
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 803–808,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Incremental Predictive Parsing with TurboParser
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Abstract

Most approaches to incremental parsing
either incur a degradation of accuracy or
they have to postpone decisions, yield-
ing underspecified intermediate output. We
present an incremental predictive depen-
dency parser that is fast, accurate, and
largely language independent. By extend-
ing a state-of-the-art dependency parser,
connected analyses for sentence prefixes
are obtained, which even predict properties
and the structural embedding of upcoming
words. In contrast to other approaches, ac-
curacy for complete sentence analyses does
not decrease.

1 Introduction

When humans communicate by means of a natu-
ral language, utterances are not produced at once
but evolve over time. Human interaction benefits
from this property by processing yet unfinished
utterances and reacting on them. Computational
parsing on the other hand is mostly performed on
complete sentences, a processing mode which ren-
ders a responsive interaction based on incomplete
utterances impossible.

When spoken language is analyzed, a mismatch
between speech recognition and parsing occurs:
If parsing does not work incrementally, the over-
all system loses all the desirable properties made
possible by incremental processing. For speech di-
alogue systems, this leads to increased reaction
times and an unnatural ping-pong style of interac-
tion (Schlangen and Skantze, 2011).

1.1 Desirable features of incremental parsers

Dependency parsing assigns a head and a depen-
dency label to each word form of an input sentence
and the resulting analysis of the sentence is usually
required to form a tree. An incremental dependency

parser processes a sentence word by word, building
analyses for sentence prefixes (partial dependency
analyses, PDA), which are extended and modified
in a piecemeal fashion as more words become avail-
able.

A PDA should come with three important (but
partly contradictory) properties: beyond being ac-
curate, it should also be as stable and informative as
possible. Stability can be measured as the amount
of structure (attachments and their labels) of a PDA
ai which is also part of the analysis an of the whole
sentence. To be maximally informative, at least all
available word forms should be integrated into the
prefix PDA. Even such a simple requirement cannot
easily be met without predicting a structural skele-
ton for the word forms in the upcoming part of the
sentence(bottom-up prediction). Other predictions
merely serve to satisfy completeness conditions
(i.e. valency requirements) in an anticipatory way
(top-down predictions). In fact, humans are able to
derive such predictions and they do so during sen-
tence comprehension (Sturt and Lombardo, 2005).

Without prediction, the sentence prefix “John
drives a” of “John drives a car” can only be parsed
as a disconnected structure:

John drives a

SBJ

The determiner remains unconnected to the rest of
the sentence, because a possible head is not yet
available. However, the determiner could be inte-
grated into the PDA if the connection is established
by means of a predicted word form, which has not
yet been observed. Beuck et al. (2011) propose to
use virtual nodes (VNs) for this purpose. Each VN
represents exactly one upcoming word. Its lexical
instantiation and its exact position remain unspeci-
fied. Using a VN, the prefix “John drives a” could
then be parsed as follows, creating a fully con-
nected analysis, which also satisfies the valency
requirements of the finite verb.
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John drives a [VirtNoun]

SBJ
DET

OBJ

This analysis is clearly more informative but still
restricted to the existence of a noun filling the ob-
ject role of ”drives” without predicting its position.
Although a VN does not specify the lexical identity
of the word form it represents, it can nonetheless
carry some information such as a coarse-grained
part-of-speech category.

1.2 Related work
Parsers that produce incremental output are rel-
atively rare: PLTag (Demberg-Winterfors, 2010)
aims at psycholinguistic plausibility. It makes trade-
offs in the field of accuracy and coverage (they
report 6.2 percent of unparseable sentences on sen-
tences of the Penn Treebank with less than 40
words). Due to its use of beam search, the incre-
mental results are non-monotonic. Hassan et al.
(2009) present a CCG-based parser that can parse
in an incremental mode. The parser guarantees
that every parse of an increment extends the previ-
ous parse monotonically. However, using the incre-
mental mode without look-ahead, parsing accuracy
drops from 86.70% to 59.01%. Obviously, insist-
ing on strict monotonicity (ai ⊆ an) is too strong
a requirement, since it forces the parser to keep
attachments that later turn out to be clearly wrong
in light of new evidence.

Being a transition-based parser, Maltparser
(Nivre et al., 2007) does incremental parsing by
design. It is, however, not able to predict upcom-
ing structure and therefore its incremental output is
usually fragmented into several trees. In addition,
Maltparser needs a sufficiently large look-ahead to
achieve high accuracy (Beuck et al., 2011).

