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Abstract

Tweets often contain a large proportion of
abbreviations, alternative spellings, novel
words and other non-canonical language.
These features are problematic for stan-
dard language analysis tools and it can
be desirable to convert them to canoni-
cal form. We propose a novel text nor-
malization model based on learning edit
operations from labeled data while incor-
porating features induced from unlabeled
data via character-level neural text embed-
dings. The text embeddings are generated
using an Simple Recurrent Network. We
find that enriching the feature set with text
embeddings substantially lowers word er-
ror rates on an English tweet normaliza-
tion dataset. Our model improves on state-
of-the-art with little training data and with-
out any lexical resources.

1 Introduction

A stream of posts from Twitter contains text writ-
ten in a large variety of languages and writing sys-
tems, in registers ranging from formal to inter-
net slang. Substantial effort has been expended
in recent years to adapt standard NLP process-
ing pipelines to be able to deal with such con-
tent. One approach has been text normaliza-
tion, i.e. transforming tweet text into a more
canonical form which standard NLP tools ex-
pect. A multitude of resources and approaches
have been used to deal with normalization: hand-
crafted and (semi-)automatically induced dictio-
naries, language models, finite state transduc-
ers, machine translation models and combinations
thereof. Methods such as those of Han and Bald-
win (2011), Liu et al. (2011), Gouws et al. (2011)
or Han et al. (2012) are unsupervised but they
typically use many adjustable parameters which

need to be tuned on some annotated data. In this
work we suggest a simple, supervised character-
level string transduction model which easily incor-
porates features automatically learned from large
amounts of unlabeled data and needs only a lim-
ited amount of labeled training data and no lexical
resources.

Our model learns sequences of edit operations
from labeled data using a Conditional Random
Field (Lafferty et al., 2001). Unlabeled data
is incorporated following recent work on using
character-level text embeddings for text segmen-
tation (Chrupała, 2013), and word and sentence
boundary detection (Evang et al., 2013). We
train a recurrent neural network language model
(Mikolov et al., 2010; Mikolov, 2012b) on a large
collection of tweets. When run on new strings, the
activations of the units in the hidden layer at each
position in the string are recorded and used as fea-
tures for training the string transduction model.

The principal contributions of our work are: (i)
we show that a discriminative sequence labeling
model is apt for text normalization and performs
at state-of-the-art levels with small amounts of la-
beled training data; (ii) we show that character-
level neural text embeddings can be used to effec-
tively incorporate information from unlabeled data
into the model and can substantially boost text nor-
malization performance.

2 Methods

Many approaches to text normalization adopt the
noisy channel setting, where the model normaliz-
ing source string s into target canonical form t is
factored into two parts: t̂ = arg maxt P (t)P (s|t).
The error term P (s|t) models how canonical
strings are transformed into variants such as e.g.
misspellings, emphatic lengthenings or abbrevia-
tions. The language model P (t) encodes which
target strings are probable.

We think this decomposition is less appropriate
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Input c w a t
Edit DEL INS(see) NIL INS(h) NIL
Output see w ha t

Table 1: Example edit script.

in the context of text normalization than in appli-
cations from which it was borrowed such as Ma-
chine Translations. This is because it is not obvi-
ous what kind of data can be used to estimate the
language model: there is plentiful text from the
source domain, but little of it is in normalized tar-
get form. There is also much edited text such as
news text, but it comes from a very different do-
main. One of the main advantages of the noisy
channel decomposition is that is makes it easy to
exploit large amounts of unlabeled data in the form
of a language model. This advantage does not hold
for text normalization.

We thus propose an alternative approach where
normalization is modeled directly, and which en-
ables easy incorporation of unlabeled data from
the source domain.

2.1 Learning to transduce strings

Our string transduction model works by learning
the sequence of edits which transform the input
string into the output string. Given a pair of strings
such a sequence of edits (known as the shortest
edit script) can be found using the DIFF algorithm
(Miller and Myers, 1985; Myers, 1986). Our ver-
sion of DIFF uses the following types of edits:
• NIL – no edits,
• DEL – delete character at this position,
• INS(·) – insert specified string before charac-

ter at this position.1

Table 1 shows a shortest edit script for the pair
of strings (c wat, see what).

