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Abstract

We propose Adaptive Recursive Neural
Network (AdaRNN) for target-dependent
Twitter sentiment classification. AdaRNN
adaptively propagates the sentiments of
words to target depending on the context
and syntactic relationships between them.
It consists of more than one composition
functions, and we model the adaptive sen-
timent propagations as distributions over
these composition functions. The experi-
mental studies illustrate that AdaRNN im-
proves the baseline methods. Further-
more, we introduce a manually annotated
dataset for target-dependent Twitter senti-
ment analysis.

1 Introduction

Twitter becomes one of the most popular social
networking sites, which allows the users to read
and post messages (i.e. tweets) up to 140 charac-
ters. Among the great varieties of topics, people
in Twitter tend to express their opinions for the
brands, celebrities, products and public events. As
a result, it attracts much attention to estimate the
crowd’s sentiments in Twitter.

For the tweets, our task is to classify their senti-
ments for a given target as positive, negative, and
neutral. People may mention several entities (or
targets) in one tweet, which affects the availabil-
ities for most of existing methods. For example,
the tweet “@ballmer: windows phone is better
than ios!” has three targets (@ballmer, windows
phone, and ios). The user expresses neutral, pos-
itive, and negative sentiments for them, respec-
tively. If target information is ignored, it is diffi-
cult to obtain the correct sentiment for a specified
target. For target-dependent sentiment classifica-
tion, the manual evaluation of Jiang et al. (2011)
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show that about 40% of errors are caused by not
considering the targets in classification.

The features used in traditional learning-based
methods (Pang et al., 2002; Nakagawa et al., 2010)
are independent to the targets, hence the results
are computed despite what the targets are. Hu and
Liu (2004) regard the features of products as tar-
gets, and sentiments for them are heuristically de-
termined by the dominant opinion words. Jiang
et al. (2011) combine the target-independent fea-
tures (content and lexicon) and target-dependent
features (rules based on the dependency parsing
results) together in subjectivity classification and
polarity classification for tweets.

In this paper, we mainly focus on integrating
target information with Recursive Neural Network
(RNN) to leverage the ability of deep learning
models. The neural models use distributed repre-
sentation (Hinton, 1986; Rumelhart et al., 1986;
Bengio et al., 2003) to automatically learn fea-
tures for target-dependent sentiment classification.
RNN utilizes the recursive structure of text, and it
has achieved state-of-the-art sentiment analysis re-
sults for movie review dataset (Socher et al., 2012;
Socher et al., 2013). The recursive neural mod-
els employ the semantic composition functions,
which enables them to handle the complex com-
positionalities in sentiment analysis.

Specifically, we propose a framework which
learns to propagate the sentiments of words to-
wards the target depending on context and syn-
tactic structure. We employ a novel adaptive
multi-compositionality layer in recursive neural
network, which is named as AdaRNN (Dong et
al., 2014). It consists of more than one compo-
sition functions, and we model the adaptive sen-
timent propagations as learning distributions over
these composition functions. We automatically
learn the composition functions and how to select
them from supervisions, instead of choosing them
heuristically or by hand-crafted rules. AdaRNN
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determines how to propagate the sentiments to-
wards the target and handles the negation or in-
tensification phenomena (Taboada et al., 2011) in
sentiment analysis. In addition, we introduce a
manually annotated dataset, and conduct extensive
experiments on it. The experimental results sug-
gest that our approach yields better performances
than the baseline methods.

2 RNN: Recursive Neural Network

RNN (Socher et al., 2011) represents the phrases
and words as D-dimensional vectors. It performs
compositions based on the binary trees, and obtain
the vector representations in a bottom-up way.

not very good

Negative

Softmax

very good

not very good

Figure 1: The composition process for “not very
good” in Recursive Neural Network.

As illustrated in Figure 1, we obtain the repre-
sentation of “very good” by the composition of
“very” and “good”, and the representation of tri-
gram “not very good” is recursively obtained by
the vectors of “not” and “very good”. The di-
mensions of parent node are calculated by linear
combination of the child vectors’ dimensions. The
vector representation v is obtained via:

v = f (g (vl,vr)) = f

(
W
[
vl
vr

]
+ b

)
(1)

where vl,vr are the vectors of its left and right
child, g is the composition function, f is the non-
linearity function (such as tanh, sigmoid, softsign,
etc.), W ∈ RD×2D is the composition matrix, and
b is the bias vector. The dimension of v is the
same as its child vectors, and it is recursively used
in the next step. Notably, the word vectors in the
leaf nodes are regarded as the parameters, and will
be updated according to the supervisions.