Beuck et al. (2011) introduced incremental and
predictive parsing using Weighted Constraint De-
pendency Grammar. While their approach does not
decrease in incremental mode, it is much slower
than most other parsers. Another disadvantage is
its hand-written grammar which prevents the parser
from being adapted to additional languages by sim-
ply training it on an annotated corpus and which
makes it difficult to derive empirically valid con-
clusions from the experimental results.

2 Challenges for predictive parsing

Extending a dependency parser to incremental pars-
ing with VNs introduces a significant shift in the
problem to be solved: While originally the problem

was where to attach each word to (1), in the incre-
mental case the additional problem arises, which
VNs to include into the analysis (2). Problem (2),
however, depends on the syntactic structure of the
sentence prefix. Therefore, it is not possible to de-
termine the VNs before parsing commences, but
the decision has to be made while parsing is going
on. We can resolve this issue by transforming prob-
lem (2) into problem (1) by providing the parser
with an additional node, named unused. It is always
attached to the special node 0 (the root node of ev-
ery analysis) and it can only dominate VNs. unused
and every VN it dominates are not considered part
of the analysis. Using this idea, the problem of
whether a VN should be included into the analysis
is now reduced to the problem of where to attach
that VN:

John drives a [VirtNoun] [VirtVerb] [unused]

SBJ
DET

OBJ

To enable the parser to include VNs into PDAs,
a set of VNs has to be provided. While this set
could include any number of VNs, we only in-
clude a set that covers most cases of prediction
since rare virtual nodes have a very low a-priori
probability of being included and additional VNs
make the parsing problem more complex. This set
is language-dependent and has to be determined in
advance. It can be obtained by generating PDAs
from a treebank and counting the occurrences of
VNs in them. Eventually, a set of VNs is used that
is a super-set of a large enough percentage (> 90%)
of the observed sets.

3 Gold annotations for sentence prefixes

Annotating sentence prefixes by hand is pro-
hibitively costly because the number of increments
is a multitude of the number of sentences in the
corpus. Beuck and Menzel (2013) propose an ap-
proach to automatically generate predictive depen-
dency analyses from the annotation of full sen-
tences. Their method tries to generate upper bounds
for predictability which are relatively tight. There-
fore, not everything that is deemed predictable by
the algorithm is predictable in reality, but every-
thing that is predictable should be deemed as pre-
dictable: Let W be all tokens of the sentence and P
the set of tokens that lie in the prefix for which an
incremental analysis should be generated. A word
w ∈W \P is assumed to be predictable (w ∈ Pr) if
one of the following three criteria is met:
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Figure 1: Results for TurboParser for German and English with gold standard PoS (labeled)

bottom-up prediction w lies on the path from
some w′ ∈ P to 0. E. g., given the sentence prefix
“The”, an upcoming noun and a verb is predicted:

The [VirtNoun] [VirtVerb]

top down prediction π(w), the head of w, is in
P∪Pr, and w fills a syntactic role – encoded by its
dependency label – that is structurally determined.
That means w can be predicted independently of
the lexical identity of π(w). An example for this
is the subject label: If π(w) is in Pr and w is its
subject, w is assumed to be predictable.

lexical top-down prediction π(w) ∈ P and w
fills a syntactic role that is determined by an already
observed lexical item, e.g. the object role: If π(w)
is a known verb and w is its object, w ∈ Pr because
it is required by a valency of the verb.

While this procedure is language-independent,
some language-specific transformations must be
applied nonetheless. For English, parts of gapping
coordinations can be predicted whereas others can
not. For German, the transformations described in
(Beuck and Menzel, 2013) have been used with-
out further changes. Both sets of structurally and
lexically determined roles are language dependent.
The label sets for German have been adopted from
(Beuck and Menzel, 2013), while the sets for En-
glish have been obtained by manually analyzing
the PTB (Marcus et al., 1994) for predictability.

For words marked as predictable their existence
and word class, but not their lexicalization and
position can be predicted. Therefore, we replace
the lexical item with “[virtual]” and generalize the
part-of-speech tag to a more coarse grained one.

4 Predictive parsing with TurboParser

We adapt TurboParser (Martins et al., 2013) for
incremental parsing because it does not impose
structural constraints such as single-headedness in
its core algorithm. For each parsing problem, it

creates an integer linear program – in the form of a
factor graph – with the variables representing the
possible edges of the analyses.

Since well-formedness is enforced by factors,
additional constraints on the shape of analyses can
be imposed without changing the core algorithm of
the parser. We define three additional restrictions
with respect to VNs: 1) A VN that is attached to
unused may not have any dependents. 2) A VN
may not be attached to 0 if it has no dependents. 3)
Only VNs may be attached to the unused node.

