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Abstract

We present a novel approach for induc-
ing unsupervised dependency parsers for
languages that have no labeled training
data, but have translated text in a resource-
rich language. We train probabilistic pars-
ing models for resource-poor languages by
transferring cross-lingual knowledge from
resource-rich language with entropy reg-
ularization. Our method can be used as
a purely monolingual dependency parser,
requiring no human translations for the
test data, thus making it applicable to a
wide range of resource-poor languages.
We perform experiments on three Data
sets — Version 1.0 and version 2.0 of
Google Universal Dependency Treebanks
and Treebanks from CoNLL shared-tasks,
across ten languages. We obtain state-
of-the art performance of all the three
data sets when compared with previously
studied unsupervised and projected pars-
ing systems.

1 Introduction

In recent years, dependency parsing has gained
universal interest due to its usefulness in a wide
range of applications such as synonym gener-
ation (Shinyama et al., 2002), relation extrac-
tion (Nguyen et al., 2009) and machine trans-
lation (Katz-Brown et al., 2011; Xie et al.,
2011). Several supervised dependency parsing
algorithms (Nivre and Scholz, 2004; McDonald
et al., 2005a; McDonald et al., 2005b; McDon-
ald and Pereira, 2006; Carreras, 2007; Koo and
Collins, 2010; Ma and Zhao, 2012; Zhang et al.,
2013) have been proposed and achieved high pars-
ing accuracies on several treebanks, due in large
part to the availability of dependency treebanks in
a number of languages (McDonald et al., 2013).

However, the manually annotated treebanks that
these parsers rely on are highly expensive to cre-
ate, in particular when we want to build treebanks
for resource-poor languages. This led to a vast
amount of research on unsupervised grammar in-
duction (Carroll and Charniak, 1992; Klein and
Manning, 2004; Smith and Eisner, 2005; Cohen
and Smith, 2009; Spitkovsky et al., 2010; Blun-
som and Cohn, 2010; Mareček and Straka, 2013;
Spitkovsky et al., 2013), which appears to be a
natural solution to this problem, as unsupervised
methods require only unannotated text for training
parsers. Unfortunately, the unsupervised gram-
mar induction systems’ parsing accuracies often
significantly fall behind those of supervised sys-
tems (McDonald et al., 2011). Furthermore, from
a practical standpoint, it is rarely the case that we
are completely devoid of resources for most lan-
guages.

In this paper, we consider a practically moti-
vated scenario, in which we want to build statisti-
cal parsers for resource-poor target languages, us-
ing existing resources from a resource-rich source
language (like English).1 We assume that there are
absolutely no labeled training data for the target
language, but we have access to parallel data with
a resource-rich language and a sufficient amount
of labeled training data to build an accurate parser
for the resource-rich language. This scenario ap-
pears similar to the setting in bilingual text pars-
ing. However, most bilingual text parsing ap-
proaches require bilingual treebanks — treebanks
that have manually annotated tree structures on
both sides of source and target languages (Smith
and Smith, 2004; Burkett and Klein, 2008), or
have tree structures on the source side and trans-
lated sentences in the target languages (Huang et

1For the sake of simplicity, we refer to the resource-poor
language as the “target language”, and resource-rich language
as the “source language”. In addition, in this study we use En-
glish as the source resource-rich language, but our methodol-
ogy can be applied to any resource-rich languages.
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al., 2009; Chen et al., 2010). Obviously, bilingual
treebanks are much more difficult to acquire than
the resources required in our scenario, since the la-
beled training data and the parallel text in our case
are completely separated. What is more impor-
tant is that most studies on bilingual text parsing
assumed that the parser is applied only on bilin-
gual text. But our goal is to develop a parser that
can be used in completely monolingual setting for
each target language of interest.

This scenario is applicable to a large set of lan-
guages and many research studies (Hwa et al.,
2005) have been made on it. Ganchev et al. (2009)
presented a parser projection approach via paral-
lel text using the posterior regularization frame-
work (Graca et al., 2007). McDonald et al. (2011)
proposed two parser transfer approaches between
two different languages — one is directly trans-
ferred parser from delexicalized parsers, and the
other parser is transferred using constraint driven
learning algorithm where constraints are drawn
from parallel corpora. In that work, they demon-
strate that even the directly transferred delexi-
calized parser produces significantly higher ac-
curacies than unsupervised parsers. Cohen et
al. (2011) proposed an approach for unsupervised
dependency parsing with non-parallel multilingual
guidance from one or more helper languages, in
which parallel data is not used.