The vector representation of root node is then
fed into a softmax classifier to predict the label.
The k-th element of softmax(x) is exp{xk}∑

j exp{xj} . For
a vector, the softmax obtains the distribution over
K classes. Specifically, the predicted distribution
is y = softmax (Uv), where y is the predicted
distribution, U ∈ RK×D is the classification ma-
trix, and v is the vector representation of node.

3 Our Approach

We use the dependency parsing results to find the
words syntactically connected with the interested
target. Adaptive Recursive Neural Network is pro-
posed to propagate the sentiments of words to the
target node. We model the adaptive sentiment
propagations as semantic compositions. The com-
putation process is conducted in a bottom-up man-
ner, and the vector representations are computed
recursively. After we obtain the representation of
target node, a classifier is used to predict the sen-
timent label according to the vector.

In Section 3.1, we show how to build recur-
sive structure for target using the dependency pars-
ing results. In Section 3.2, we propose Adaptive
Recursive Neural Network and use it for target-
dependent sentiment analysis.

3.1 Build Recursive Structure

The dependency tree indicates the dependency re-
lations between words. As described above, we
propagate the sentiments of words to the target.
Hence the target is placed at the root node to com-
bine with its connected words recursively. The de-
pendency relation types are remained to guide the
sentiment propagations in our model.

Algorithm 1 Convert Dependency Tree
Input: Target node, Dependency tree
Output: Converted tree

1: function CONV(r)
2: Er ← SORT(dep edges connected with r)
3: v← r
4: for (r t−→ u/u

t−→ r) in Er do
5: if r is head of u then
6: w← node with CONV(u), v as children
7: else
8: w← node with v, CONV(u) as children
9: v← w

10: return v
11: Call CONV(target node) to get converted tree

As illustrated in the Algorithm 1, we recursively
convert the dependency tree starting from the tar-
get node. We find all the words connected to the
target, and these words are combined with target
node by certain order. Every combination is con-
sidered as once propagation of sentiments. If the
target is head of the connected words, the target
vector is combined as the right node; if otherwise,
it is combined as the left node. This ensures the
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child nodes in a certain order. We use two rules
to determine the order of combinations: (1) the
words whose head is the target in dependency tree
are first combined, and then the rest of connected
words are combined; (2) if the first rule cannot de-
termine the order, the connected words are sorted
by their positions in sentence from right to left.
Notably, the conversion is performed recursively
for the connected words and the dependency rela-
tion types are remained. Figure 2 shows the con-
verted results for different targets in one sentence.

3.2 AdaRNN: Adaptive Recursive Neural
Network

RNN employs one global matrix to linearly com-
bine the elements of vectors. Sometimes it is
challenging to obtain a single powerful function
to model the semantic composition, which moti-
vates us to propose AdaRNN. The basic idea of
AdaRNN is to use more than one composition
functions and adaptively select them depending on
the linguistic tags and the combined vectors. The
model learns to propagate the sentiments of words
by using the different composition functions.

Figure 2 shows the computation process for the
example sentence “windows is better than ios”,
where the user expresses positive sentiment to-
wards windows and negative sentiment to ios. For
the targets, the order of compositions and the de-
pendency types are different. AdaRNN adap-
tively selects the composition functions g1 . . . gC
depending on the child vectors and the linguistic
types. Thus it is able to determine how to propa-
gate the sentiments of words towards the target.

Based on RNN described in Section 2, we de-
fine the composition result v in AdaRNN as:

v = f

(
C∑
h=1

P (gh|vl,vr, e) gh (vl,vr)

)
(2)

where g1, . . . , gC are the composition functions,
P (gh|vl,vr, e) is the probability of employing gh
given the child vectors vl,vr and external feature
vector e, and f is the nonlinearity function. For
the composition functions, we use the same forms
as in Equation (1), i.e., we have C composition
matrices W1 . . .WC . We define the distribution
over these composition functions as:P (g1|vl,vr, e)

...
P (gC |vl,vr, e)

 = softmax

βS
vl
vr
e


(3)

where β is the hyper-parameter, S ∈ RC×(2D+|e|)

is the matrix used to determine which composition
function we use, vl,vr are the left and right child
vectors, and e are external feature vector. In this
work, e is a one-hot binary feature vector which
indicates what the dependency type is. If relation
is the k-th type, we set ek to 1 and the others to 0.

Adding β in softmax function is a widely used
parametrization method in statistical mechanics,
which is known as Boltzmann distribution and
Gibbs measure (Georgii, 2011). When β = 0, this
function produces a uniform distribution; when
β = 1, it is the same as softmax function; when
β →∞, it only activates the dimension with max-
imum weight, and sets its probability to 1.

