
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 302–308,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Dependency-Based Word Embeddings

Omer Levy∗ and Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

{omerlevy,yoav.goldberg}@gmail.com

Abstract

While continuous word embeddings are
gaining popularity, current models are
based solely on linear contexts. In this
work, we generalize the skip-gram model
with negative sampling introduced by
Mikolov et al. to include arbitrary con-
texts. In particular, we perform exper-
iments with dependency-based contexts,
and show that they produce markedly
different embeddings. The dependency-
based embeddings are less topical and ex-
hibit more functional similarity than the
original skip-gram embeddings.

1 Introduction

Word representation is central to natural language
processing. The default approach of represent-
ing words as discrete and distinct symbols is in-
sufficient for many tasks, and suffers from poor
generalization. For example, the symbolic repre-
sentation of the words “pizza” and “hamburger”
are completely unrelated: even if we know that
the word “pizza” is a good argument for the verb
“eat”, we cannot infer that “hamburger” is also
a good argument. We thus seek a representation
that captures semantic and syntactic similarities
between words. A very common paradigm for ac-
quiring such representations is based on the distri-
butional hypothesis of Harris (1954), stating that
words in similar contexts have similar meanings.

Based on the distributional hypothesis, many
methods of deriving word representations were ex-
plored in the NLP community. On one end of the
spectrum, words are grouped into clusters based
on their contexts (Brown et al., 1992; Uszkor-
eit and Brants, 2008). On the other end, words
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are represented as a very high dimensional but
sparse vectors in which each entry is a measure
of the association between the word and a particu-
lar context (see (Turney and Pantel, 2010; Baroni
and Lenci, 2010) for a comprehensive survey).
In some works, the dimensionality of the sparse
word-context vectors is reduced, using techniques
such as SVD (Bullinaria and Levy, 2007) or LDA
(Ritter et al., 2010; Séaghdha, 2010; Cohen et
al., 2012). Most recently, it has been proposed
to represent words as dense vectors that are de-
rived by various training methods inspired from
neural-network language modeling (Bengio et al.,
2003; Collobert and Weston, 2008; Mnih and
Hinton, 2008; Mikolov et al., 2011; Mikolov et
al., 2013b). These representations, referred to as
“neural embeddings” or “word embeddings”, have
been shown to perform well across a variety of
tasks (Turian et al., 2010; Collobert et al., 2011;
Socher et al., 2011; Al-Rfou et al., 2013).

Word embeddings are easy to work with be-
cause they enable efficient computation of word
similarities through low-dimensional matrix op-
erations. Among the state-of-the-art word-
embedding methods is the skip-gram with nega-
tive sampling model (SKIPGRAM), introduced by
Mikolov et al. (2013b) and implemented in the
word2vec software.1 Not only does it produce
useful word representations, but it is also very ef-
ficient to train, works in an online fashion, and
scales well to huge copora (billions of words) as
well as very large word and context vocabularies.

Previous work on neural word embeddings take
the contexts of a word to be its linear context –
words that precede and follow the target word, typ-
ically in a window of k tokens to each side. How-
ever, other types of contexts can be explored too.

In this work, we generalize the SKIP-
GRAM model, and move from linear bag-of-words
contexts to arbitrary word contexts. Specifically,

1code.google.com/p/word2vec/
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following work in sparse vector-space models
(Lin, 1998; Padó and Lapata, 2007; Baroni and
Lenci, 2010), we experiment with syntactic con-
texts that are derived from automatically produced
dependency parse-trees.

The different kinds of contexts produce no-
ticeably different embeddings, and induce differ-
ent word similarities. In particular, the bag-of-
words nature of the contexts in the “original”
SKIPGRAM model yield broad topical similari-
ties, while the dependency-based contexts yield
more functional similarities of a cohyponym na-
ture. This effect is demonstrated using both quali-
tative and quantitative analysis (Section 4).