In this work, we propose a learning frame-
work for transferring dependency grammars from
a resource-rich language to resource-poor lan-
guages via parallel text. We train probabilistic
parsing models for resource-poor languages by
maximizing a combination of likelihood on par-
allel data and confidence on unlabeled data. Our
work is based on the learning framework used in
Smith and Eisner (2007), which is originally de-
signed for parser bootstrapping. We extend this
learning framework so that it can be used to trans-
fer cross-lingual knowledge between different lan-
guages.

Throughout this paper, English is used as the
source language and we evaluate our approach on
ten target languages — Danish (da), Dutch (nl),
French (fr), German (de), Greek (el), Italian (it),
Korean (ko), Portuguese (pt), Spanish (es) and
Swedish (sv). Our approach achieves significant
improvement over previous state-of-the-art unsu-
pervised and projected parsing systems across all
the ten languages, and considerably bridges the

Economic news had little effect on financial marketsRoot

Figure 1: An example dependency tree.

gap to fully supervised dependency parsing per-
formance.

2 Our Approach

Dependency trees represent syntactic relationships
through labeled directed edges between heads and
their dependents. For example, Figure 1 shows a
dependency tree for the sentence,Economic news
had little effect on financial markets, with the sen-
tence’s root-symbol as its root. The focus of this
work is on building dependency parsers for target
languages, assuming that an accurate English de-
pendency parser and some parallel text between
the two languages are available. Central to our ap-
proach is a maximizing likelihood learning frame-
work, in which we use an English parser and par-
allel text to estimate the “transferring distribution”
of the target language parsing model (See Section
2.2 for more details). Another advantage of the
learning framework is that it combines both the
likelihood on parallel data and confidence on unla-
beled data, so that both parallel text and unlabeled
data can be utilized in our approach.

2.1 Edge-Factored Parsing Model

In this paper, we will use the following notation:
x represents a generic input sentence, andy rep-
resents a generic dependency tree.T(x) is used
to denote the set of possible dependency trees
for sentencex. The probabilistic model for de-
pendency parsing defines a family of conditional
probability pλ(y|x) over all y given sentencex,
with a log-linear form:

pλ(y|x) =
1

Z(x)
exp

{∑
j

λjFj(y,x)
}

(1)

whereFj are feature functions,λ = (λ1, λ2, . . .)
are parameters of the model, andZ(x) is a nor-
malization factor, which is commonly referred to
as thepartition function:

Z(x) =
∑

y∈T(x)

exp
{ ∑

j

λjFj(y,x)
}

(2)
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A common strategy to make this parsing model ef-
ficiently computable is tofactor dependency trees
into sets of edges:

Fj(y,x) =
∑
e∈y

fj(e,x). (3)

That is, dependency treey is treated as a set
of edgese and each feature functionFj(y,x) is
equal to the sum of all the featuresfj(e,x).

We denote theweight functionof each edgee as
follows:

w(e,x) = exp
{∑

j

λjfj(e,x)
}

(4)

and the conditional probabilitypλ(y|x) has the
following form:

pλ(y|x) =
1

Z(x)

∏
e∈y

w(e,x) (5)

2.2 Model Training

One of the most common model training meth-
ods for supervised dependency parser is Maxi-
mum conditional likelihood estimation. For a su-
pervised dependency parser with a set of train-
ing data{(xi,yi)}, the logarithm of the likelihood
(a.k.a. the log-likelihood) is given by:

L(λ) =
∑

i

log pλ(yi|xi) (6)

Maximum likelihood training chooses parameters
such that the log-likelihoodL(λ) is maximized.

However, in our scenario we have no labeled
training data for target languages but we have
some parallel and unlabeled data plus an En-
glish dependency parser. For the purpose of
transferring cross-lingual information from the
English parser via parallel text, we explore the
model training method proposed by Smith and
Eisner (2007), which presented a generalization of
K function (Abney, 2004), and related it to an-
other semi-supervised learning technique, entropy
regularization (Jiao et al., 2006; Mann and Mc-
Callum, 2007). The objectiveK function to be
minimized is actually theexpectednegative log-
likelihood:

K = −
∑

i

∑
yi

p̃(yi|xi) log pλ(yi|xi)

=
∑

i

D(p̃i||pλ,i) + H(p̃i) (7)

where p̃i(·) def
= p̃(·|xi) andpλ,i(·) def

= pλ(·|xi).
p̃(y|x) is the “transferring distribution” that re-
flects our uncertainty about the true labels, and we
are trying to learn a parametric modelpλ(y|x) by
minimizing theK function.

