabilistic reasoning to feed content selection
during online answer generation. Unlike plan in-
ference approaches, we do not need to represent
any complex taxonomies of stimulus conditions
(Green and Carberry, 1994) or coherence relations
(Green and Carberry, 1999; Asher and Lascarides,
2003).

By implementing the strategic reasoning model
within a simple interactive question answering
system (Konstantinova and Orasan, 2012), simu-
lating real estate dialogues with exchanges like in
(3), we are able to evaluate the current approach
quantitatively in terms of dialogue efficiency, per-
ceived coherence of the supplied answers, and
ability of users to draw natural pragmatic infer-
ences. We conclude that strategic reasoning pro-
vides a promising framework for developing an-
swer generation methods by starting with princi-
pled theoretical analyses of human dialogue.

The following section presents the model, in-
cluding a concrete content selection algorithm
used for producing answers to questions, and then
walks through a simple illustrative example. Sec-
tion 3 describes our implementation, addresses the
problem of learning requirement probabilities, and
presents the results of our evaluation, providing
quantitative support for our approach. Section 4
concludes with a general summary.

2 Model

2.1 Overview

We derive our model beginning with a simple
description of the discourse situation. In our
case, this is an exchange of questions and answers
where a user poses questions to be answered by
an expert who has access to a database of in-
formation that the user wants. The expert has
no advance knowledge of the database, and thus
must look up information as needed. Each user
question is motivated by a requirement, conceived
of as a (possibly singleton) set of database at-
tributes (restricted for current purposes to boolean
attributes), any one of which satisfies a user need
(e.g. {GARDEN, BALCONY} in the previous sec-
tion). Only the user has direct access to her own
requirements, and only the expert can query the
database to inform the user whether her require-
ments can be satisfied. For current purposes we
assume that each question and answer in the di-
alogue pertains to a specific object o from the
database which is designated as the object un-
der discussion. This way we can represent an-
swers and question denotations with attributes,
like GARDEN, where the queried/supplied attribute
is assumed to predicate over o. In these terms, the
expert can either ASSERT an attribute (if it holds
of o) or DENY an attribute (if it does not hold of o)
in response to a user query.

Now we describe the goals of the interlocutors.
The user wants her requirements to be satisfied,
and will not accept an object until she is sure this
is the case. If it is clear that an object cannot sat-
isfy one or more requirements, the user will ask to
discuss a different object from the database. We
can thus characterize the set of possible user re-
sponses as follows: the user may ACCEPT the ob-
ject as one that meets all requirements, the user
may REJECT the object and ask to see something
else, or the user may FOLLOW UP, continuing to
pose questions about the current object. The user’s

535

goal, then, is ultimately to accept an object that in
fact satisfies her requirements, and to reject any
object that does not.

The expert’s goal is to help the user find an op-
timal object as efficiently as possible. Given this
goal, the expert does better to provide alternative
attributes (like BALCONY for GARDEN in (3)) in
place of simple “no” answers only when those at-
tributes are relevant to the user’s underlying re-
quirements. To use some economic terminology,
we can define the benefit (B) of looking up a po-
tential alternative attribute a in the database as a
binary function indicating whether a is relevant to
(i.e. a member of) the user requirement ρ which
motivated the user’s question. For example, in (3),
if the user’s question is motivated by requirement
{GARDEN, BALCONY}, then the benefit of looking
up whether there is a balcony is 1, because if that
attribute turns out to hold of o, then the customer’s
requirement is satisfied. If, on the other hand, the
questioner has requirement {GARDEN}, then the
benefit of looking up BALCONY is 0, because this
attribute cannot satisfy this requirement.