We use a sequence labeling model to learn to
label input strings with edit scripts. The train-
ing data for the model is generated by comput-
ing shortest edit scripts for pairs of original and
normalized strings. As a sequence labeler we use
Conditional Random Fields (Lafferty et al., 2001).
Once trained the model is used to label new strings
and the predicted edit script is applied to the in-
put string producing the normalized output string.
Given source string s the predicted target string t̂

1The input string is extended with an empty symbol to
account for the cases where an insertion is needed at the end
of the string.

is:
t̂ = arg max

t
P (ses(s, t)|s)

where e = ses(s, t) is the shortest edit script map-
ping s to t. P (e|s) is modeled with a linear-chain
Conditional Random Field.

2.2 Character-level text embeddings
Simple Recurrent Networks (SRNs) were intro-
duced by Elman (1990) as models of temporal, or
sequential, structure in data, including linguistic
data (Elman, 1991). More recently SRNs were
used as language models for speech recognition
and shown to outperform classical n-gram lan-
guage models (Mikolov et al., 2010; Mikolov,
2012b). Another version of recurrent neural nets
has been used to generate plausible text with a
character-level language model (Sutskever et al.,
2011). We use SRNs to induce character-level text
representations from unlabeled Twitter data to use
as features in the string transduction model.

The units in the hidden layer at time t receive
connections from input units at time t and also
from the hidden units at the previous time step
t − 1. The hidden layer predicts the state of the
output units at the next time step t + 1. The input
vector w(t) represents the input element at current
time step, here the current character. The output
vector y(t) represents the predicted probabilities
for the next character. The activation sj of a hid-
den unit j is a function of the current input and the
state of the hidden layer at the previous time step:
t− 1:

sj(t) = σ

(
I∑

i=1

wi(t)Uji +
L∑

l=1

sj(t− 1)Wjl

)

where σ is the sigmoid function and Uji is the
weight between input component i and hidden unit
j, while Wjl is the weight between hidden unit l
at time t − 1 and hidden unit j at time t. The
representation of recent history is stored in a lim-
ited number of recurrently connected hidden units.
This forces the network to make the representation
compressed and abstract rather than just memo-
rize literal history. Chrupała (2013) and Evang
et al. (2013) show that these text embeddings can
be useful as features in textual segmentation tasks.
We use them to bring in information from unla-
beled data into our string transduction model and
then train a character-level SRN language model
on unlabeled tweets. We run the trained model on
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Figure 1: Tweets randomly generated with an SRN

new tweets and record the activation of the hid-
den layer at each position as the model predicts the
next character. These activation vectors form our
text embeddings: they are discretized and used as
input features to the supervised sequence labeler
as described in Section 3.4.

3 Experimental Setup

We limit the size of the string alphabet by always
working with UTF-8 encoded strings, and using
bytes rather than characters as basic units.

3.1 Unlabeled tweets
In order to train our SRN language model we col-
lected a set of tweets using the Twitter sampling
API. We use the raw sample directly without fil-
tering it in any way, relying on the SRN to learn
the structure of the data. The sample consists of
414 million bytes of UTF-8 encoded in a variety
of languages and scripts text. We trained a 400-
hidden-unit SRN, to predict the next byte in the
sequence using backpropagation through time. In-
put bytes were encoded using one-hot representa-
tion. We modified the RNNLM toolkit (Mikolov,
2012a) to record the activations of the hidden layer
and ran it with the default learning rate schedule.
Given that training SRNs on large amounts of text
takes a considerable amount of time we did not
vary the size of the hidden layer. We did try to
filter tweets by language and create specific em-
beddings for English but this had negligible effect
on tweet normalization performance.

The trained SRN language model can be used
to generate random text by sampling the next byte
from its predictive distribution and extending the
string with the result. Figure 1 shows example
strings generated in this way: the network seems
to prefer to output pseudo-tweets written consis-
tently in a single script with words and pseudo-
words mostly from a single language. The gener-
ated byte sequences are valid UTF-8 strings.

In Table 2 in the first column we show the suf-
fix of a string for which the SRN is predicting the
last byte. The rest of each row shows the nearest
neighbors of this string in embedding space, i.e.

should h should d will s will m should a
@justth @neenu @raven @lanae @despic
maybe u maybe y cause i wen i when i

Table 2: Nearest neighbors in embedding space.

strings for which the SRN is activated in a similar
way when predicting its last byte as measured by
cosine similarity.

3.2 Normalization datasets

A difficulty in comparing approaches to tweet nor-
malization is the sparsity of publicly available
datasets. Many authors evaluate on private tweet
collections and/or on the text message corpus of
Choudhury et al. (2007).