In our scenario, we have a set of aligned par-
allel dataP = {xs

i ,x
t
i, ai} whereai is the word

alignment for the pair of source-target sentences
(xs

i ,x
t
i), and a set of unlabeled sentences of the

target languageU = {xt
i}. We also have a trained

English parsing modelpλE
(y|x). Then theK in

equation (7) can be divided into two cases, accord-
ing to whetherxi belongs to parallel data setP or
unlabeled data setU . For the unlabeled examples
{xi ∈ U}, some previous studies (e.g., (Abney,
2004)) simply use a uniform distribution over la-
bels (e.g., parses), to reflect that the label is un-
known. We follow the method in Smith and Eis-
ner (2007) and take the transferring distribution
p̃i to be theactual current beliefpλ,i. The total
contribution of theunsupervisedexamples toK
then simplifies toKU =

∑
xi∈U

H(pλ,i), which may

be regarded as the entropy item used to constrain
the model’s uncertaintyH to be low, as presented
in the work on entropy regularization (Jiao et al.,
2006; Mann and McCallum, 2007).

But how can we define the transferring distri-
bution for the parallel examples{xt

i ∈ P}? We
define the transferring distribution by defining the
transferring weightutilizing the English parsing
modelpλE

(y|x) via parallel data with word align-
ments:

w̃(et,xt
i) =

{
wE(es,xs

i ), if et align−→ es

wE(et
delex,xs

i ), otherwise
(8)

wherewE(·, ·) is the weight function of the En-
glish parsing modelpλE

(y|x), and et
delex is the

delexicalized form2 of the edgeet. From the
definition of the transferring weight, we can see
that, if an edgeet of the target language sentence
xt

i is aligned to an edgees of the English sen-
tencexs

i , we transfer the weight of edgeet to
the corresponding weight of edgees in the En-
glish parsing modelpλE

(y|x). If the edgeet

is not aligned to any edges of the English sen-
tencexs

i , we reduce the edgeet to the delexical-
ized form and calculate the transferring weight in
the English parsing model. There are two advan-

2The delexicalized form of an edge is an edge for which
only delexicalized features are considered.

1339



tages for this definition of the transferring weight.
First, by transferring the weight function to the
corresponding weight in the well-developed En-
glish parsing model, we can project syntactic in-
formation across language boundaries. Second,
McDonald et al. (2011) demonstrates that parsers
with only delexicalized features produce consid-
erably high parsing performance. By reducing
unaligned edges to their delexicalized forms, we
can still use those delexicalized features, such as
part-of-speech tags, for those unaligned edges, and
can address problem that automatically generated
word alignments include errors.

From the definition of transferring weight in
equation (8), the transferring distribution can be
defined in the following way:

p̃(y|x) =
1

Z̃(x)

∏
e∈y

w̃(e,x) (9)

where
Z̃(x) =

∑
y

∏
e∈y

w̃(e,x) (10)

Due to the normalizing factor̃Z(x), the transfer-
ring distribution is a valid one.

We introduce a multiplierγ as a trade-off be-
tween the two contributions (parallel and unsuper-
vised) of the objective functionK, and the final
objective functionK

′
has the following form:

K
′

= −
∑
xi∈P

∑
yi

p̃(yi|xi) log pλ(yi|xi)

+ γ
∑
xi∈U

H(pλ,i)

= KP + γKU (11)

KP andKU are the contributions of the parallel
and unsupervised data, respectively. One may re-
gard γ as a Lagrange multiplier that is used to
constrain the parser’s uncertainty H to be low, as
presented in several studies on entropy regulariza-
tion (Brand, 1998; Grandvalet and Bengio, 2004;
Jiao et al., 2006).

2.3 Algorithms and Complexity for Model
Training

To train our parsing model, we need to find out the
parametersλ that minimize the objective function
K

′
in equation (11). This optimization problem

is typically solved using quasi-Newton numeri-
cal methods such as L-BFGS (Nash and Nocedal,
1991), which requires efficient calculation of the

objective function and the gradient of the objec-
tive function.

The first item (KP ) of theK
′
function in equa-

tion (11) can be rewritten in the following form:

KP = −
∑
xi∈P

[ ∑
yi

p̃(yi|xi)
∑
e∈yi

log w(e,xi)

− log Z(xi)
]

(12)

and according to equation (1) and (3) the gradient
of KP can be written as:

∂KP

∂λj
=

∑
xi∈P

∂p̃(yi|xi) log pλ(yi|xi)
∂λj

=
∑
xi∈P

[∑
yi

p̃(yi|xi)
∑
e∈yi

fj(e,xi)

−
∑
yi

pλ(yi|xi)
∑
e∈yi

fj(e,xi)
]
(13)

According to equation (9),̃p(y|x) can also be
factored into the multiplication of the weight of
each edge, so bothKP and its gradient can be
calculated by running theO(n3) inside-outside al-
gorithm (Baker, 1979; Paskin, 2001) for projec-
tive parsing. For non-projective parsing, the anal-
ogy to the inside algorithm is theO(n3) matrix-
tree algorithm based on Kirchhoff’s Matrix-Tree
Theorem, which is dominated asymptotically by a
matrix determinant (Koo et al., 2007; Smith and
Smith, 2007). The gradient of a determinant may
be computed by matrix inversion, so evaluating the
gradient again has the sameO(n3) complexity as
evaluating the function.