B(a|ρ) = 1 if a ∈ ρ and 0 otherwise (1)

Regardless of benefit, the expert incurs a cost by
looking up information. To fully specify what cost
means in this context, first assume a small, fixed
effort cost associated with looking up an attribute.
Further assume a larger cost incurred when the
user has to ask a follow-up question to find out
whether a requirement is satisfied. What really
matters are not the raw cost amounts, which may
be very small, but rather the relative cost of look-
ing up an attribute compared to that of receiving a
follow-up. We can represent the ratio of look-up
cost to follow-up cost as a constant κ, which en-
codes the reluctance of the expert to look up new
information. Intuitively, if κ is close to 1 (i.e. if
follow-ups are not much more costly than simple
look-ups), the expert should give mostly literal an-
swers, and if κ is close to 0, (i.e. if relative follow-
up cost is very high), the expert should look up all
potentially beneficial attributes. With this, let the
utility (U) of looking up a be the benefit of looking
up a minus the relative cost.

U(a|ρ) = B(a|ρ)− κ (2)

The expert is utility-maximizing under game-
theoretic assumptions, and (assuming a baseline
utility of zero for doing nothing) should aim to

look up attributes for which U is positive, i.e. for
which benefit outweighs cost. But the expert has a
problem: ρ, on which U depends, is known only to
the user. Therefore, the best the expert can do is to
reason probabilistically, based on the user’s ques-
tion, to maximize expected utility, or the weighted
average of U(a|ρ) for all possible values of ρ. The
expected utility of looking up an attribute a can be
written as the expected benefit of a—the weighted
average of B(a|ρ) for all ρ—minus the relative
cost. Let REQS be the set of all possible user re-
quirements and let q be the user’s question.

EU(a|q, REQS) = EB(a|q, REQS)− κ (3)

EB(a|q, REQS) =
∑

ρ∈REQS

P (ρ|q)×B(a|ρ) (4)

The probability of a user requirement P (ρ|q) is
calculated via Bayes’ rule, assuming that users
will choose their questions randomly from the set
of questions whose denotations are in their re-
quirement set. This yields the following.

P (ρ|q) =
P (q|ρ)× P (ρ)∑

ρ′∈REQS

P (q|ρ′)× P (ρ′)
(5)

P (q|ρ) =
1
|ρ| if JqK ∈ ρ and 0 otherwise (6)

The prior probability of a user requirement, P (ρ),
is given as input to the model. We will see in the
next section that it is possible to learn a prior prob-
ability distribution from training dialogues.

We have now fully characterized the expected
benefit (EB) of looking up an attribute in the
database. As per Eq.3, the expert should only
bother looking up an attribute if EB is greater
than the relative cost κ, since that is when EU
is positive. The final step is to give the expert
a sensible way to iteratively look up attributes to
potentially produce multiple alternatives. To this
end, we first point out that if an alternative has
been found which satisfies a certain requirement,
then it no longer adds any benefit to consider that
requirement when selecting further alternatives.
For example, in the context of example (3), when
the realtor queries the database to find the apart-
ment has a balcony, she no longer needs to con-
sider the probability of a requirement {BALCONY,
GARDEN} when considering additional attributes,
since that is already satisfied. Given this consid-
eration, the order in which database attributes are

536

looked up can make a difference to the outcome.
So, we need a consistent and principled criterion
for determining the order in which to look up at-
tributes. The most efficient method is to start with
the attribute with the highest possible EB value
and then iteratively move down to the next best at-
tribute until EB is less than or equal to cost.

Note that the attribute that was asked about will
always have an EB value of 1. Consider again
the QA exchange in (3). Recall that the expert as-
sumes that the user’s query is relevant to an un-
derlying requirement ρ. This means that ρ must
contain the attribute GARDEN. Therefore, by defi-
nition, supplying GARDEN will always yield posi-
tive benefit. We can use this fact to explain how al-
ternative answers are interpreted by the user. The
user knows that the most beneficial attribute to
look up (in terms ofEB) is the one asked about. If
that attribute is not included in the answer, the user
is safe to assume that it does not hold of the object
under discussion. By reasoning about the expert’s
reasoning, the user can derive the implicature that
the literal answer to her question is “no”. In fact,
this is what licenses the expert to leave the nega-
tion of the garden attribute out of the answer: the
expert knows that the user knows that the expert
would have included it if it were true. This type of
“I know that you know” reasoning is characteristic
of game-theoretic analysis.1

