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Abstract

Models that learn semantic representations
from both linguistic and perceptual in-
put outperform text-only models in many
contexts and better reflect human concept
acquisition. However, experiments sug-
gest that while the inclusion of perceptual
input improves representations of certain
concepts, it degrades the representations
of others. We propose an unsupervised
method to determine whether to include
perceptual input for a concept, and show
that it significantly improves the ability of
multi-modal models to learn and represent
word meanings. The method relies solely
on image data, and can be applied to a va-
riety of other NLP tasks.

1 Introduction

Multi-modal models that learn semantic concept
representations from both linguistic and percep-
tual input were originally motivated by parallels
with human concept acquisition, and evidence that
many concepts are grounded in the perceptual sys-
tem (Barsalou et al., 2003). Such models extract
information about the perceptible characteristics
of words from data collected in property norming
experiments (Roller and Schulte im Walde, 2013;
Silberer and Lapata, 2012) or directly from ‘raw’
data sources such as images (Feng and Lapata,
2010; Bruni et al., 2012). This input is combined
with information from linguistic corpora to pro-
duce enhanced representations of concept mean-
ing. Multi-modal models outperform language-
only models on a range of tasks, including mod-
elling conceptual association and predicting com-
positionality (Bruni et al., 2012; Silberer and Lap-
ata, 2012; Roller and Schulte im Walde, 2013).

Despite these results, the advantage of multi-
modal over linguistic-only models has only been

demonstrated on concrete concepts, such as
chocolate or cheeseburger, as opposed to abstract
concepts such as such as guilt or obesity. Indeed,
experiments indicate that while the addition of
perceptual input is generally beneficial for repre-
sentations of concrete concepts (Hill et al., 2013a;
Bruni et al., 2014), it can in fact be detrimental
to representations of abstract concepts (Hill et al.,
2013a). Further, while the theoretical importance
of the perceptual modalities to concrete represen-
tations is well known, evidence suggests this is not
the case for more abstract concepts (Paivio, 1990;
Hill et al., 2013b). Indeed, perhaps the most influ-
ential characterization of the abstract/concrete dis-
tinction, the Dual Coding Theory (Paivio, 1990),
posits that concrete representations are encoded
in both the linguistic and perceptual modalities
whereas abstract concepts are encoded only in the
linguistic modality.

Existing multi-modal architectures generally
extract and process all the information from their
specified sources of perceptual input. Since per-
ceptual data sources typically contain information
about both abstract and concrete concepts, such in-
formation is included for both concept types. The
potential effect of this design decision on perfor-
mance is significant because the vast majority of
meaning-bearing words in everyday language cor-
respond to abstract concepts. For instance, 72% of
word tokens in the British National Corpus (Leech
et al., 1994) were rated by contributors to the Uni-
versity of South Florida dataset (USF) (Nelson et
al., 2004) as more abstract than the noun war, a
concept that many would consider quite abstract.

In light of these considerations, we propose
a novel algorithm for approximating conceptual
concreteness. Multi-modal models in which per-
ceptual input is filtered according to our algorithm
learn higher-quality semantic representations than
previous approaches, resulting in a significant per-
formance improvement of up to 17% in captur-
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ing the semantic similarity of concepts. Further,
our algorithm constitutes the first means of quan-
tifying conceptual concreteness that does not rely
on labor-intensive experimental studies or annota-
tors. Finally, we demonstrate the application of
this unsupervised concreteness metric to the se-
mantic classification of adjective-noun pairs, an
existing NLP task to which concreteness data has
proved valuable previously.

2 Experimental Approach

Our experiments focus on multi-modal models
that extract their perceptual input automatically
from images. Image-based models more natu-
rally mirror the process of human concept acquisi-
tion than those whose input derives from exper-
imental datasets or expert annotation. They are
also more scalable since high-quality tagged im-
ages are freely available in several web-scale im-
age datasets.