The second item (KU ) of the K
′

function in
equation (11) is the Shannon entropy of the pos-
terior distribution over parsing trees, and can be
written into the following form:

KU = −
∑
xi∈U

[ ∑
yi

pλ(yi|xi)
∑
e∈yi

log w(e,xi)

− log Z(xi)
]

(14)

and the gradient ofKU is in the following:

∂KU

∂λj
=

∑
xi∈U

∂pλ(yi|xi) log pλ(yi|xi)
∂λj

= −
∑
yi

pλ(yi|xi) log pλ(yi|xi)Fj(yi,xi)

+
(∑

yi

pλ(yi|xi) log pλ(yi|xi)
)

·
(∑

yi

pλ(yi|xi)Fj(yi,xi)
)

(15)
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#sents/#tokens
training dev test

Version 1.0
de 2,200/30,460 800/12,215 1,000/16,339
es 3,345/94,232 370/10,191 300/8,295
fr 3,312/74,979 366/8,071 300/6,950
ko 5,308/62,378 588/6,545 298/2,917
sv 4,447/66,631 493/9,312 1,219/20,376

Version 2.0
de 14,118/26,4906 800/12,215 1,000/16,339
es 14,138/37,5180 1,569/40,950 300/8,295
fr 14,511/35,1233 1,611/38,328 300/6,950
it 6,389/14,9145 400/9,541 400/9,187
ko 5437/60,621 603/6,438 299/2,631
pt 9,600/23,9012 1,200/29,873 1,198/29,438
sv 4,447/66,631 493/9,312 1,219/20,376

Table 1: Data statistics of two versions of Google
Universal Treebanks for the target languages.

Similar with the calculation ofKP , KU can also
be computed by running the inside-outside algo-
rithm (Baker, 1979; Paskin, 2001) for projective
parsing. For the gradient ofKU , both the two
multipliers of the second item in equation (15) can
be computed using the same inside-outside algo-
rithm. For the first item in equation (15), anO(n3)
dynamic programming algorithm that is closely
related to the forward-backward algorithm (Mann
and McCallum, 2007) for the entropy regularized
CRF (Jiao et al., 2006) can be used for projective
parsing. For non-projective parsing, however, the
runtime rises toO(n4). In this paper, we focus on
projective parsing.

2.4 Summary of Our Approach

To summarize the description in the previous sec-
tions, our approach is performed in the following
steps:

1. Train an English parsing modelpλE
(y|x),

which is used to estimate the transferring dis-
tribution p̃(y|x).

2. Prepare parallel text by running word align-
ment method to obtain word alignments,3 and
prepare the unlabeled data.

3. Train a parsing model for the target lan-
guage by minimizing the objectiveK

′
func-

tion which is the combination of expected
negative log-likelihood on parallel and unla-
beled data.

3The word alignment methods do not require additional
resources besides parallel text.

# sents
500 1000 2000 5000 10000 20000

da 12,568 25,225 49,889 126,623 254,565 509,480
de 13,548 26,663 53,170 133,596 265,589 527,407
el 14,198 28,302 56,744 143,753 286,126 572,777
es 15,147 29,214 57,526 144,621 290,517 579,164
fr 15,046 29,982 60,569 153,874 306,332 609,541
it 15,151 29,786 57,696 145,717 288,337 573,557
ko 3,814 7,679 15,337 38,535 77,388 155,051
nl 13,234 26,777 54,570 137,277 274,692 551,463
pt 14,346 28,109 55,998 143,221 285,590 571,109
sv 12,242 24,897 50,047 123,069 246,619 490,086

Table 2: The number of tokens in parallel data
used in our experiments. For all these corpora, the
other language is English.

3 Data and Tools

In this section, we illustrate the data sets used in
our experiments and the tools for data preparation.