2.2 Algorithm and example

Our algorithm for generating alternative answers
(Algorithm 1), which simulates strategic reason-
ing by the expert in our dialogue situation, is
couched in a simple information state update
(ISU) framework (Larsson and Traum, 2000;
Traum and Larsson, 2003), whereby the answerer
keeps track of the current object under discussion
(o) as well as a history of attributes looked up for
o (HISTo). The output of the algorithm takes the
form of a dialogue move, either an assertion (or set
of assertions) or denial that an attribute holds of o.
These dialogue moves can then be translated into
natural language with simple sentence templates.
The answerer uses HISTo to make sure redundant
alternatives aren’t given across QA exchanges. If

1It can be shown that the answer selection algorithm pre-
sented in this section, combined with a simple user inter-
pretation model, constitutes a perfect Bayesian equilibrium
(Harsanyi, 1968; Fudenberg and Tirole, 1991) in a signaling
game (Lewis, 1969) with private hearer types which formally
describes this kind of dialogue.

Requirement set P (ρ) P (q|ρ) P (ρ|q)
ρG ={GARDEN} 0.5 1 0.67
ρF ={GARDEN, BALCONY} 0.25 0.5 0.17
ρP ={GARDEN, PARK} 0.2 0.5 0.13
ρS ={GARDEN, BASEMENT} 0.05 0.5 0.03

Table 1: A toy example of a customer requirement
space with probabilities for q = ‘Does the apart-
ment have a garden?’

all possible answers are redundant, the answerer
falls back on a direct yes/no response.

To illustrate how the algorithm works, consider
a simple toy example. Table 1 gives a hypothetical
space of possible requirements along with a dis-
tribution of priors, likelihoods and Bayesian pos-
teriors. We imagine that a customer might want
a garden (ρG), or more generally a place to grow
flowers (ρF), a place for their child to play outside
(ρP), or, in rare cases, either a garden or a base-
ment to use as storage space (ρS). The rather odd
nature of ρS is reflected in its low prior. Consider
a variant of (3) where HISTo is empty, and where
DBo contains BALCONY, PARK and BASEMENT.

(5) Q: Does the apartment have a garden?
A: It has a balcony, and there is a park

very close by.

To start, let REQS contain the requirements in
Table 1, and let κ = 0.1. The algorithm derives
the answer as follows. First, the algorithm looks
up whether GARDEN holds of o. It does not hold,
so GARDEN is not added to the answer; it is only
added to the history of looked up attributes.

a = GARDEN; EB(GARDEN) = 1;
HISTo = {GARDEN}

Then, the system finds the next best attribute, BAL-
CONY, which does hold of o, appends it to the an-
swer as well as the history, and removes the rele-
vant requirement from consideration.

a = BALCONY; EB(BALCONY) = 0.17;
HISTo = {GARDEN, BALCONY};
ANSWER = {BALCONY};
REQS = {ρG, ρP , ρS}

The attribute PARK is similarly added.

a = PARK; EB(PARK) = 0.13;
HISTo = {GARDEN, BALCONY, PARK};
ANSWER = {BALCONY, PARK};
REQS = {ρG, ρS}

The attribute BASEMENT is next in line. However,
its EB value is below the threshold of 0.1 due

537

Algorithm 1 An algorithm for generating alternative answers
Input: A set of attributes Φ, an object under discussion o, a database DBo of attributes which hold of o, a history HISTo of

attributes that have been looked up in the database, a set of possible user requirements REQS, a prior probability distribution
over REQS, a user-supplied question q with denotation JqK and a relative cost threshold κ ∈ (0, 1)