We use Google Images as our image source,
and extract the first n image results for each con-
cept word. It has been shown that images from
Google yield higher-quality representations than
comparable sources such as Flickr (Bergsma and
Goebel, 2011). Other potential sources, such as
ImageNet (Deng et al., 2009) or the ESP Game
Dataset (Von Ahn and Dabbish, 2004), either do
not contain images for abstract concepts or do not
contain sufficient images for the concepts in our
evaluation sets.

2.1 Image Dispersion-Based Filtering

Following the motivation outlined in Section 1, we
aim to distinguish visual input corresponding to
concrete concepts from visual input correspond-
ing to abstract concepts. Our algorithm is moti-
vated by the intuition that the diversity of images
returned for a particular concept depends on its
concreteness (see Figure 1). Specifically, we an-
ticipate greater congruence or similarity among a
set of images for, say, elephant than among im-
ages for happiness. By exploiting this connection,
the method approximates the concreteness of con-
cepts, and provides a basis to filter the correspond-
ing perceptual information.

Formally, we propose a measure, image disper-
sion d of a concept word w, defined as the aver-
age pairwise cosine distance between all the image
representations { ~w1 . . . ~wn} in the set of images
for that concept:

Figure 1: Example images for a concrete (elephant
– little diversity, low dispersion) and an abstract
concept (happiness – greater diversity, high dis-
persion).

Figure 2: Computation of PHOW descriptors us-
ing dense SIFT for levels l = 0 to l = 2 and the
corresponding histogram representations (Bosch
et al., 2007).

d(w) =
1

2n(n− 1)

∑
i<j≤n

1− ~wi · ~wj

| ~wi|| ~wj | (1)

We use an average pairwise distance-based met-
ric because this emphasizes the total variation
more than e.g. the mean distance from the cen-
troid. In all experiments we set n = 50.

Generating Visual Representations Visual
vector representations for each image were ob-
tained using the well-known bag of visual words
(BoVW) approach (Sivic and Zisserman, 2003).
BoVW obtains a vector representation for an
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image by mapping each of its local descriptors
to a cluster histogram using a standard clustering
algorithm such as k-means.

Previous NLP-related work uses SIFT (Feng
and Lapata, 2010; Bruni et al., 2012) or SURF
(Roller and Schulte im Walde, 2013) descriptors
for identifying points of interest in an image,
quantified by 128-dimensional local descriptors.
We apply Pyramid Histogram Of visual Words
(PHOW) descriptors, which are particularly well-
suited for object categorization, a key component
of image similarity and thus dispersion (Bosch et
al., 2007). PHOW is roughly equivalent to run-
ning SIFT on a dense grid of locations at a fixed
scale and orientation and at multiple scales (see
Fig 2), but is both more efficient and more accu-
rate than regular (dense) SIFT approaches (Bosch
et al., 2007). We resize the images in our dataset
to 100x100 pixels and compute PHOW descriptors
using VLFeat (Vedaldi and Fulkerson, 2008).

The descriptors for the images were subse-
quently clustered using mini-batch k-means (Scul-
ley, 2010) with k = 50 to obtain histograms of
visual words, yielding 50-dimensional visual vec-
tors for each of the images.

Generating Linguistic Representations We
extract continuous vector representations (also of
50 dimensions) for concepts using the continu-
ous log-linear skipgram model of Mikolov et al.
(2013a), trained on the 100M word British Na-
tional Corpus (Leech et al., 1994). This model
learns high quality lexical semantic representa-
tions based on the distributional properties of
words in text, and has been shown to outperform
simple distributional models on applications such
as semantic composition and analogical mapping
(Mikolov et al., 2013b).

2.2 Evaluation Gold-standards

We evaluate models by measuring the Spearman
correlation of model output with two well-known
gold-standards reflecting semantic proximity – a
standard measure for evaluating the quality of rep-
resentations (see e.g. Agirre et al. (2009)).