3.1 Choosing Target Languages

Our experiments rely on two kinds of data sets:
(i) Monolingual Treebanks with consistent anno-
tation schema — English treebank is used to train
the English parsing model, and the Treebanks for
target languages are used to evaluate the parsing
performance of our approach. (ii) Large amounts
of parallel text with English on one side. We se-
lect target languages based on the availability of
these resources. The monolingual treebanks in our
experiments are from the Google Universal De-
pendency Treebanks (McDonald et al., 2013), for
the reason that the treebanks of different languages
in Google Universal Dependency Treebanks have
consistent syntactic representations.

The parallel data come from the Europarl cor-
pus version 7 (Koehn, 2005) and Kaist Corpus4.
Taking the intersection of languages in the two
kinds of resources yields the following seven lan-
guages: French, German, Italian, Korean, Por-
tuguese, Spanish and Swedish.

The treebanks from CoNLL shared-tasks on
dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007) appear to be another reasonable
choice. However, previous studies (McDonald et
al., 2011; McDonald et al., 2013) have demon-
strated that a homogeneous representation is criti-
cal for multilingual language technologies that re-
quire consistent cross-lingual analysis for down-
stream components, and the heterogenous repre-
sentations used in CoNLL shared-tasks treebanks
weaken any conclusion that can be drawn.

4http://semanticweb.kaist.ac.kr/home/
index.php/Corpus10
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DTP DTP† PTP† -U +U OR
de 58.50 58.46 69.21 73.72 74.01 78.64
es 68.07 68.72 72.57 75.32 75.60 82.56
fr 70.14 71.13 74.60 76.65 76.93 83.69
ko 42.37 43.57 53.72 59.72 59.94 89.85
sv 70.56 70.59 75.87 78.91 79.27 85.59
Ave 61.93 62.49 69.19 72.86 73.15 84.67

Table 3: UAS for two versions of our approach, to-
gether with baseline and oracle systems on Google
Universal Treebanks version 1.0. “Ave” is the
macro-average across the five languages.

For comparison with previous studies, never-
theless, we also run experiments on CoNLL tree-
banks (see Section 4.4 for more details). We eval-
uate our approach on three target languages from
CoNLL shared task treebanks, which do not ap-
pear in Google Universal Treebanks. The three
languages are Danish, Dutch and Greek. So totally
we have ten target languages. The parallel data for
these three languages are also from the Europarl
corpus version 7.

3.2 Word Alignments

In our approach, word alignments for the paral-
lel text are required. We perform word alignments
with the open source GIZA++ toolkit5. The paral-
lel corpus was preprocessed in standard ways, se-
lecting sentences with the length in the range from
3 to 100. Then we run GIZA++ with the default
setting to generate word alignments in both direc-
tions. We then make the intersection of the word
alignments of two directions to generate one-to-
one alignments.

3.3 Part-of-Speech Tagging

Several features in our parsing model involve part-
of-speech (POS) tags of the input sentences. The
set of POS tags needs to be consistent across lan-
guages and treebanks. For this reason we use
the universal POS tag set of Petrov et al. (2011).
This set consists of the following 12 coarse-
grained tags: NOUN (nouns), VERB (verbs), ADJ
(adjectives), ADV (adverbs), PRON (pronouns),
DET (determiners), ADP (prepositions or postpo-
sitions), NUM (numerals), CONJ (conjunctions),
PRT (particles), PUNC (punctuation marks) and
X (a catch-all for other categories such as abbrevi-
ations or foreign words).

POS tags are not available for parallel data in
the Europarl and Kaist corpus, so we need to pro-

5https://code.google.com/p/giza-pp/

DTP† PTP† -U +U OR
de 58.56 69.77 73.92 74.30 81.65
es 68.72 73.22 75.21 75.53 83.92
fr 71.13 74.75 76.14 76.53 83.51
it 70.74 76.08 77.55 77.74 85.47
ko 38.55 43.34 59.71 59.89 90.42
pt 69.82 74.59 76.30 76.65 85.67
sv 70.59 75.87 78.91 79.27 85.59
Ave 64.02 69.66 73.96 74.27 85.18

Table 4: UAS for two versions of our approach, to-
gether with baseline and oracle systems on Google
Universal Treebanks version 2.0. “Ave” is the
macro-average across the seven languages.

vide the POS tags for these data. In our experi-
ments, we train a Stanford POS Tagger (Toutanova
et al., 2003) for each language. The labeled train-
ing data for each POS tagger are extracted from
the training portion of each Treebanks. The aver-
age tagging accuracy is around 95%.

Undoubtedly, we are primarily interested in ap-
plying our approach to build statistical parsers
for resource-poor target languages without any
knowledge. For the purpose of evaluation of our
approach and comparison with previous work, we
need to exploit the gold POS tags to train the POS
taggers. As part-of-speech tags are also a form
of syntactic analysis, this assumption weakens the
applicability of our approach. Fortunately, some
recently proposed POS taggers, such as the POS
tagger of Das and Petrov (2011), rely only on la-
beled training data for English and the same kind
of parallel text in our approach. In practice we can
use this kind of POS taggers to predict POS tags,
whose tagging accuracy is around 85%.