Initialize: ANSWER = {}; LOOKUP = TRUE
1: while LOOKUP do
2: Φ′ = (Φ \ HISTo) ∪ {JqK} . Only consider alternatives once per object per dialogue.
3: a = arg maxφ∈Φ′ EB(φ|q, REQS) . Find the best candidate answer.
4: if EB(a|q, REQS) > κ then . Check whether expected benefit outweighs cost.
5: HISTo = HISTo ∪ {a} . Log which attribute has been looked up.
6: if a ∈ DBo then
7: ANSWER = ANSWER ∪ {a} . Add to answer if attribute holds.
8: REQS = REQS \ {ρ ∈ REQS | ρ ∩ ANSWER 6= ∅}

. Don’t consider requirements that are already satisfied.
9: end if

10: else
11: LOOKUP = FALSE . Stop querying the database when there are no promising candidates left.
12: end if
13: end while
14: if ANSWER 6= ∅ then ASSERT(ANSWER),
15: else DENY(JqK)
16: end if

to its low prior probability, and thus the iteration
stops there, and BASEMENT is never looked up.

a = BASEMENT; EB(BASEMENT) = 0.03;
EB < κ; exit loop

3 Implementation and evaluation

3.1 Setup

A simple interactive question answering sys-
tem was built using a modified version of the
PyTrindiKit toolkit2 with a database back end im-
plemented using an adapted version of PyKE, a
Horn logic theorem prover.3 The system was set
up to emulate the behavior of a real estate agent
answering customers’ yes/no questions about a
range of attributes pertaining to individual apart-
ments. A set of 12 attributes was chosen for the
current evaluation experiment. The system gen-
erates answers by first selecting a discourse move
(i.e. assertion or denial of an attribute) and then
translating the move into natural language with
simple sentence templates like, “It has a(n) X” or
“There is a(n) X nearby”. When answers are in-
direct (i.e. not asserting or denying the attribute
asked about), the system begins its reply with the
discourse connective “well” as in example (3).4

2https://code.google.com/p/
py-trindikit

3http://pyke.sourceforge.net/
4Early feedback indicated that alternative answers were

more natural when preceded by such a discourse connective.
To assess this effect, we ran a separate evaluation experiment
with an earlier version of the system that produced alterna-
tive answers without “well”. Dialogue lengths and coherence
scores were not very different from what is reported in this

Subjects interacted with our system by means of
an online text-based interface accessible remotely
through a web browser. At the outset of the exper-
iment, subjects were told to behave as if they were
finding an apartment for a hypothetical friend, and
given a list of requirements for that friend. The
task required them to identify which from among
a sequence of presented apartments would satisfy
the given set of requirements. One out of four
lists, each containing three requirements (one of
which was a singleton), was assigned to subjects
at random. The requirements were constructed by
the researchers to be plausible desiderata for users
looking for a place to rent or buy (e.g. connection
to public transit, which could be satisfied either by
a nearby bus stop, or by a nearby train station).

The apartments presented by the system were
individually generated for each experiment such
that there was an apartment satisfying one attribute
for each possible combination of the three require-
ments issued to subjects, plus two additional apart-
ments that each satisfied two of the conditions
(23 + 2 = 10 apartments overall). Attributes out-
side a subject’s requirement sets were added at
random to assess the effect of “unhelpful” alter-
native answers.

Subject interacted with one of two answer gen-
eration models: a literal model, which only pro-
duced direct yes/no answers, and the strategic

section; however, in contrast with the current evaluation, we
found a large effect of model type (a 69% decrease for strate-
gic vs. literal) on whether the subjects successfully completed
the task (z=-2.19, p=0.03). This is consistent with the early
feedback.