For English, Han and Baldwin (2011) created
a small tweet dataset annotated with normalized
variants at the word level. It is hard to inter-
pret the results from Han and Baldwin (2011),
as the evaluation is carried out by assuming that
the words to be normalized are known in ad-
vance: Han et al. (2012) remedy this shortcoming
by evaluating a number of systems without pre-
specifying ill-formed tokens. Another limitation
is that only word-level normalization is covered in
the annotation; e.g. splitting or merging of words
is not allowed. The dataset is also rather small:
549 tweets, which contain 2139 annotated out-
of-vocabulary (OOV) words. Nevertheless, we
use it here for training and evaluating our model.
This dataset does not specify a development/test
split. In order to maximize the size of the training
data while avoiding tuning on test data we use a
split cross-validation setup: we generate 10 cross-
validation folds, and use 5 of them during devel-
opment to evaluate variants of our model. The best
performing configuration is then evaluated on the
remaining 5 cross-validation folds.

3.3 Model versions

The simplest way to normalize tweets with a string
transduction model is to treat whole tweets as in-
put sequences. Many other tweet normalization
methods work in a word-wise fashion: they first
identify OOV words and then replace them with
normalized forms. Consequently, publicly avail-
able normalization datasets are annotated at word
level. We can emulate this setup by training the se-
quence labeler on words, instead of whole tweets.
This approach sacrifices some generality, since
transformations involving multiple words cannot
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be learned. However, word-wise models are more
comparable with previous work. We investigated
the following models:
• OOV-ONLY is trained on individual words and

in-vocabulary (IV) words are discarded for
training, and left unchanged for prediction.2

• ALL-WORDS is trained on all words and al-
lowed to change IV words.
• DOCUMENT is trained on whole tweets.

Model OOV-ONLY exploits the setting when the
task is constrained to only normalize words absent
from a reference dictionary, while DOCUMENT is
the one most generally applicable but does not
benefit from any constraints. To keep model size
within manageable limits we reduced the label set
for models ALL-WORDS and DOCUMENT by re-
placing labels which occur less than twice in the
training data with NIL. For OOV-ONLY we were
able to use the full label set. As our sequence la-
beling model we use the Wapiti implementation
of Conditional Random Fields (Lavergne et al.,
2010) with the L-BFGS optimizer and elastic net
regularization with default settings.

3.4 Features
We run experiments with two feature sets: N-
GRAM and N-GRAM+SRN. N-GRAM are char-
acter n-grams of size 1–3 in a window of
(−2,+2) around the current position. For the N-
GRAM+SRN feature set we augment N-GRAM with
features derived from the activations of the hidden
units as the SRN is trying to predict the current
character. In order to use the activations in the
CRF model we discretize them as follows. For
each of the K = 10 most active units out of
total J = 400 hidden units, we create features
(f(1) . . . f(K)) defined as f(k) = 1 if sj(k) >
0.5 and f(k) = 0 otherwise, where sj(k) returns
the activation of the kth most active unit.

3.5 Evaluation metrics
As our evaluation metric we use word error rate
(WER) which is defined as the Levenshtein edit
distance between the predicted word sequence t̂
and the target word sequence t, normalized by the
total number of words in the target string. A more
generally applicable metric would be character er-
ror rate, but we report WERs to make our results
easily comparable with previous work. Since the

2We used the IV/OOV annotations in the Han et al. (2012)
dataset, which are automatically derived from the aspell dic-
tionary.

Model Features WER (%)
NO-OP 11.7
DOCUMENT NGRAM 6.8
DOCUMENT NGRAM+SRN 5.7
ALL WORDS NGRAM 7.2
ALL WORDS NGRAM+SRN 5.0
OOV-ONLY NGRAM 5.1
OOV-ONLY NGRAM+SRN 4.5

Table 3: WERs on development data.

9 cont continued 5 gon gonna
4 bro brother 4 congrats congratulations
3 yall you 3 pic picture
2 wuz what’s 2 mins minutes
2 juss just 2 fb facebook

Table 4: Improvements from SRN features.

English dataset is pre-tokenized and only covers
word-to-word transformations, this choice has lit-
tle importance here and character error rates show
a similar pattern to word error rates.

4 Results

Table 3 shows the results of our development ex-
periments. NO-OP is a baseline which leaves text
unchanged. As expected the most constrained
model OOV-ONLY outperforms the more generic
models on this dataset. For all model variations,
adding SRN features substantially improves per-
formance: the relative error reductions range from
12% for OOV-ONLY to 30% for ALL-WORDS. Ta-
ble 4 shows the non-unique normalizations made
by the OOV-ONLY model with SRN features which
were missed without them. SRN features seem
to be especially useful for learning long-range,
multi-character edits, e.g. fb for facebook.