4 Experiments

In this section, we will describe the details of our
experiments and compare our results with previ-
ous methods.

4.1 Data Sets

As presented in Section 3.1, we evaluate our pars-
ing approach on both version 1.0 and version
2.0 of Google Univereal Treebanks for seven lan-
guages6. We use the standard splits of the treebank
for each language as specified in the release of the
data7. Table 1 presents the statistics of the two ver-
sions of Google Universal Treebanks. We strip all

6Japanese and Indonesia are excluded as no practicable
parallel data are available.

7https://code.google.com/p/uni-dep-tb/
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Google Universal Treebanks V1.0
de es fr ko sv

# sents PTP† -U +U PTP† -U +U PTP† -U +U PTP† -U +U PTP† -U +U
500 63.23 70.79 70.93 70.09 72.32 72.64 72.24 74.64 74.90 47.71 56.87 57.22 71.70 75.88 76.13
1000 65.61 71.71 71.86 70.90 73.44 73.67 72.95 75.07 75.35 47.83 57.65 58.15 72.38 76.55 77.03
2000 66.52 72.33 72.48 72.01 73.57 73.81 73.69 75.88 76.22 48.37 58.19 58.44 73.65 77.86 78.12
5000 67.79 73.06 73.31 72.34 74.30 74.79 74.31 76.02 76.29 53.02 58.57 59.04 74.88 78.48 78.70
10000 68.44 73.59 73.92 72.48 74.86 75.26 74.43 76.14 76.34 53.61 59.17 59.55 75.34 78.78 79.08
20000 69.21 73.72 74.01 72.57 75.32 75.60 74.60 76.55 76.93 53.72 59.72 59.94 75.87 78.91 79.27

Google Universal Treebanks V2.0
de es fr ko it

# sents PTP† -U +U PTP† -U +U PTP† -U +U PTP† -U +U PTP† -U +U
500 60.10 71.07 71.39 69.52 72.97 73.28 71.10 74.57 74.70 40.09 56.60 57.10 72.80 75.67 75.94
1000 61.76 72.15 72.39 70.78 73.48 73.79 72.14 75.13 75.43 40.44 57.55 57.93 73.55 76.43 76.67
2000 65.35 72.73 73.04 71.75 74.10 74.35 73.21 75.78 76.06 40.87 58.11 58.43 74.44 76.99 77.39
5000 67.86 73.32 73.62 72.43 74.55 74.83 74.14 75.83 76.02 40.90 58.48 58.96 75.07 77.10 77.34
10000 68.70 73.71 74.02 72.85 74.80 74.95 74.53 75.97 76.17 41.29 59.13 59.44 75.65 77.50 77.71
20000 69.77 73.92 74.30 73.22 75.21 75.53 74.75 76.14 76.53 43.34 59.71 59.89 76.08 77.55 77.74

pt
# sents PTP† -U +U
500 71.34 74.41 74.68
1000 71.91 74.48 75.08
2000 72.93 75.10 75.32
5000 73.78 75.88 75.98
10000 74.40 75.99 76.15
20000 74.59 76.30 76.65

Table 5: Parsing results of our approach with different amount of parallel data on Google Universal
Treebanks version 1.0 and 2.0. We omit the results of Swedishfor treebanks version 2.0 since the data
for Swedish from version 2.0 are exactly the same with those from version 1.0.

the dependency annotations off the training por-
tion of each treebank, and use that as the unla-
beled data for that target language. We train our
parsing model with different numbers of parallel
sentences to analyze the influence of the amount of
parallel data on the parsing performance of our ap-
proach. The parallel data sets contain 500, 1000,
2000, 5000, 10000 and 20000 parallel sentences,
respectively. We randomly extract parallel sen-
tences from each corpora, and smaller data sets are
subsets of larger ones. Table 2 shows the number
of tokens in the parallel data used in the experi-
ments.

4.2 System performance and comparison
on Google Universal Treebanks

For the comparison of parsing performance, we
run experiments on the following systems:

DTP: The direct transfer parser (DTP) proposed
by McDonald et al. (2011), who train a delex-
icalized parser on English labeled training
data with no lexical features, then apply this
parser to parse target languages directly. It
is based on the transition-based dependency
parsing paradigm (Nivre, 2008). We di-
rectly cite the results reported in McDon-
ald et al. (2013). In addition to their orig-
inal results, we also report results by re-
implementing the direct transfer parser based
on the first-order projective dependency pars-
ing model (McDonald et al., 2005a) (DTP†).