For a given sentence prefix, let A be the set of
possible edges, V the set of all vertices, N ⊂ V
the VNs and u ∈V the unused node. Moreover, let
B⊂ A be the set of edges building a well-formed
analysis and za , I(a ∈ B), where I(.) is the indica-
tor function. The three additional conditions can be
expressed as linear constraints which ensure that
every output is a valid PDA:

z〈n, j〉+ z〈u,n〉 ≤ 1, n ∈ N, j ∈V (1)

z〈0,n〉 ≤ ∑
j∈V

z〈n, j〉, n ∈ N (2)

z〈u,i〉 = 0, i ∈V \N (3)

The current implementation is pseudo-incremen-
tal. It reinitializes the ILP for every increment with-
out passing intermediate results from one incremen-
tal processing step to the next, although this might
be an option for further optimization.

High quality incremental parsing results can not
be expected from models which have only been
trained on whole-sentence annotations. If a parser
is trained on gold-standard PDAs (generated as de-
scribed in section 3), it would include every VN
into every analysis because that data does not in-
clude any non-attached VNs. We therefore add non-
attached VNs to the generated PDAs until they
contain at least the set of VNs that is later used
during parsing. For instance, each German training
increment contains at least one virtual verb and
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two virtual nouns and each English one at least one
virtual verb and one virtual noun. This way, the per-
centage of VNs of a specific type being attached in
the training data resembles the a priori probability
that a VN of that type should be included by the
parser while parsing.

TurboParser is trained on these extended PDAs
and no adaptation of the training algorithm is
needed. The training data is heavily skewed be-
cause words at the beginning of the sentences are
more prevalent than the ones at the end. As a com-
parison with a version trained on non-incremental
data shows, this has no noticeable effect on the
parsing quality.

5 Evaluation

The usual methods to determine the quality of a
dependency parser – labeled and unlabeled attach-
ment scores (AS) – are not sufficient for the evalu-
ation of incremental parsers. If the AS is computed
for whole sentences, all incremental output is dis-
carded and not considered at all. If every intermedi-
ate PDA is used, words at the start of a sentence are
counted more often than the ones at the end. No in-
formation becomes available on how the accuracy
of attachments evolves while parsing proceeds, and
the prediction quality (i.e. the VNs) is completely
ignored. Therefore, we adopt the enhanced mode
of evaluation proposed by Beuck et al. (2013): In
addition to the accuracy for whole sentences, the
accuracies of the n newest words of each analy-
sis are computed. This yields a curve that shows
how good a word can be assumed to be attached
depending on its distance to the most recent word.

Let 〈V,G〉 be the gold standard analysis of an
increment and 〈V ′,P〉 the corresponding parser out-
put. V and V ′ are the vertices and G and P the
respective edges of the analyses. Let V ′p and V ′v be
the in-prefix and virtual subset of V ′, respectively.
To evaluate the prediction capabilities of a parser,
for each increment an optimal partial, surjective
mapping1 V ′→V from the output produced by the
parser to the (automatically generated) gold stan-
dard is computed, where each non-virtual element
of V ′ has to be mapped to the corresponding ele-
ment in V . Let M be the set of all such mappings.
Then the best mapping is defined as follows:

φ = argmax
m∈M

∑
w∈V ′

I(π(m(w)) = m(π(w)))

1The mapping is partial because for some VNs in V ′ there
might be no corresponding VN in the gold standard.

We define a word w as correctly attached (ignor-
ing the label) if π(φ(w)) = φ(π(w)). In an incre-
mental analysis, an attachment of a word w can be
classified into four cases:

correct π(φ(w)) = φ(π(w)), π(w) ∈V ′p
corr. pred. π(φ(w)) = φ(π(w)), π(w) ∈V ′v
wrong pred. π(φ(w)) 6= φ(π(w)), π(w) ∈V ′v
wrong π(φ(w)) 6= φ(π(w)), π(w) ∈V ′p

We can count the number of VNs that have been
correctly attached: Let T be the set of all analyses
produced by the parser and φt the best mapping as
defined above for each t ∈ T . Furthermore, let vn(t)
be the set of VNs in t. The total number of correct
predictions of VNs is then defined as:

corr = ∑
t∈T

∑
v∈vn(t)

I(π(φt(v)) = φt(π(v)))

Precision and recall for the prediction with VNs
can be computed by dividing corr by the number
of predicted VNs and the number of VNs in the
gold standard, respectively.