3.3 Model Training
We use the representation of root node as the fea-
tures, and feed them into the softmax classifier to
predict the distribution over classes. We define the
ground truth vector t as a binary vector. If the k-th
class is the label, only tk is 1 and the others are
0. Our goal is to minimize the cross-entropy error
between the predicted distribution y and ground
truth distribution t. For each training instance, we
define the objective function as:

min
Θ
−
∑
j

tj log yj +
∑
θ∈Θ

λθ‖θ‖22 (4)

where Θ represents the parameters, and the L2-
regularization penalty is used.

Based on the converted tree, we employ back-
propagation algorithm (Rumelhart et al., 1986) to
propagate the errors from root node to the leaf
nodes. We calculate the derivatives to update the
parameters. The AdaGrad (Duchi et al., 2011) is
employed to solve this optimization problem.

4 Experiments

As people tend to post comments for the celebri-
ties, products, and companies, we use these key-
words (such as “bill gates”, “taylor swift”, “xbox”,
“windows 7”, “google”) to query the Twitter API.
After obtaining the tweets, we manually anno-
tate the sentiment labels (negative, neutral, posi-
tive) for these targets. In order to eliminate the
effects of data imbalance problem, we randomly
sample the tweets and make the data balanced.
The negative, neutral, positive classes account for
25%, 50%, 25%, respectively. Training data con-
sists of 6,248 tweets, and testing data has 692
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Figure 2: For the sentence “windows is better than ios”, we convert its dependency tree for the different
targets (windows and ios). AdaRNN performs semantic compositions in bottom-up manner and forward
propagates sentiment information to the target node. The g1, . . . , gC are different composition functions,
and the combined vectors and dependency types are used to select them adaptively. These composition
functions decide how to propagate the sentiments to the target.

tweets. We randomly sample some tweets, and
they are assigned with sentiment labels by two an-
notators. About 82.5% of them have the same la-
bels. The agreement percentage of polarity clas-
sification is higher than subjectivity classification.
To the best of our knowledge, this is the largest
target-dependent Twitter sentiment classification
dataset which is annotated manually. We make the
dataset publicly available 1 for research purposes.

We preprocess the tweets by replacing the tar-
gets with $T$ and setting their POS tags to NN.
Liblinear (Fan et al., 2008) is used for baselines.
A tweet-specific tokenizer (Gimpel et al., 2011)
is employed, and the dependency parsing results
are computed by Stanford Parser (Klein and Man-
ning, 2003). The hyper-parameters are chosen by
cross-validation on the training split, and the test
accuracy and macro-average F1-score score are re-
ported. For recursive neural models, the dimen-
sion of word vector is set to 25, and f = tanh
is used as the nonlinearity function. We employ
10 composition matrices in AdaRNN. The param-
eters are randomly initialized. Notably, the word
vectors will also be updated.

SVM-indep: It uses the uni-gram, bi-gram,
punctuations, emoticons, and #hashtags as the
content features, and the numbers of positive or
negative words in General Inquirer as lexicon fea-
tures. These features are all target-independent.

SVM-dep: We re-implement the method pro-
posed by Jiang et al. (2011). It combines both

1http://goo.gl/5Enpu7

the target-independent (SVM-indep) and target-
dependent features and uses SVM as the classifier.
There are seven rules to extract target-sensitive
features. We do not implement the social graph
optimization and target expansion tricks in it.

SVM-conn: The words, punctuations, emoti-
cons, and #hashtags included in the converted de-
pendency tree are used as the features for SVM.

RNN: It is performed on the converted depen-
dency tree without adaptive composition selection.

AdaRNN-w/oE: Our approach without using
the dependency types as features in adaptive se-
lection for the composition functions.

AdaRNN-w/E: Our approach with employing
the dependency types as features in adaptive se-
lection for the composition functions.

AdaRNN-comb: We combine the root vectors
obtained by AdaRNN-w/E with the uni/bi-gram
features, and they are fed into a SVM classifier.

Method Accuracy Macro-F1
SVM-indep 62.7 60.2
SVM-dep 63.4 63.3
SVM-conn 60.0 59.6
RNN 63.0 62.8
AdaRNN-w/oE 64.9 64.4
AdaRNN-w/E 65.8 65.5
AdaRNN-comb 66.3 65.9

Table 1: Evaluation results on target-dependent
Twitter sentiment classification dataset. Our ap-
proach outperforms the baseline methods.
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As shown in the Table 1, AdaRNN achieves bet-
ter results than the baselines. Specifically, we find
that the performances of SVM-dep increase than
SVM-indep. It indicates that target-dependent fea-
tures help improve the results. However, the accu-
racy and F1-score do not gain significantly. This
is caused by mismatch of the rules (Jiang et al.,
2011) used to extract the target-dependent fea-
tures. The POS tagging and dependency parsing
results are not precise enough for the Twitter data,
so these hand-crafted rules are rarely matched.
Further, the results of SVM-conn illustrate that us-
ing the words which have paths to target as bag-of-
words features does not perform well.