The neural word-embeddings are considered
opaque, in the sense that it is hard to assign mean-
ings to the dimensions of the induced represen-
tation. In Section 5 we show that the SKIP-
GRAM model does allow for some introspection
by querying it for contexts that are “activated by” a
target word. This allows us to peek into the learned
representation and explore the contexts that are
found by the learning process to be most discrim-
inative of particular words (or groups of words).
To the best of our knowledge, this is the first work
to suggest such an analysis of discriminatively-
trained word-embedding models.

2 The Skip-Gram Model

Our departure point is the skip-gram neural em-
bedding model introduced in (Mikolov et al.,
2013a) trained using the negative-sampling pro-
cedure presented in (Mikolov et al., 2013b). In
this section we summarize the model and train-
ing objective following the derivation presented by
Goldberg and Levy (2014), and highlight the ease
of incorporating arbitrary contexts in the model.

In the skip-gram model, each word w ∈ W is
associated with a vector vw ∈ Rd and similarly
each context c ∈ C is represented as a vector
vc ∈ Rd, where W is the words vocabulary, C
is the contexts vocabulary, and d is the embed-
ding dimensionality. The entries in the vectors
are latent, and treated as parameters to be learned.
Loosely speaking, we seek parameter values (that
is, vector representations for both words and con-
texts) such that the dot product vw · vc associated
with “good” word-context pairs is maximized.

More specifically, the negative-sampling objec-
tive assumes a dataset D of observed (w, c) pairs
of words w and the contexts c, which appeared in

a large body of text. Consider a word-context pair
(w, c). Did this pair come from the data? We de-
note by p(D = 1|w, c) the probability that (w, c)
came from the data, and by p(D = 0|w, c) =
1 − p(D = 1|w, c) the probability that (w, c) did
not. The distribution is modeled as:

p(D = 1|w, c) = 1
1+e−vw·vc

where vw and vc (each a d-dimensional vector) are
the model parameters to be learned. We seek to
maximize the log-probability of the observed pairs
belonging to the data, leading to the objective:

arg maxvw,vc

∑
(w,c)∈D log 1

1+e−vc·vw

This objective admits a trivial solution in which
p(D = 1|w, c) = 1 for every pair (w, c). This can
be easily achieved by setting vc = vw and vc ·vw =
K for all c, w, where K is large enough number.

In order to prevent the trivial solution, the ob-
jective is extended with (w, c) pairs for which
p(D = 1|w, c) must be low, i.e. pairs which are
not in the data, by generating the set D′ of ran-
dom (w, c) pairs (assuming they are all incorrect),
yielding the negative-sampling training objective:

arg maxvw,vc

(∏
(w,c)∈D p(D = 1|c, w)

∏
(w,c)∈D′ p(D = 0|c, w)

)
which can be rewritten as:

arg maxvw,vc

(∑
(w,c)∈D log σ(vc · vw) +

∑
(w,c)∈D′ log σ(−vc · vw)

)
where σ(x) = 1/(1+ex). The objective is trained
in an online fashion using stochastic-gradient up-
dates over the corpus D ∪D′.

The negative samples D′ can be constructed in
various ways. We follow the method proposed by
Mikolov et al.: for each (w, c) ∈ D we construct
n samples (w, c1), . . . , (w, cn), where n is a hy-
perparameter and each cj is drawn according to its
unigram distribution raised to the 3/4 power.

Optimizing this objective makes observed
word-context pairs have similar embeddings,
while scattering unobserved pairs. Intuitively,
words that appear in similar contexts should have
similar embeddings, though we have not yet found
a formal proof that SKIPGRAM does indeed max-
imize the dot product of similar words.

3 Embedding with Arbitrary Contexts

In the SKIPGRAM embedding algorithm, the con-
texts of a word w are the words surrounding it
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in the text. The context vocabulary C is thus
identical to the word vocabulary W . However,
this restriction is not required by the model; con-
texts need not correspond to words, and the num-
ber of context-types can be substantially larger
than the number of word-types. We generalize
SKIPGRAM by replacing the bag-of-words con-
texts with arbitrary contexts.

In this paper we experiment with dependency-
based syntactic contexts. Syntactic contexts cap-
ture different information than bag-of-word con-
texts, as we demonstrate using the sentence “Aus-
tralian scientist discovers star with telescope”.