To test the ability of our model to capture
concept similarity, we measure correlations with
WordSim353 (Finkelstein et al., 2001), a selec-
tion of 353 concept pairs together with a similar-
ity rating provided by human annotators. Word-
Sim has been used as a benchmark for distribu-
tional semantic models in numerous studies (see

e.g. (Huang et al., 2012; Bruni et al., 2012)).
As a complementary gold-standard, we use the

University of South Florida Norms (USF) (Nelson
et al., 2004). This dataset contains scores for free
association, an experimental measure of cognitive
association, between over 40,000 concept pairs.
The USF norms have been used in many previous
studies to evaluate semantic representations (An-
drews et al., 2009; Feng and Lapata, 2010; Sil-
berer and Lapata, 2012; Roller and Schulte im
Walde, 2013). The USF evaluation set is partic-
ularly appropriate in the present context because
concepts in the dataset are also rated for concep-
tual concreteness by at least 10 human annotators.

We create a representative evaluation set of USF
pairs as follows. We randomly sample 100 con-
cepts from the upper quartile and 100 concepts
from the lower quartile of a list of all USF con-
cepts ranked by concreteness. We denote these
sets C, for concrete, and A for abstract respec-
tively. We then extract all pairs (w1, w2) in the
USF dataset such that bothw1 andw2 are inA∪C.
This yields an evaluation set of 903 pairs, of which
304 are such that w1, w2 ∈ C and 317 are such
that w1, w2 ∈ A.

The images used in our experiments and
the evaluation gold-standards can be down-
loaded from http://www.cl.cam.ac.uk/

˜dk427/dispersion.html.

3 Improving Multi-Modal
Representations

We apply image dispersion-based filtering as fol-
lows: if both concepts in an evaluation pair have
an image dispersion below a given threshold, both
the linguistic and the visual representations are in-
cluded. If not, in accordance with the Dual Cod-
ing Theory of human concept processing (Paivio,
1990), only the linguistic representation is used.
For both datasets, we set the threshold as the
median image dispersion, although performance
could in principle be improved by adjusting this
parameter. We compare dispersion filtered rep-
resentations with linguistic, perceptual and stan-
dard multi-modal representations (concatenated
linguistic and perceptual representations). Sim-
ilarity between concept pairs is calculated using
cosine similarity.

As Figure 3 shows, dispersion-filtered multi-
modal representations significantly outperform
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Figure 3: Performance of conventional multi-
modal (visual input included for all concepts) vs.
image dispersion-based filtering models (visual in-
put only for concepts classified as concrete) on the
two evaluation gold-standards.

standard multi-modal representations on both
evaluation datasets. We observe a 17% increase in
Spearman correlation on WordSim353 and a 22%
increase on the USF norms. Based on the corre-
lation comparison method of Steiger (1980), both
represent significant improvements (WordSim353,
t = 2.42, p < 0.05; USF, t = 1.86, p < 0.1). In
both cases, models with the dispersion-based filter
also outperform the purely linguistic model, which
is not the case for other multi-modal approaches
that evaluate on WordSim353 (e.g. Bruni et al.
(2012)).

4 Concreteness and Image Dispersion

The filtering approach described thus far improves
multi-modal representations because image dis-
persion provides a means to distinguish concrete
concepts from more abstract concepts. Since re-
search has demonstrated the applicability of con-
creteness to a range of other NLP tasks (Turney et
al., 2011; Kwong, 2008), it is important to exam-
ine the connection between image dispersion and
concreteness in more detail.

4.1 Quantifying Concreteness

To evaluate the effectiveness of image dispersion
as a proxy for concreteness we evaluated our al-
gorithm on a binary classification task based on
the set of 100 concrete and 100 abstract concepts
A∪C introduced in Section 2. By classifying con-
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Figure 4: Visual input is valuable for representing
concepts that are classified as concrete by the im-
age dispersion algorithm, but not so for concepts
classified as abstract. All correlations are with the
USF gold-standard.

cepts with image dispersion below the median as
concrete and concepts above this threshold as ab-
stract we achieved an abstract-concrete prediction
accuracy of 81%.

While well-understood intuitively, concreteness is
not a formally defined notion. Quantities such as
the USF concreteness score depend on the sub-
jective judgement of raters and the particular an-
notation guidelines. According to the Dual Cod-
ing Theory, however, concrete concepts are pre-
cisely those with a salient perceptual representa-
tion. As illustrated in Figure 4, our binary clas-
sification conforms to this characterization. The
importance of the visual modality is significantly
greater when evaluating on pairs for which both
concepts are classified as concrete than on pairs of
two abstract concepts.