RNN is also based on the converted depen-
dency tree. It outperforms SVM-indep, and is
comparable with SVM-dep. The performances
of AdaRNN-w/oE are better than the above base-
lines. It shows that multiple composition functions
and adaptive selection help improve the results.
AdaRNN provides more powerful composition
ability, so that it achieves better semantic compo-
sition for recursive neural models. AdaRNN-w/E
obtains best performances among the above meth-
ods. Its macro-average F1-score rises by 5.3%
than the target-independent method SVM-indep.
It employs dependency types as binary features to
select the composition functions adaptively. The
results illustrate that the syntactic tags are helpful
to guide the model propagate sentiments of words
towards target. Although the dependency results
are also not precise enough, the composition se-
lection is automatically learned from data. Hence
AdaRNN is more robust for the imprecision of
parsing results than the hand-crafted rules. The
performances become better after adding the uni-
gram and bi-gram features (target-independent).

4.1 Effects of β

We compare different β for AdaRNN defined in
Equation (3) in this section. Different parameter β
leads to different composition selection schemes.

As illustrated in Figure 3, the AdaRNN-w/oE
and AdaRNN-w/E achieve the best accuracies at
β = 2, and they have a similar trend. Specifi-
cally, β = 0 obtains a uniform distribution over
the composition functions which does not help im-
prove performances. β → ∞ results in a max-
imum probability selection algorithm, i.e., only
the composition function which has the maximum
probability is used. This selection scheme makes
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Figure 3: The curve shows the accuracy as the
hyper-parameter β = 0, 20, 21, . . . , 26 increases.
AdaRNN achieves the best results at β = 21.

the optimization instable. The performances of
β = 1, 2 are similar and they are better than
other settings. It indicates that adaptive selection
method is useful to model the compositions. The
hyper-parameter β makes trade-offs between uni-
form selection and maximum selection. It adjusts
the effects of these two perspectives.

5 Conclusion

We propose Adaptive Recursive Neural Network
(AdaRNN) for the target-dependent Twitter senti-
ment classification. AdaRNN employs more than
one composition functions and adaptively chooses
them depending on the context and linguistic tags.
For a given tweet, we first convert its dependency
tree for the interested target. Next, the AdaRNN
learns how to adaptively propagate the sentiments
of words to the target node. AdaRNN enables
the sentiment propagations to be sensitive to both
linguistic and semantic categories by using differ-
ent compositions. The experimental results illus-
trate that AdaRNN improves the baselines without
hand-crafted rules.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic lan-
guage model. JMLR, 3:1137–1155, March.

53



Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014.
Adaptive multi-compositionality for recursive neu-
ral models with applications to sentiment analysis.
In Twenty-Eighth AAAI Conference on Artificial In-
telligence (AAAI). AAAI.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12:2121–2159,
July.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A li-
brary for large linear classification. J. Mach. Learn.
Res., 9:1871–1874, June.

H.O. Georgii. 2011. Gibbs Measures and Phase
Transitions. De Gruyter studies in mathematics. De
Gruyter.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
HLT ’11, pages 42–47, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Geoffrey E. Hinton. 1986. Learning distributed repre-
sentations of concepts. In Proceedings of the Eighth
Annual Conference of the Cognitive Science Society,
pages 1–12. Hillsdale, NJ: Erlbaum.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent twitter sen-
timent classification. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Vol-
ume 1, HLT ’11, pages 151–160, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL ’03, pages 423–
430, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classifica-
tion using crfs with hidden variables. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 786–794.
Association for Computational Linguistics.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. 1986.
Learning representations by back-propagating er-
rors. Nature, 323(6088):533–536.

Richard Socher, Cliff C. Lin, Andrew Y. Ng, and
Christopher D. Manning. 2011. Parsing Natural
Scenes and Natural Language with Recursive Neural
Networks. In ICML.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
EMNLP-CoNLL, pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive Deep Mod-
els for Semantic Compositionality Over a Sentiment
Treebank. In EMNLP, pages 1631–1642.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-
based methods for sentiment analysis. Comput. Lin-
guist., 37(2):267–307, June.

54