Evaluation has been carried out on the PTB con-
verted to dependency structure using the LTH con-
verter (Johansson and Nugues, 2007) and on the
Hamburg Dependency Treebank (Foth et al., 2014).
From both corpora predictive PDAs padded with
unused virtual nodes have been created for training.
For English, the sentences of part 1-9 of the PTB
were used, for German the first 50,000 sentences
of the HDT have been selected. Testing was done
using one virtual noun and one virtual verb for En-
glish and two virtual nouns and one virtual verb for
German because these sets cover about 90% of the
prefixes in both training sets.

Figure 1 shows the evaluation results for pars-
ing German and English using TurboParser. For
both languages the attachment accuracy rises with
the amount of context available. The difference be-
tween the attachment accuracy of the most recent
word (relative time point 0, no word to the right
of it) and the second newest word (time point 1)
is strongest, especially for English. The word five
elements left of the newest word (time point 5) gets
attached with an accuracy that is nearly as high as
the accuracy for the whole sentence (final).

The types of errors made for German and En-
glish are similar. For both German and English the
unlabeled precision reaches more than 70% (see
Table 1). Even the correct dependency label of up-
coming words can be predicted with a fairly high
precision. TurboParser parses an increment in about
0.015 seconds, which is much faster than WCDG

806



40

60

80

100

0 1 2 3 4 5 final

pe
rc

en
ta

ge

relative time point

TurboParser

40

60

80

100

0 1 2 3 4 5 final

pe
rc

en
ta

ge

relative time point

jwcdg

Figure 2: Results for TurboParser and jwcdg for German with tagger (labeled).

English German German&tagger German (jwcdg)

labeled unlabeled labeled unlabeled labeled unlabeled labeled unlabeled
precision 75.47% 78.55% 67.42% 75.90% 65.21% 73.39% 32.95% 42.23%

recall 57.92% 60,29% 46.77% 52.65% 45.79% 51.54% 35.90% 46.00%

Table 1: Precision and recall for the prediction of virtual nodes

time point 0 time point 5

unlabeled labeled unlabeled labeled
En 89.28% 84.92% 97.32% 97.11%
De 90.91% 88.96% 96.11% 95.65%

Table 2: Stability measures

where about eight seconds per word are needed to
achieve a good accuracy (Köhn and Menzel, 2013).
The prediction recall is higher for English than for
German which could be due to the differences in
gold-standard annotation.

Training TurboParser on the non-incremental
data sets results in a labeled whole-sentence accu-
racy of 93.02% for German.The whole-sentence
accuracy for parsing with VNs is 93.33%. This
shows that the additional mechanism of VNs has
no negative effects on the overall parsing quality.

To compare TurboParser and WCDG running
both in the predictive incremental mode, we use
jwcdg, the current implementation of this approach.
jwcdg differs from most other parsers in that it
does not act on pre-tagged data but runs an exter-
nal tagger itself in a multi-tag mode. To compare
both systems, TurboParser needs to be run in a
tagger-parser pipeline. We have chosen TurboTag-
ger without look-ahead for this purpose. Running
TurboParser in this pipeline leads to only slightly
worse results compared to the use of gold-standard
tags (see Figure 2). TurboParser’s attachment ac-
curacy is about ten percentage points better than
jwcdg’s across the board. In addition, its VN pre-
diction is considerably better.

To measure the stability, let Pi be a prefix of the
sentence Pn and ai and an be the corresponding
analyses produced by the parser. An attachment
of a word w ∈ Pi is stable if either w’s head is the

same in ai and an or w’s head is not part of Pi in
both ai and an. The second part covers the case
where the parser predicts the head of w to lie in the
future and it really does, according to the final parse.
Table 2 shows the attachment stability of the newest
word at time point 0 compared to the word five
positions to the left of time point 0. TurboParser’s
stability turns out to be much higher than jwcdg’s:
For German Beuck et al. (2013) report a stability
of only 80% at the most recent word. Interestingly,
labeling the newest attachment for English seems
to be much harder than for German.

6 Conclusion

Using a parser based on ILP, we were able to an-
alyze sentences incrementally and produce con-
nected dependency analyses at every point in time.
The intermediate structures produced by the parser
are highly informative, including predictions for
properties and structural embeddings of upcom-
ing words. In contrast to previous approaches, we
achieve state-of-the-art accuracy for whole sen-
tences by abandoning strong monotonicity and aim
at high stability instead, allowing the parser to im-
prove intermediate results in light of new evidence.

The parser is trained on treebank data for whole
sentences from which prefix annotations are de-
rived in a fully automatic manner. To guide this
process, a specification of structurally and lexically
determined dependency relations and some addi-
tional heuristics are needed. For parsing, only a set
of possible VNs has to be provided. These are the
only language specific components required. There-
fore, the approach can be ported to other languages
with quite modest effort.
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