PTP The projected transfer parser (PTP) de-
scribed in McDonald et al. (2011). The
results of the projected transfer parser re-
implemented by us is marked as “PTP†”.

-U: Our approach training on only parallel data
without unlabeled data for the target lan-
guage. The parallel data set for each language
contains 20,000 sentences.

+U: Our approach training on both parallel and
unlabeled data. The parallel data sets are the
ones contains 20,000 sentences.

OR: the supervised first-order projective depen-
dency parsing model (McDonald et al.,
2005a), trained on the original treebanks with
maximum likelihood estimation (equation 6).
One may regard this system as an oracle of
transfer parsing.

Parsing accuracy is measured with unlabeled at-
tachment score (UAS): the percentage of words
with the correct head.

Table 3 and Table 4 shows the parsing results of
our approach, together with the results of the base-
line systems and the oracle, on version 1.0 and ver-
sion 2.0 of Google Universal Treebanks, respec-
tively. Our approaches significantly outperform all
the baseline systems across all the seven target lan-
guages. For the results on Google Universal Tree-
banks version 1.0, the improvement on average
over the projected transfer paper (PTP†) is 3.96%
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and up to 6.22% for Korean and 4.80% for Ger-
man. For the other three languages, the improve-
ments are remarkable, too — 2.33% for French,
3.03% for Spanish and 3.40% for Swedish. By
adding entropy regularization from unlabeled data,
our full model achieves average improvement of
0.29% over the “-U” setting. Moreover, our ap-
proach considerably bridges the gap to fully super-
vised dependency parsers, whose average UAS is
84.67%. For the results on treebanks version 2.0,
we can get similar observation and draw the same
conclusion.

4.3 Effect of the Amount of Parallel Text

Table 5 illustrates the UAS of our approach trained
on different amounts of parallel data, together
with the results of the projected transfer parser
re-implemented by us (PTP†). We run two ver-
sions of our approach for each of the parallel data
sets, one with unlabeled data (+U) and the other
without them (-U). From table 5 we can get three
observations. First, even the parsers trained with
only 500 parallel sentences achieve considerably
high parsing accuracies (average 70.10% for ver-
sion 1.0 and 71.59% for version 2.0). This demon-
strates that our approach does not rely on a large
amount of parallel data. Second, when gradually
increasing the amount of parallel data, the parsing
performance continues improving. Third, entropy
regularization with unlabeled data makes mod-
est improvement on parsing performance over the
parsers without unlabeled data. This proves the ef-
fectiveness of the entropy regularization from un-
labeled data.

4.4 Experiments on CoNLL Treebanks

To make a thorough empirical comparison with
previous studies, we also evaluate our system
without unlabeled data (-U) on treebanks from
CoNLL shared task on dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007). To fa-
cilitate comparison, we use the same eight Indo-
European languages as target languages: Danish,
Dutch, German, Greek, Italian, Portuguese, Span-
ish and Swedish, and same experimental setup as
McDonald et al. (2011). We report both the results
of the direct transfer and projected transfer parsers
directly cited from McDonald et al. (2011) (DTP
and PTP) and re-implemented by us (DTP†and
PTP†).

Table 6 gives the results comparing the model
without unlabeled data (-U) presented in this work

DMV DTP DTP† PTP PTP† -U OR
da 33.4 45.9 46.8 48.2 50.0 50.1 87.1
de 18.0 47.2 46.0 50.9 52.4 57.3 87.0
el 39.9 63.9 62.9 66.8 65.3 67.4 82.3
es 28.5 53.3 54.4 55.8 59.9 60.3 83.6
it 43.1 57.7 59.9 60.8 63.4 64.0 83.9
nl 38.5 60.8 60.7 67.8 66.5 68.2 78.2
pt 20.1 69.2 71.1 71.3 74.8 75.1 87.2
sv 44.0 58.3 60.3 61.3 62.8 66.7 88.0
Ave 33.2 57.0 57.8 60.4 61.9 63.6 84.7

Table 6: Parsing results on treebanks from CoNLL
shared tasks for eight target languages. The results
of unsupervised DMV model are from Table 1 of
McDonald et al. (2011).

to those five baseline systems and the oracle (OR).
The results of unsupervised DMV model (Klein
and Manning, 2004) are from Table 1 of McDon-
ald et al. (2011). Our approach outperforms all
these baseline systems and achieves state-of-the-
art performance on all the eight languages.