Linear Bag-of-Words Contexts This is the
context used by word2vec and many other neu-
ral embeddings. Using a window of size k around
the target word w, 2k contexts are produced: the
k words before and the k words after w. For
k = 2, the contexts of the target word w are
w−2, w−1, w+1, w+2. In our example, the contexts
of discovers are Australian, scientist, star, with.2

Note that a context window of size 2 may miss
some important contexts (telescope is not a con-
text of discovers), while including some acciden-
tal ones (Australian is a context discovers). More-
over, the contexts are unmarked, resulting in dis-
covers being a context of both stars and scientist,
which may result in stars and scientists ending
up as neighbours in the embedded space. A win-
dow size of 5 is commonly used to capture broad
topical content, whereas smaller windows contain
more focused information about the target word.

Dependency-Based Contexts An alternative to
the bag-of-words approach is to derive contexts
based on the syntactic relations the word partic-
ipates in. This is facilitated by recent advances
in parsing technology (Goldberg and Nivre, 2012;
Goldberg and Nivre, 2013) that allow parsing to
syntactic dependencies with very high speed and
near state-of-the-art accuracy.

After parsing each sentence, we derive word
contexts as follows: for a target word w with
modifiers m1, . . . ,mk and a head h, we consider
the contexts (m1, lbl1), . . . , (mk, lblk), (h, lbl−1

h ),

2word2vec’s implementation is slightly more compli-
cated. The software defaults to prune rare words based on
their frequency, and has an option for sub-sampling the fre-
quent words. These pruning and sub-sampling happen before
the context extraction, leading to a dynamic window size. In
addition, the window size is not fixed to k but is sampled
uniformly in the range [1, k] for each word.

Australian scientist discovers star with telescope

amod nsubj dobj

prep

pobj

Australian scientist discovers star telescope

amod nsubj dobj

prep with

WORD CONTEXTS

australian scientist/amod−1

scientist australian/amod, discovers/nsubj−1

discovers scientist/nsubj, star/dobj, telescope/prep with
star discovers/dobj−1

telescope discovers/prep with−1

Figure 1: Dependency-based context extraction example.
Top: preposition relations are collapsed into single arcs,
making telescope a direct modifier of discovers. Bottom: the
contexts extracted for each word in the sentence.

where lbl is the type of the dependency relation be-
tween the head and the modifier (e.g. nsubj, dobj,
prep with, amod) and lbl−1 is used to mark the
inverse-relation. Relations that include a preposi-
tion are “collapsed” prior to context extraction, by
directly connecting the head and the object of the
preposition, and subsuming the preposition itself
into the dependency label. An example of the de-
pendency context extraction is given in Figure 1.

Notice that syntactic dependencies are both
more inclusive and more focused than bag-of-
words. They capture relations to words that are
far apart and thus “out-of-reach” with small win-
dow bag-of-words (e.g. the instrument of discover
is telescope/prep with), and also filter out “coinci-
dental” contexts which are within the window but
not directly related to the target word (e.g. Aus-
tralian is not used as the context for discovers). In
addition, the contexts are typed, indicating, for ex-
ample, that stars are objects of discovery and sci-
entists are subjects. We thus expect the syntactic
contexts to yield more focused embeddings, cap-
turing more functional and less topical similarity.

4 Experiments and Evaluation

We experiment with 3 training conditions: BOW5
(bag-of-words contexts with k = 5), BOW2
(same, with k = 2) and DEPS (dependency-based
syntactic contexts). We modified word2vec to
support arbitrary contexts, and to output the con-
text embeddings in addition to the word embed-
dings. For bag-of-words contexts we used the
original word2vec implementation, and for syn-
tactic contexts, we used our modified version. The
negative-sampling parameter (how many negative
contexts to sample for every correct one) was 15.
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All embeddings were trained on English
Wikipedia. For DEPS, the corpus was tagged
with parts-of-speech using the Stanford tagger
(Toutanova et al., 2003) and parsed into labeled
Stanford dependencies (de Marneffe and Man-
ning, 2008) using an implementation of the parser
described in (Goldberg and Nivre, 2012). All to-
kens were converted to lowercase, and words and
contexts that appeared less than 100 times were
filtered. This resulted in a vocabulary of about
175,000 words, with over 900,000 distinct syntac-
tic contexts. We report results for 300 dimension
embeddings, though similar trends were also ob-
served with 600 dimensions.