538

model as outlined above. Crucially, in both con-
ditions, the sequence in which objects were pre-
sented was fixed so that the last apartment of-
fered would be the sole object satisfying all of
the desired criteria. Also, we set the strategic
model’s κ parameter high enough (1/7) that only
single-attribute answers were ever given. These
two properties of the task, taken together, allow
us to obtain an apples-to-apples comparison of the
models with respect to average dialogue length. If
subjects failed to accept the optimal solution, the
interaction was terminated. After completing in-
teraction with our system, subjects were asked to
complete a short survey designed to get at the per-
ceived coherence of the system’s answers. Sub-
jects were asked to rate, on a seven-point Likert
scale, the relevance of the system’s answers to the
questions asked, overall helpfulness, the extent to
which questions seemed to be left open, and the
extent to which the system seemed evasive.

We predict that the strategic system will im-
prove overall efficiency of dialogue over that of the
literal system by (i) offering helpful alternatives to
satisfy the customer’s needs, and (ii) allowing cus-
tomers to infer implicit “no” answers from alterna-
tive answers, leading to rejections of sub-optimal
apartments. If, contrary to our hypothesis, sub-
jects fail to draw inferences/implicatures from al-
ternative answers, then we expect unhelpful alter-
natives (i.e. alternatives not in the user’s require-
ment set) to prompt repeated questions and/or fail-
ures to complete the task.

With respect to the questionnaire items, the lit-
eral system is predicted to be judged maximally
coherent, since only straightforward yes/no an-
swers are offered. The question is whether the
pragmatic system also allows for coherent dia-
logue. If subjects judge alternative answers to be
incoherent, then we expect any difference in aver-
age Likert scale ratings between strategic and lit-
eral system to reflect the proportion of alternative
answers that are given.

3.2 Learning prior probabilities

Before presenting our results, we explain how
prior probabilities can be learned within this
framework. One of the assumptions of the strate-
gic reasoning model is that users ask questions that
are motivated by specific requirements. Moreover,
we should assume that users employ a reason-
able questioning strategy for finding out whether

S: An apartment in the north of town might suit you. I
have an additional offer for you there.

U: Does the apartment have a garden?
S: The apartment does not have a garden.
U: Does the apartment have a balcony?
S: The apartment does not have a balcony.
U: I’d like to see something else

Figure 1: An example of the negation-rejection se-
quence 〈GARDEN, BALCONY〉

requirements hold, which is tailored to the sys-
tem they are interacting with. For example, if a
user interacts with a system that only produces lit-
eral yes/no answers, the user should take all an-
swers at face value, not drawing any pragmatic
inferences. In such a scenario, we expect the
user’s questioning strategy to be roughly as fol-
lows: for a1, a2, · · · , an in requirement ρ, ask
about a1, then if a1 is asserted, accept (or move
on to the next requirement if there are multiple re-
quirements), and if not, ask about a2; if a2 is as-
serted, accept, and if not, ask about a3, and so on,
until an is asked about. If an is denied, then reject
the object under discussion. If you need a place
to grow flowers, ask if there is a balcony or gar-
den, then, if the answer is no, ask about the other
attribute. If no “yes” answers are given, reject.

Such a strategy predicts that potential user re-
quirements should be able to be gleaned from dia-
logues with a literal system by analyzing negation-
rejection sequences (NRSs). A negation-rejection
sequence is a maximal observed sequence of ques-
tions which all receive “no” answers, without any
intervening “yes” answers or any other interven-
ing dialogue moves, such that at the end of that
sequence of questions, the user chooses to reject
the current object under discussion. Such a se-
quence is illustrated in Fig.1. By hypothesis, the
NRS 〈GARDEN, BALCONY〉 indicates a possible
user requirement {GARDEN, BALCONY}.

By considering NRSs, the system can learn
from training data a reasonable prior probability
distribution over possible customer requirements.
This obviates the need to pre-supply the system
with complex world knowledge. If customer re-
quirements can in principle be learned, then the
strategic approach could be expanded to dialogue
situations where the distribution of user require-
ments could not sensibly be pre-supplied. While
the system in its current form is not guaranteed to
scale up in this way, its success here provides us
with a promising proof of concept.

