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Abstract

Modern statistical dependency parsers as-
sign lexical heads to punctuations as well
as words. Punctuation parsing errors lead
to low parsing accuracy on words. In this
work, we propose an alternative approach
to addressing punctuation in dependency
parsing. Rather than assigning lexical
heads to punctuations, we treat punctu-
ations as properties of their neighbour-
ing words, used as features to guide the
parser to build the dependency graph. In-
tegrating our method with an arc-standard
parser yields a 93.06% unlabelled attach-
ment score, which is the best accuracy by
a single-model transition-based parser re-
ported so far.

1 Introduction

The task of dependency parsing is to identify the
lexical head of each of the tokens in a string.
Modern statistical parsers (McDonald et al., 2005;
Nivre et al., 2007; Huang and Sagae, 2010; Zhang
and Nivre, 2011) treat all the tokens equally, as-
signing lexical heads to punctuations as well as
words. Punctuations arguably play an important
role in syntactic analysis. However, there are a
number of reasons that it is not necessary to parse
punctuations:

First, the lexical heads of punctuations are not
as well defined as those of words. Consequently,
punctuations are not as consistently annotated in
treebanks as words, making it harder to parse
punctuations. For example, modern statistical
parsers achieve above 90% unlabelled attachment
score (UAS) on words. However, the UAS on
punctuations are generally below 85%.

∗This work was done while the first author was visiting
SUTD

Moreover, experimental results showed that
parsing accuracy of content words drops on sen-
tences which contain higher ratios of punctuations.
One reason for this result is that projective de-
pendency parsers satisfy the “no crossing links”
constraint, and errors in punctuations may pre-
vent correct word-word dependencies from being
created (see section 2). In addition, punctuations
cause certain type of features inaccurate. Take va-
lency features for example, previous work (Zhang
and Nivre, 2011) has shown that such features are
important to parsing accuracy, e.g., it may inform
the parser that a verb already has two objects at-
tached to it. However, such information might
be inaccurate when the verb’s modifiers contain
punctuations.

Ultimately, it is the dependencies between
words that provide useful information for real
world applications. Take machine translation or
information extraction for example, most systems
take advantage of the head-modifier relationships
between word pairs rather than word-punctuation
pairs to make better predictions. The fact that most
previous work evaluates parsing accuracies with-
out taking punctuations into account is also largely
due to this reason.

Given the above reasons, we propose an alterna-
tive approach to punctuation processing for depen-
dency parsing. In this method, punctuations are
not associated with lexical heads, but are treated
as properties of their neighbouring words.

Our method is simple and can be easily incor-
porated into state-of-the-art parsers. In this work,
we report results on an arc-standard transition-
based parser. Experiments show that our method
achieves about 0.90% UAS improvement over the
greedy baseline parser on the standard Penn Tree-
bank test set. Although the improvement becomes
smaller as the beam width grows larger, we still
achieved 93.06% UAS with a beam of width 64,
which is the best result for transition-based parsers
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Length 1 ∼ 20 21− 40 41− 60
Punc % 0 ∼ 15 15 ∼ 30 > 30 0 ∼ 15 15 ∼ 30 > 30 0 ∼ 15 15 ∼ 30 > 30

E-F 94.56 92.88 87.67 91.84 91.82 83.87 89.83 88.01 −
A-S 93.87 92.00 90.05 90.81 90.15 75.00 88.06 88.89 −

A-S-64 95.28 94.43 88.15 92.96 92.63 76.61 90.78 88.76 −
MST 94.90 93.55 88.15 92.45 93.11 77.42 90.89 89.77 −

Table 2: Parsing accuracies vs punctuation ratios, on the development set

System E-F A-S A-S-64 MST
Dev UAS 91.83 90.71 93.02 92.56
Test UAS 91.75 90.34 92.84 92.10

Dev UAS-p 83.20 79.69 84.80 84.42
Test UAS-p 84.67 79.64 87.80 85.67
Dev− UAS 90.64 89.55 91.87 90.11
Test− UAS 90.40 89.33 91.75 89.82

Table 1: Parsing accuracies. “E-F” and “MST” de-
note easy-first parser and MSTparser, respectively.
“A-S” and “A-S 64” denote our arc-standard parser
with beam width 1 and 64, respectively. “UAS”
and “UAS-p” denote word and punctuation unla-
belled attachment score, respectively. “−” denotes
the data set with punctuations removed.

reported so far. Our code will be available at
https://github.com/majineu/Parser/Punc/A-STD.