Image dispersion is also an effective predic-
tor of concreteness on samples for which the ab-
stract/concrete distinction is less clear. On a differ-
ent set of 200 concepts extracted by random sam-
pling from the USF dataset stratified by concrete-
ness rating (including concepts across the con-
creteness spectrum), we observed a high correla-
tion between abstractness and dispersion (Spear-
man ρ = 0.61, p < 0.001). On this more diverse
sample, which reflects the range of concepts typi-
cally found in linguistic corpora, image dispersion
is a particularly useful diagnostic for identifying
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Concept Image Dispersion Conc. (USF)
shirt .488 6.05
bed .495 5.91
knife .560 6.08
dress .578 6.59
car .580 6.35
ego 1.000 1.93
nonsense .999 1.90
memory .999 1.78
potential .997 1.90
know .996 2.70

Table 1: Concepts with highest and lowest image
dispersion scores in our evaluation set, and con-
creteness ratings from the USF dataset.

the very abstract or very concrete concepts. As
Table 1 illustrates, the concepts with the lowest
dispersion in this sample are, without exception,
highly concrete, and the concepts of highest dis-
persion are clearly very abstract.

It should be noted that all previous approaches
to the automatic measurement of concreteness rely
on annotator ratings, dictionaries or manually-
constructed resources. Kwong (2008) proposes
a method based on the presence of hard-coded
phrasal features in dictionary entries correspond-
ing to each concept. By contrast, Sánchez et al.
(2011) present an approach based on the position
of word senses corresponding to each concept in
the WordNet ontology (Fellbaum, 1999). Turney
et al. (2011) propose a method that extends a large
set of concreteness ratings similar to those in the
USF dataset. The Turney et al. algorithm quanti-
fies the concreteness of concepts that lack such a
rating based on their proximity to rated concepts
in a semantic vector space. In contrast to each of
these approaches, the image dispersion approach
requires no hand-coded resources. It is therefore
more scalable, and instantly applicable to a wide
range of languages.

4.2 Classifying Adjective-Noun Pairs

Finally, we explored whether image dispersion
can be applied to specific NLP tasks as an effec-
tive proxy for concreteness. Turney et al. (2011)
showed that concreteness is applicable to the clas-
sification of adjective-noun modification as either
literal or non-literal. By applying a logistic regres-
sion with noun concreteness as the predictor vari-
able, Turney et al. achieved a classification accu-

racy of 79% on this task. This model relies on sig-
nificant supervision in the form of over 4,000 hu-
man lexical concreteness ratings.1 Applying im-
age dispersion in place of concreteness in an iden-
tical classifier on the same dataset, our entirely un-
supervised approach achieves an accuracy of 63%.
This is a notable improvement on the largest-class
baseline of 55%.

5 Conclusions

We presented a novel method, image dispersion-
based filtering, that improves multi-modal repre-
sentations by approximating conceptual concrete-
ness from images and filtering model input. The
results clearly show that including more percep-
tual input in multi-modal models is not always bet-
ter. Motivated by this fact, our approach provides
an intuitive and straightforward metric to deter-
mine whether or not to include such information.

In addition to improving multi-modal represen-
tations, we have shown the applicability of the im-
age dispersion metric to several other tasks. To
our knowledge, our algorithm constitutes the first
unsupervised method for quantifying conceptual
concreteness as applied to NLP, although it does,
of course, rely on the Google Images retrieval al-
gorithm. Moreover, we presented a method to
classify adjective-noun pairs according to modi-
fication type that exploits the link between image
dispersion and concreteness. It is striking that this
apparently linguistic problem can be addressed
solely using the raw data encoded in images.

In future work, we will investigate the precise
quantity of perceptual information to be included
for best performance, as well as the optimal filter-
ing threshold. In addition, we will explore whether
the application of image data, and the interaction
between images and language, can yield improve-
ments on other tasks in semantic processing and
representation.
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