539

Using the dialogues with the literal system as
training data, we were able to gather frequen-
cies of observed negation-rejection sequences. By
transforming the sequences into unordered sets
and then normalizing the frequencies of those sets,
we obtained a prior probability distribution over
possible customer requirements. In the training di-
alogues, subjects were given the same lists of re-
quirements as was given for the evaluation of the
strategic model. If successful, the system should
use the yes/no dialogue data to learn high prob-
abilities for requirements which customers actu-
ally had, and low probabilities for any others, al-
lowing us to evaluate the system without giving it
any prior clues as to which customer requirements
were assigned.

Because we know in advance which require-
ments the subjects wanted to fulfill, we have
a gold standard against which we can compare
the question-alternative answer pairs that different
variants of the model are able to produce. For ex-
ample, we know that if a subject asked whether
the apartment had a balcony and received an an-
swer about a nearby café, that answer could not
have been beneficial, since no one was assigned
the requirement {CAFÉ, BALCONY}.

Table 2 compares three variant models: (i) the
system we use in our evaluation, which sets prior
probabilities proportional to NRS frequency, (ii) a
system with flat priors, where probability is zero
if NRS frequency is zero, but where all observed
NRSs are taken to correspond to equiprobable re-
quirements, and finally (iii) a baseline which does
not utilize an EB threshold, but rather simply ran-
domly selects alternatives which were observed at
least once in an NRS with the queried attribute.
These models are compared by the maximum ben-
efit of their possible outputs using best-case val-
ues for κ. We see that there is a good match be-
tween the answers given by the strategic model
with learned priors and the actual requirements
that users were told to fulfill.

Though it remains to be seen whether this would
scale up to more complex requirement spaces, this
result suggests that NRSs can in fact be indicative
of disjunctive requirement sets, and can indeed be
useful in learning what possible alternatives might
be. For purposes of our evaluation, we will see
that the method was successful.

Model Precision Recall F1
Frequency-based 1 0.92 0.96
Flat 0.88 0.92 0.90
Baseline 0.23 1 0.37

Table 2: Comparison of best-case output with
respect to potential benefit of alternative answer
types to subjects. Precision = hits / hits+misses,
and Recall = hits / possible hits. A “hit” is a QA
pair which is a possible output of the model, such
that A could be a beneficial answer to a customer
asking Q, and a “miss” is such a QA pair such that
A is irrelevant to Q.

3.3 Evaluation results

We obtained data from a total of 115 subjects via
Amazon Mechanical Turk; 65 subjects interacted
with the literal comparison model, and 50 sub-
jects interacted with the strategic model. We ex-
cluded a total of 13 outliers across both condi-
tions who asked too few or too many questions
(1.5 interquartile ranges below the 1st or above
the 3rd quartile). These subjects either quit the
task early or simply asked all available questions
even for apartments that were obviously not a
good fit for their requirements. Two subjects were
excluded for not filling out the post-experiment
questionnaire. This left 100 subjects (59 literal/41
strategic), of which 86 (49/37) successfully com-
pleted the task, accepting the object which met
all assigned requirements. There was no statisti-
cally significant difference between the literal and
strategic models with respect to task success.

We first compare the literal and strategic models
with regard to dialogue length, looking only at the
subjects who successfully completed the task. Due
to the highly structured nature of the experiment
it was always the case that a successful dialogue
consisted of 10 apartment proposals, some num-
ber of QA pairs, where each question was given a
single answer, 9 rejections and, finally, one accep-
tance. This allows us to use the number of ques-
tions asked as a proxy for dialogue length. Fig-
ure 2 shows the comparison. The strategic model
yields 27.4 questions on average, more than four
fewer than the literal model’s 31.6. Standard sta-
tistical tests show the effect to be highly signif-
icant, with a one-way ANOVA yielding F=16.2,
p = 0.0001, and a mixed effects regression model
with a random slope for item (the items in this case
being the set of requirements assigned to the sub-

540

0

10

20

30

LiteralStrategic
Model

N
um

be
r o

f q
ue

st
io

ns

Figure 2: Avg. number of QA pairs by model

S: How about an apartment in the east of the city? I
have an offer for you there.