4.1 Qualitative Evaluation

Our first evaluation is qualitative: we manually in-
spect the 5 most similar words (by cosine similar-
ity) to a given set of target words (Table 1).

The first target word, Batman, results in similar
sets across the different setups. This is the case for
many target words. However, other target words
show clear differences between embeddings.

In Hogwarts - the school of magic from the
fictional Harry Potter series - it is evident that
BOW contexts reflect the domain aspect, whereas
DEPS yield a list of famous schools, capturing
the semantic type of the target word. This ob-
servation holds for Turing3 and many other nouns
as well; BOW find words that associate with w,
while DEPS find words that behave like w. Turney
(2012) described this distinction as domain simi-
larity versus functional similarity.

The Florida example presents an ontologi-
cal difference; bag-of-words contexts generate
meronyms (counties or cities within Florida),
while dependency-based contexts provide cohy-
ponyms (other US states). We observed the same
behavior with other geographical locations, partic-
ularly with countries (though not all of them).

The next two examples demonstrate that simi-
larities induced from DEPS share a syntactic func-
tion (adjectives and gerunds), while similarities
based on BOW are more diverse. Finally, we ob-
serve that while both BOW5 and BOW2 yield top-
ical similarities, the larger window size result in
more topicality, as expected.

3DEPS generated a list of scientists whose name ends with
“ing”. This is may be a result of occasional POS-tagging
errors. Still, the embedding does a remarkable job and re-
trieves scientists, despite the noisy POS. The list contains
more mathematicians without “ing” further down.

Target Word BOW5 BOW2 DEPS

batman

nightwing superman superman
aquaman superboy superboy
catwoman aquaman supergirl
superman catwoman catwoman
manhunter batgirl aquaman

hogwarts

dumbledore evernight sunnydale
hallows sunnydale collinwood
half-blood garderobe calarts
malfoy blandings greendale
snape collinwood millfield

turing

nondeterministic non-deterministic pauling
non-deterministic finite-state hotelling
computability nondeterministic heting
deterministic buchi lessing
finite-state primality hamming

florida

gainesville fla texas
fla alabama louisiana
jacksonville gainesville georgia
tampa tallahassee california
lauderdale texas carolina

object-oriented

aspect-oriented aspect-oriented event-driven
smalltalk event-driven domain-specific
event-driven objective-c rule-based
prolog dataflow data-driven
domain-specific 4gl human-centered

dancing

singing singing singing
dance dance rapping
dances dances breakdancing
dancers breakdancing miming
tap-dancing clowning busking

Table 1: Target words and their 5 most similar words, as in-
duced by different embeddings.

We also tried using the subsampling option
(Mikolov et al., 2013b) with BOW contexts (not
shown). Since word2vec removes the subsam-
pled words from the corpus before creating the
window contexts, this option effectively increases
the window size, resulting in greater topicality.

4.2 Quantitative Evaluation

We supplement the examples in Table 1 with
quantitative evaluation to show that the qualita-
tive differences pointed out in the previous sec-
tion are indeed widespread. To that end, we use
the WordSim353 dataset (Finkelstein et al., 2002;
Agirre et al., 2009). This dataset contains pairs of
similar words that reflect either relatedness (top-
ical similarity) or similarity (functional similar-
ity) relations.4 We use the embeddings in a re-
trieval/ranking setup, where the task is to rank the
similar pairs in the dataset above the related ones.

The pairs are ranked according to cosine sim-
ilarities between the embedded words. We then
draw a recall-precision curve that describes the
embedding’s affinity towards one subset (“sim-
ilarity”) over another (“relatedness”). We ex-
pect DEPS’s curve to be higher than BOW2’s
curve, which in turn is expected to be higher than

4Some word pairs are judged to exhibit both types of sim-
ilarity, and were ignored in this experiment.
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Figure 2: Recall-precision curve when attempting to rank the
similar words above the related ones. (a) is based on the
WordSim353 dataset, and (b) on the Chiarello et al. dataset.