In order to compare with more previous meth-
ods, we also report parsing performance on sen-
tences of length 10 or less after punctuation
has been removed. Table 7 shows the results
of our system and the results of baseline sys-
tems. “USR†” is the weakly supervised system of
Naseem et al. (2010). “PGI” is the phylogenetic
grammar induction model of Berg-Kirkpatrick and
Klein (2010). Both the results of the two systems
are cited from Table 4 of McDonald et al. (2011).
We also include the results of the unsupervised
dependency parsing model with non-parallel mul-
tilingual guidance (NMG) proposed by Cohen et
al. (2011)8, and “PR” which is the posterior reg-
ularization approach presented in Gillenwater et
al. (2010). All the results are shown in Table 7.

From Table 7, we can see that among the eight
target languages, our approach achieves best pars-
ing performance on six languages — Danish, Ger-
man, Greek, Italian, Portuguese and Swedish. It
should be noted that the “NMG” system utilizes
more than one helper languages. So it is not di-
rectly comparable to our work.

4.5 Extensions

In this section, we briefly outline a few extensions
to our approach that we want to explore in future
work.

8For each language, we use the best result of the four sys-
tems in Table 3 of Cohen et al. (2011)
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DTP DTP† PTP PTP† USR† PGI PR NMG -U
da 53.2 55.3 57.4 59.8 55.1 41.6 44.0 59.9 60.1
de 65.9 57.9 67.0 63.5 60.0 — — — 67.5
el 73.9 70.8 73.9 72.3 60.3 — — 73.0 74.3
es 58.0 62.3 62.3 66.1 68.3 58.4 62.4 76.7 64.6
it 65.5 66.9 69.9 71.5 47.9 — — — 73.6
nl 67.6 66.0 72.2 72.1 44.0 45.1 37.9 50.7 70.5
pt 77.9 79.2 80.6 82.9 70.9 63.0 47.8 79.8 83.3
sv 70.4 70.2 71.3 70.4 52.6 58.3 42.2 74.0 75.1
Ave 66.6 66.1 69.4 69.8 57.4 — — — 71.1

Table 7: UAS on sentences of length 10 or less without punctuation from CoNLL shared task treebanks.
“USR†” is the weakly supervised system of Naseem et al. (2010). “PGI” is the phylogenetic grammar
induction model of Berg-Kirkpatrick and Klein (2010). Boththe “USR†” and “PGI” systems are im-
plemented and reported by McDonald et al. (2011). “NMG” is the unsupervised dependency parsing
model with non-parallel multilingual guidance (Cohen et al., 2011). “PR” is the posterior regularization
approach presented in Gillenwater et al. (2010). Some systems’ results for certain target languages are
not available as marked by —.

4.5.1 Non-Projective Parsing

As mentioned in section 2.3, the runtime to com-
puteKU and its gradient isO(n4). One reasonable
speedup, as presented in Smith and Eisner (2007),
is to replace Shannon entropy with Rényi entropy.
TheRényi entropy is parameterized byα:

Rα(p) =
1

1 − α
log

( ∑
y

p(y)α
)

(16)

With Rényi entropy, the computation ofKU and
its gradient isO(n3), even for non-projective case.

4.5.2 Higher-Order Models for Projective
Parsing

Our learning framework can be extended to
higher-order dependency parsing models. For ex-
ample, if we want to make our model capable of
utilizing more contextual information, we can ex-
tend our transferring weight to higher-order parts:

w̃(pt,xt
i) =

{
wE(ps,xs

i ), if pt align−→ ps

wE(pt
delex,x

s
i ), otherwise

(17)
wherep is a smallpart of treey that has limited
interactions. For projective parsing, several al-
gorithms (McDonald and Pereira, 2006; Carreras,
2007; Koo and Collins, 2010; Ma and Zhao, 2012)
have been proposed to solve the model training
problems (calculation of objective function and
gradient) for different factorizations.

4.5.3 IGT Data

One possible direction to improve our approach
is to replace parallel text with Interlinear Glossed
Text (IGT) (Lewis and Xia, 2010), which is a
semi-structured data type encoding more syntactic
information than parallel data. By using IGT Data,
not only can we obtain more accurate word align-
ments, but also extract useful cross-lingual infor-
mation for the resource-poor language.

5 Conclusion

In this paper, we propose an unsupervised pro-
jective dependency parsing approach for resource-
poor languages, using existing resources from a
resource-rich source language. By presenting a
model training framework, our approach can uti-
lize parallel text to estimate transferring distribu-
tion with the help of a well-developed resource-
rich language dependency parser, and use unla-
beled data as entropy regularization. The exper-
imental results on three data sets across ten target
languages show that our approach achieves signif-
icant improvement over previous studies.
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