2 Influence of Punctuations on Parsing

In this section, we conduct a set of experiments to
show the influence of punctuations on dependency
parsing accuracies.

2.1 Setup

We use the Wall Street Journal portion of the Penn
Treebank with the standard splits: sections 02-21
are used as the training set; section 22 and sec-
tion 23 are used as the development and test set,
respectively. Penn2Malt is used to convert brack-
eted structures into dependencies. We use our own
implementation of the Part-Of-Speech (POS) tag-
ger proposed by Collins (2002) to tag the devel-
opment and test sets. Training set POS tags are
generated using 10-fold jack-knifing. Parsing ac-
curacy is evaluated using unlabelled attachment
score (UAS), which is the percentage of words that
are assigned the correct lexical heads.

To show that the influence of punctuations
on parsing is independent of specific pars-
ing algorithms, we conduct experiments us-
ing three parsers, each representing a different
parsing methodology: the open source MST-

Parser1(McDonald and Pereira, 2006), our own
re-implementation of an arc-standard transition-
based parser (Nivre, 2008), which is trained us-
ing global learning and beam-search (Zhang and
Clark, 2008) with a rich feature set (Zhang and
Nivre, 2011) 2, and our own re-implementation of
the easy-first parser (Goldberg and Elhadad, 2010)
with an extended feature set (Ma et al., 2013).

2.2 Punctuations and Parsing Accuracy

Our first experiment is to show that, compared
with words, punctuations are more difficult to
parse and to learn. To see this, we evaluate the
parsing accuracies of the selected parsers on words
and punctuations, separately. Results are listed
in Table 1, where row 2 and row 3 list the UAS
of words (all excluding punctuations) on the de-
velopment and test set, respectively. Row 4 and
row 5 list accuracies of punctuations (all excluding
words) on the development and test set, respec-
tively. We can see that although all the parsers
achieve above 90% UAS on words, the UAS on
punctuations are mostly below 85%.

As for learning, we calculate the percentage of
parameter updates that are caused by associating
punctuations with incorrect heads during training
of the easy-first parser3. The result is that more
than 31% of the parameter updates are caused due
to punctuations, though punctuations account for
only 11.6% of the total tokens in the training set.

The fact that parsers achieve low accuracies on
punctuations is to some degree expected, because
the head of a punctuation mark is linguistically
less well-defined. However, a related problem is

1We trained a second order labelled parser with all the
configurations set to the default value. The code is publicly
available at http://sourceforge.net/projects/mstparser/

2Some feature templates in Zhang and Nivre (2011) in-
volve head word and head POS tags which are not avail-
able for an arc-standard parser. Interestingly, without those
features our arc-standard parser still achieves 92.84% UAS
which is comparable to the 92.90% UAS obtained by the arc-
eager parser of Zhang and Nivre (2011)

3For the greedy easy-first parser, whether a parameter up-
date is caused by punctuation error can be determined with
no ambiguity.
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Figure 1: Illustration of processing paired punctuation. The property of a word is denoted by the punc-
tuation below that word.

that parsing accuracy on words tends to drop on
the sentences which contain high ratio of punc-
tuations. To see this, we divide the sentences in
the development set into sub-sets according the
punctuation ratio (percentage of punctuations that
a sentence contains), and then evaluate parsing ac-
curacies on the sub-sets separately.

The results are listed in Table 2. Since long
sentences are inherently more difficult to parse,
to make a fair comparison, we further divide the
development set according to sentence lengths as
shown in the first row4. We can see that most of the
cases, parsing accuracies drop on sentences with
higher punctuation ratios. Note that this negative
effect on parsing accuracy might be overlooked
since most previous work evaluates parsing accu-
racy without taking punctuations into account.

By inspecting the parser outputs, we found that
error propagation caused by assigning incorrect
head to punctuations is one of the main reason that
leads to this result. Take the sentence shown in
Figure 1 (a) for example, the word Mechanisms
is a modifier of entitled according to the gold ref-
erence. However, if the quotation mark, “, is in-
correctly recognized as a modifier of was, due to
the “no crossing links” constraint, the arc between
Mechanisms and entitled can never be created.

A natural question is whether it is possible to
reduce such error propagation by simply remov-
ing all punctuations from parsing. Our next ex-
periment aims at answering this question. In this
experiment, we first remove all punctuations from
the original data and then modify the dependency
arcs accordingly in order to maintain word-word
dependencies in the original data. We re-train the
parsers on the modified training set and evaluate

41694 out of 1700 sentences on the development set with
length no larger than 60 tokens

parsing accuracies on the modified data.
Results are listed in row 6 and row 7 of Table 1.