U: Does the apartment have a café nearby?
S: Well, there is a restaurant nearby.
U: I’d like to see something else

Figure 3: A QA exchange from a dialogue where
the user was instructed to find an apartment with a
café nearby

ject) yielding t=4, p=0.0001.
We now ask whether the observed effect is

due only to the presence of helpful alternatives
which preclude the need for follow-up questions,
or whether the ability of users to draw pragmatic
inferences from unhelpful alternatives (i.e. alterna-
tives that don’t actually satisfy the user’s require-
ment) also contributes to dialogue efficiency. Fig-
ure 3, taken from a real dialogue with our system,
illustrates such an inference. The subject specifi-
cally wants a café nearby, and infers from the al-
ternative answer that this requirement cannot be
satisfied, and therefore rejects. The subject could
have asked the question again to get a direct an-
swer, which would have had a negative effect on
dialogue efficiency, but this did not happen. We
want to know if subjects’ aggregate behavior re-
flects this example.

First, take the null hypothesis to be that subjects
do not reliably draw such negative implicatures. In
that case we would expect a certain proportion of
questions to be repeated. Subjects are allowed to
ask questions multiple times, and alternatives are
never presented twice, such that repeating ques-
tions will ultimately lead to a direct yes/no answer.
We do see some instances of this behavior in the

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2
Unhelpful alternative answers / Total answers

R
ep

ea
te

d
qu

es
tio

ns
 /

To
ta

l q
ue

st
io

ns

Figure 4: Proportion unhelpful alternatives vs.
proportion repeated questions

dialogues. If this is indicative of an overall diffi-
culty in drawing pragmatic inferences from an on-
line dialogue system, then we expect the number
of such repetitions to reflect the number of unhelp-
ful alternatives that are offered. Instead, we find
that when we plot a linear regression of repeated
questions vs. unhelpful alternatives, we get a flat
line with no observable correlation (Fig.4). More-
over, we also find no effect of unhelpful alterna-
tives on whether the task was successfully com-
pleted. This suggests that the correct inferences
are being drawn, as in Fig.3.

We now look at the perceived coherence of
the dialogues as assessed by our post-experiment
questionnaire. We obtain a composite coher-
ence score from all coherence-related items on the
seven point Likert scale by summing all per-item
scores for each subject and normalizing them to a
unit interval, where 1 signifies the upper bound of
perceived coherence. Although there is a differ-
ence in mean coherence score between the strate-
gic and literal models, with the strategic model ex-
hibiting 88% perceived coherence and the literal
model 93%, the difference is not statistically sig-
nificant. Moreover, we can rule out the possibility
that the strategic model is judged to be coherent
only when the number of alternative answers is
low. To rule this out, we calculate the expected
coherence score under the null hypothesis that co-
herence is directly proportional to the proportion
of literal answers. Taking the literal model’s av-
erage score of 0.93 as a ceiling, we multiply this
by the proportion of literal answers to obtain a

541

null hypothesis expected score of about 0.75 for
the strategic model. This null hypothesis is dis-
confirmed (F=12.5, t=30.6, p<0.01). The strate-
gic model is judged, by the criteria assessed by
our post-experiment questionnaire, to be pragmat-
ically coherent independently of the rate of indi-
rect answers given.