BOW5’s. The graph in Figure 2a shows this is in-
deed the case. We repeated the experiment with a
different dataset (Chiarello et al., 1990) that was
used by Turney (2012) to distinguish between do-
main and functional similarities. The results show
a similar trend (Figure 2b). When reversing the
task such that the goal is to rank the related terms
above the similar ones, the results are reversed, as
expected (not shown).5

5 Model Introspection

Neural word embeddings are often considered
opaque and uninterpretable, unlike sparse vec-
tor space representations in which each dimen-
sion corresponds to a particular known context, or
LDA models where dimensions correspond to la-
tent topics. While this is true to a large extent, we
observe that SKIPGRAM does allow a non-trivial
amount of introspection. Although we cannot as-
sign a meaning to any particular dimension, we
can indeed get a glimpse at the kind of informa-
tion being captured by the model, by examining
which contexts are “activated” by a target word.

Recall that the learning procedure is attempting
to maximize the dot product vc ·vw for good (w, c)
pairs and minimize it for bad ones. If we keep the
context embeddings, we can query the model for
the contexts that are most activated by (have the
highest dot product with) a given target word. By
doing so, we can see what the model learned to be
a good discriminative context for the word.

To demonstrate, we list the 5 most activated
contexts for our example words with DEPS em-
beddings in Table 2. Interestingly, the most dis-
criminative syntactic contexts in these cases are

5Additional experiments (not presented in this paper) re-
inforce our conclusion. In particular, we found that DEPS
perform dramatically worse than BOW contexts on analogy
tasks as in (Mikolov et al., 2013c; Levy and Goldberg, 2014).

batman hogwarts turing
superman/conj−1 students/prep at−1 machine/nn−1

spider-man/conj−1 educated/prep at−1 test/nn−1

superman/conj student/prep at−1 theorem/poss−1

spider-man/conj stay/prep at−1 machines/nn−1

robin/conj learned/prep at−1 tests/nn−1

florida object-oriented dancing
marlins/nn−1 programming/amod−1 dancing/conj
beach/appos−1 language/amod−1 dancing/conj−1

jacksonville/appos−1 framework/amod−1 singing/conj−1

tampa/appos−1 interface/amod−1 singing/conj
florida/conj−1 software/amod−1 ballroom/nn

Table 2: Words and their top syntactic contexts.

not associated with subjects or objects of verbs
(or their inverse), but rather with conjunctions, ap-
positions, noun-compounds and adjectivial modi-
fiers. Additionally, the collapsed preposition rela-
tion is very useful (e.g. for capturing the school
aspect of hogwarts). The presence of many con-
junction contexts, such as superman/conj for
batman and singing/conj for dancing, may
explain the functional similarity observed in Sec-
tion 4; conjunctions in natural language tend to en-
force their conjuncts to share the same semantic
types and inflections.

In the future, we hope that insights from such
model introspection will allow us to develop better
contexts, by focusing on conjunctions and prepo-
sitions for example, or by trying to figure out why
the subject and object relations are absent and
finding ways of increasing their contributions.

6 Conclusions

We presented a generalization of the SKIP-
GRAM embedding model in which the linear bag-
of-words contexts are replaced with arbitrary ones,
and experimented with dependency-based con-
texts, showing that they produce markedly differ-
ent kinds of similarities. These results are ex-
pected, and follow similar findings in the distri-
butional semantics literature. We also demon-
strated how the resulting embedding model can be
queried for the discriminative contexts for a given
word, and observed that the learning procedure
seems to favor relatively local syntactic contexts,
as well as conjunctions and objects of preposition.
We hope these insights will facilitate further re-
search into improved context modeling and better,
possibly task-specific, embedded representations.
Our software, allowing for experimentation with
arbitrary contexts, together with the embeddings
described in this paper, are available for download
at the authors’ websites.
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