We can see that parsing accuracies on the modified
data drop significantly compared with that on the
original data. The result indicates that by remov-
ing punctuations, we lose some information that is
important for dependency parsing.

3 Punctuation as Properties

In our method, punctuations are treated as prop-
erties of its neighbouring words. Such properties
are used as additional features to guide the parser
to construct the dependency graph.

3.1 Paired Punctuation
Our method distinguishes paired punctuations
from other punctuations. Here paired punctuations
include brackets and quotations marks, whose
Penn Treebank POS tags are the following four:

-LRB- -RRB- “ ”

The characteristics of paired punctuations include:
(1) they typically exist in pairs; (2) they serve as
boundaries that there is only one dependency arc
between the words inside the boundaries and the
words outside. Take the sentence in Figure 1 (a)
for example, the only arc cross the boundary is
(Mechanisms, entitled) where entitled is the head.

To utilize such boundary information, we fur-
ther classify paired punctuations into two cate-
gories: those that serve as the beginning of the
boundary, whose POS tags are either -LRB- or “,
denoted by BPUNC; and those that serve as the end
of the boundary, denoted by EPUNC.

Before parsing starts, a preprocessing step is
used to first attach the paired punctuations as
properties of their neighbouring words, and then
remove them from the sentence. In particular,
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unigram for p in β0, β1, β2, β3, σ0, σ1, σ2 ppunc

for p in β0, β1, β2, σ0, σ1 ppunc � pw, ppunc � pt

bigram for p, q in (σ0, β0), (σ0, β1), (σ0, β2), (σ0, σ1), (σ0, σ2) ppunc � qpunc, ppunc � qt, ppunc � qw

for p, q in (σ2, σ0), (σ1, σ0), (σ2, σ0) ppunc � qt, ppunc � pt � qt

for p, q in (σ2, σ0), (σ1, σ0), (σ0, β0) dpq � ppunc � pt � qt

Table 3: Feature templates. For an element p either on σ or β of an arc-standard parser, we use ppunc,
pw and pt to denote the punctuation property, head word and head tag of p, respectively. dpq denotes the
distance between the two elements p and q.

we attach BPUNCs to their right neighbours and
EPUNCs to their left neighbours, as shown in Fig-
ure 1 (b). Note that in Figure 1 (a), the left neigh-
bour of ” is also a punctuation. In such cases, we
simply remove these punctuations since the exis-
tence of paired punctuations already indicates that
there should be a boundary.

During parsing, when a dependency arc with
lexical head wh is created, the property of wh is
updated by the property of its left (or right) most
child to keep track whether there is a BPUNC (or
EPUNC) to the left (or right) side of the sub-tree
rooted at wh, as shown in Figure 1 (c). When
BPUNCs and EPUNCs meet each other at wh, a
PAIRED property is assigned to wh to capture that
the words within the paired punctuations form a
sub-tree, rooted at wh. See Figure 1 (d).

3.2 Practical Issues

It is not uncommon that two BPUNCS appear ad-
jacent to each other. For example,

(“Congress’s Environmental Buccaneers,”
Sept. 18).

In our implementation, BPUNC or EPUNC prop-
erties are implemented using flags. In the exam-
ple, we set two flags “ and ( on the word Con-
grees’s. When BPUNC and EPUNC meet each
other, the corresponding flags are turned off. In
the example, when Congrees’s is identified as a
modifier of Buccaneers, the ” flag of Buccaneers
is turned off. However, we do not assign a PAIRED

property to Buccaneers since its ( flag is still on.
The PAIRED property is assigned only when all
the flags are turned off.

3.3 Non-Paired Punctuations

Though some types of non-paired punctuations
may capture certain syntactic patterns, we do not
make further distinctions between them, and treat
these punctuations uniformly for simplicity.

Before parsing starts and after the preprocessing
step for paired punctuations, our method employs

a second preprocessing step to attach non-paired
punctuations to their left neighbouring words. It
is guaranteed that the property of the left neigh-
bouring words of non-paired punctuations must be
empty. Otherwise, it means the non-paired punc-
tuation is adjacent to a paired punctuation. In
such cases, the non-paired punctuation would be
removed in the first processing step.