Table 5 shows the non-unique normalizations
which were missed by the best model: they are
a mixture of relatively standard variations which
happen to be infrequent in our data, like tonite or
gf, and a few idiosyncratic respellings like uu or
bhee. Our supervised approach makes it easy to
address the first type of failure by simply annotat-
ing additional training examples.

Table 6 presents evaluation results of several ap-
proaches reported in Han et al. (2012) as well as
the model which did best in our development ex-
periments. HB-dict is the Internet slang dictio-
nary from Han and Baldwin (2011). GHM-dict
is the automatically constructed dictionary from
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4 1 one 2 withh with
2 uu you 2 tonite tonight
2 thx thanks 2 thiis this
2 smh somehow 2 outta out
2 n in 2 m am
2 hmwrk homework 2 gf girlfriend
2 fxckin fucking 2 dha the
2 de the 2 d the
2 bhee be 2 bb baby

Table 5: Missed transformations.

Method WER (%)
NO-OP 11.2
HB-dict 6.6
GHM-dict 7.6
S-dict 9.7
Dict-combo 4.9
Dict-combo+HB-norm 7.9
OOV-ONLY NGRAM+SRN (test) 4.8

Table 6: WERs compared to previous work.

Gouws et al. (2011); S-dict is the automatically
constructed dictionary from (Han et al., 2012);
Dict-combo are all the dictionaries combined and
Dict-combo+HB-norm are all dictionaries com-
bined with approach of Han and Baldwin (2011).
The WER reported for OOV-ONLY NGRAM+SRN

is on the test folds only. The score on the full
dataset is a bit better: 4.66%. As can be seen our
approach it the best performing approach overall
and in particular it does much better than all of the
single dictionary-based methods. Only the combi-
nation of all the dictionaries comes close in per-
formance.

5 Related work

In the field of tweet normalization the approach
of Liu et al. (2011, 2012) shows some similarities
to ours: they gather a collection of OOV words
together with their canonical forms from the web
and train a character-level CRF sequence labeler
on the edit sequences computed from these pairs.
They use this as the error model in a noisy-channel
setup combined with a unigram language model.
In addition to character n-gram features they use
phoneme and syllable features, while we rely on
the SRN embeddings to provide generalized rep-
resentations of input strings.

Kaufmann and Kalita (2010) trained a phrase-
based statistical translation model on a parallel

text message corpus and applied it to tweet nor-
malization. In comparison to our first-order linear-
chain CRF, an MT model with reordering is more
flexible but for this reason needs more training
data. It also suffers from language model mis-
match mentioned in Section 2: optimal results
were obtained by using a low weight for the lan-
guage model trained on a balanced text corpus.

Many other approaches to tweet normalization
are more unsupervised in nature (e.g. Han and
Baldwin, 2011; Gouws et al., 2011; Xue et al.,
2011; Han et al., 2012). They still require an-
notated development data for tuning parameters
and a variety of heuristics. Our approach works
well with similar-sized training data, and unlike
unsupervised approaches can easily benefit from
more if it becomes available. Further afield,
our work has connections to research on mor-
phological analysis: for example Chrupała et al.
(2008) use edit scripts to learn lemmatization rules
while Dreyer et al. (2008) propose a discrimina-
tive model for string transductions and apply it
to morphological tasks. While Chrupała (2013)
and Evang et al. (2013) use character-level SRN
text embeddings for learning segmentation, and
recurrent nets themselves have been used for se-
quence transduction (Graves, 2012), to our knowl-
edge neural text embeddings have not been previ-
ously applied to string transduction.

6 Conclusion

Learning sequences of edit operations from exam-
ples while incorporating unlabeled data via neu-
ral text embeddings constitutes a compelling ap-
proach to tweet normalization. Our results are es-
pecially interesting considering that we trained on
only a small annotated data set and did not use
any other manually created resources such as dic-
tionaries. We want to push performance further
by expanding the training data and incorporating
existing lexical resources. It will also be impor-
tant to check how our method generalizes to other
language and datasets (e.g. de Clercq et al., 2013;
Alegria et al., 2013).

The general form of our model can be used
in settings where normalization is not limited to
word-to-word transformations. We are planning
to find or create data with such characteristics and
evaluate our approach under these conditions.
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Iñaki Alegria, Nora Aranberri, Vı́ctor Fresno, Pablo
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