4 Conclusion

We have characterized the class of alternative an-
swers to yes/no questions and proposed a content
selection model for generating these answers in
dialogue. The model is based on strategic rea-
soning about unobserved user requirements, and
is based on work in game-theoretic pragmatics
(Benz and van Rooij, 2007; Stevens et al., 2014).
The model was implemented as an answer selec-
tion algorithm within an interactive question an-
swering system in a real estate domain. We have
presented an evaluation of this system against a
baseline which produces only literal answers. The
results show that the strategic reasoning approach
leads to efficient dialogues, allows pragmatic in-
ferences to be drawn, and does not dramatically
reduce the overall perceived coherence or natural-
ness of the produced answers. Although the strate-
gic model requires a form of world knowledge—
knowledge of possible user requirements and their
probabilities—we have shown that there is a sim-
ple method, the analysis of negation-rejection se-
quences in yes/no QA exchanges, that can be used
to learn this knowledge with positive results. Fur-
ther research is required to address issues of scala-
bility and generalizability, but the current model
represents a promising step in the direction of
pragmatically competent dialogue systems with
solid basis in formal pragmatic theory.

Acknowledgments

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) (Grant nrs. BE
4348/3-1 and KL 1109/6-1, project ‘Pragmatic
Requirements for Answer Generation in a Sales
Dialogue’), and by the Bundesministerium für
Bildung und Forschung (BMBF) (Grant nr.
01UG0711).

References
James F. Allen and C. Raymond Perrault. 1980. Ana-

lyzing intention in utterances. Artificial Intelligence,
15(3):143–178.

N. Asher and A. Lascarides. 2003. Logics of Con-
versation. Studies in Natural Language Processing.
Cambridge University Press.

Anton Benz and Robert van Rooij. 2007. Optimal as-
sertions, and what they implicate. a uniform game
theoretic approach. Topoi, 26(1):63–78.

Anton Benz, Nuria Bertomeu, and Alexandra
Strekalova. 2011. A decision-theoretic approach
to finding optimal responses to over-constrained
queries in a conceptual search space. In Proceed-
ings of the 15th Workshop on the Semantics and
Pragmatics of Dialogue, pages 37–46.

Marie-Catherine de Marneffe, Scott Grimm, and
Christopher Potts. 2009. Not a simple yes or no. In
Proceedings of the SIGDIAL 2009 Conference: The
10th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 136–143.

Dan Fudenberg and Jean Tirole. 1991. Perfect
Bayesian equilibrium and sequential equilibrium.
Journal of Economic Theory, 53(2):236–260.

Nancy Green and Sandra Carberry. 1994. Generating
indirect answers to yes-no questions. In Proceed-
ings of the Seventh International Workshop on Nat-
ural Language Generation, pages 189–198.

Nancy Green and Sandra Carberry. 1999. Interpret-
ing and generating indirect answers. Computational
Linguistics, 25(3):389–435.

John C. Harsanyi. 1968. Games of incomplete infor-
mation played by ‘Bayesian’ players, part II. Man-
agement Science, 14(5):320–334.

Natalia Konstantinova and Constantin Orasan. 2012.
Interactive question answering. Emerging Appli-
cations of Natural Language Processing: Concepts
and New Research, pages 149–169.

Staffan Larsson and David R. Traum. 2000. Informa-
tion state and dialogue management in the TRINDI
dialogue move engine toolkit. Natural Language
Engineering, 6(3&4):323–340.

David Lewis. 1969. Convention: A Philosophical
Study. Cambridge University Press, Cambridge.

Jon Scott Stevens, Anton Benz, Sebastian Reuße,
Ronja Laarmann-Quante, and Ralf Klabunde. 2014.
Indirect answers as potential solutions to decision
problems. In Proceedings of the 18th Workshop on
the Semantics and Pragmatics of Dialogue, pages
145–153.

David R. Traum and Staffan Larsson. 2003. The in-
formation state approach to dialogue management.
In Jan van Kuppevelt and Ronnie W. Smith, edi-
tors, Current and new directions in discourse and
dialogue, pages 325–353. Springer.

Robert van Rooij. 2003. Questioning to resolve
decision problems. Linguistics and Philosophy,
26(6):727–763.

542