During parsing, non-paired punctuations are
also passed bottom-up: the property of wh is up-
dated by its right-most dependent to keep track
whether there is a punctuation to the right side
of the tree rooted at wh. The only special case is
that ifwh already contains a BPUNC property, then
our method simply ignores the non-paired prop-
erty since we maintain the boundary information
with the highest priority.

3.4 Features

We incorporate our method into the arc-standard
transition-based parser, which uses a stack σ to
maintain partially constructed trees and a buffer β
for the incoming words (Nivre, 2008). We design
a set of features to exploit the potential of using
punctuation properties for the arc-standard parser.

The feature templates are listed in Table 3.
In addition to the features designed for paired
punctuations, such as bigram punctuation features
listed in line 3 of Table 3, we also design features
for non-paired punctuations. For example, the dis-
tance features in line 5 of Table 3 is used to capture
the pattern that if a word w with comma property
is the left modifier of a noun or a verb, the distance
between w and its lexical head is often larger than
1. In other words, they are not adjacent.

4 Results

Our first experiment is to investigate the effect of
processing paired punctuations on parsing accu-
racy. In this experiment, the method introduced
in Section 3.1 is used to process paired punctua-
tions, and the non-paired punctuations are left un-
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s Baseline Paired All
1 90.76 91.25 91.47
2 91.88 92.06 92.34
4 92.50 92.61 92.70
8 92.73 92.76 92.82
16 92.90 92.94 92.99
64 92.99 93.04 93.10

Table 4: Parsing accuracies on the development
set. s denotes the beam width.

touched. Feature templates used in this experi-
ment are those listed in the top three rows of Ta-
ble 3 together with those used for the baseline arc-
standard parser.

Results on the development set are shown in the
second column of Table 4. We can see that when
the beam width is set to 1, our method achieves an
0.49 UAS improvement. By comparing the out-
puts of the two parsers, two types of errors made
by the baseline parser are effectively corrected.

The first is that our method is able to cap-
ture the pattern that there is only one depen-
dency arc between the words within the paired-
punctuations and the words outside, while the
baseline parser sometimes creates more depen-
dency arcs that cross the boundary.

The second is more interesting. Our method is
able to capture that the root, wh, of the sub-tree
within the paired-punctuation, such as “Mecha-
nisms” in Figure 1, generally serves as a modifier
of the words outside, while the baseline parser oc-
casionally make wh as the head of the sentence.

As we increase the beam width, the improve-
ment of our method over the baseline becomes
smaller. This is as expected, since beam search
also has the effect of reducing error propagation
(Zhang and Nivre, 2012), thereby alleviating the
errors caused by punctuations.

In the last experiment, we examine the effect
of incorporating all punctuations using the method
introduced in Section 2. In this experiment, we
use all the feature templates in Table 3 and those
in the baseline parser. Results are listed in the
fourth column of Table 4, which shows that pars-
ing accuracies can be further improved by also
processing non-paired punctuations. The overall
accuracy improvement when the beam width is 1
reaches 0.91%. The extra improvements mainly
come from better accuracies on the sentences with
comma. However, the exact type of errors that
are corrected by using non-paired punctuations is
more difficult to summarize.

system UAS Comp Root
Baseline 90.38 37.71 89.45
All-Punc 91.32 41.35 92.43

Baseline-64 92.84 46.90 95.57
All-Punc-64 93.06 48.55 95.53

Huang 10 92.10 − −
Zhang 11 92.90 48.00 91.80
Choi 13 92.96 − −

Bohnet 12 93.03 − −

Table 5: Final result on the test set.

The final results on the test set are listed in Ta-
ble 55. Table 5 also lists the accuracies of state-
of-the-art transition-based parsers. In particular,
“Huang 10” and “Zhang 11” denote Huang and
Sagae (2010) and Zhang and Nivre (2011), re-
spectively. “Bohnet 12” and “Choi 13” denote
Bohnet and Nivre (2012) and Choi and Mccal-
lum (2013), respectively. We can see that our
method achieves the best accuracy for single-
model transition-based parsers.

5 Conclusion and Related Work

In this work, we proposed to treat punctuations
as properties of context words for dependency
parsing. Experiments with an arc-standard parser
showed that our method effectively improves pars-
ing performance and we achieved the best accu-
racy for single-model transition-based parser.

Regarding punctuation processing for depen-
dency parsing, Li et al. (2010) proposed to uti-
lize punctuations to segment sentences into small
fragments and then parse the fragments separately.
A similar approach is proposed by Spitkovsky et
al. (2011) which also designed a set of constraints
on the fragments to improve unsupervised depen-
dency parsing.
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