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Abstract

Answering natural language questions us-
ing the Freebase knowledge base has re-
cently been explored as a platform for ad-
vancing the state of the art in open do-
main semantic parsing. Those efforts map
questions to sophisticated meaning repre-
sentations that are then attempted to be
matched against viable answer candidates
in the knowledge base. Here we show
that relatively modest information extrac-
tion techniques, when paired with a web-
scale corpus, can outperform these sophis-
ticated approaches by roughly 34% rela-
tive gain.

1 Introduction

Question answering (QA) from a knowledge base
(KB) has a long history within natural language
processing, going back to the 1960s and 1970s,
with systems such as Baseball (Green Jr et al.,
1961) and Lunar (Woods, 1977). These systems
were limited to closed-domains due to a lack of
knowledge resources, computing power, and abil-
ity to robustly understand natural language. With
the recent growth in KBs such as DBPedia (Auer
et al., 2007), Freebase (Bollacker et al., 2008)
and Yago2 (Hoffart et al., 2011), it has be-
come more practical to consider answering ques-
tions across wider domains, with commercial sys-
tems including Google Now, based on Google’s
Knowledge Graph, and Facebook Graph
Search, based on social network connections.

The AI community has tended to approach this
problem with a focus on first understanding the in-
tent of the question, via shallow or deep forms of
semantic parsing (c.f. §3 for a discussion). Typ-
ically questions are converted into some mean-
ing representation (e.g., the lambda calculus), then
mapped to database queries. Performance is thus

bounded by the accuracy of the original seman-
tic parsing, and the well-formedness of resultant
database queries.1

The Information Extraction (IE) community ap-
proaches QA differently: first performing rela-
tively coarse information retrieval as a way to
triage the set of possible answer candidates, and
only then attempting to perform deeper analysis.

Researchers in semantic parsing have recently
explored QA over Freebase as a way of moving
beyond closed domains such as GeoQuery (Tang
and Mooney, 2001). While making semantic pars-
ing more robust is a laudable goal, here we provide
a more rigorous IE baseline against which those
efforts should be compared: we show that “tradi-
tional” IE methodology can significantly outper-
form prior state-of-the-art as reported in the se-
mantic parsing literature, with a relative gain of
34% F1 as compared to Berant et al. (2013).

2 Approach

We will view a KB as an interlinked collection of
“topics”. When given a question about one or sev-
eral topics, we can select a “view” of the KB con-
cerning only involved topics, then inspect every
related node within a few hops of relations to the
topic node in order to extract the answer. We call
such a view a topic graph and assume answers can
be found within the graph. We aim to maximally
automate the answer extraction process, by mas-
sively combining discriminative features for both
the question and the topic graph. With a high per-
formance learner we have found that a system with
millions of features can be trained within hours,
leading to intuitive, human interpretable features.
For example, we learn that given a question con-
cerning money, such as: what money is used in

1As an example, 50% of errors of the CCG-backed
(Kwiatkowski et al., 2013) system were contributed by pars-
ing or structural matching failure.
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ukraine, the expected answer type is likely cur-
rency. We formalize this approach in §4.

One challenge for natural language querying
against a KB is the relative informality of queries
as compared to the grammar of a KB. For exam-
ple, for the question: who cheated on celebrity
A, answers can be retrieved via the Freebase rela-
tion celebrity.infidelity.participant, but the con-
nection between the phrase cheated on and the
formal KB relation is not explicit. To allevi-
ate this problem, the best attempt so far is to
map from ReVerb (Fader et al., 2011) predicate-
argument triples to Freebase relation triples (Cai
and Yates, 2013; Berant et al., 2013). Note that
to boost precision, ReVerb has already pruned
down less frequent or credible triples, yielding not
as much coverage as its text source, ClueWeb.
Here we instead directly mine relation mappings
from ClueWeb and show that both direct relation
mapping precision and indirect QA F1 improve by
a large margin. Details in §5.

Finally, we tested our system, jacana-
freebase,2 on a realistic dataset generously
contributed by Berant et al. (2013), who collected
thousands of commonly asked questions by
crawling the Google Suggest service. Our
method achieves state-of-the-art performance
with F1 at 42.0%, a 34% relative increase from
the previous F1 of 31.4%.

3 Background

QA from a KB faces two prominent challenges:
model and data. The model challenge involves
finding the best meaning representation for the
question, converting it into a query and exe-
cuting the query on the KB. Most work ap-
proaches this via the bridge of various interme-
diate representations, including combinatory cat-
egorial grammar (Zettlemoyer and Collins, 2005,
2007, 2009; Kwiatkowski et al., 2010, 2011,
2013), synchronous context-free grammars (Wong
and Mooney, 2007), dependency trees (Liang et
al., 2011; Berant et al., 2013), string kernels (Kate
and Mooney, 2006; Chen and Mooney, 2011),
and tree transducers (Jones et al., 2012). These
works successfully showed their effectiveness in
QA, despite the fact that most of them require
hand-labeled logic annotations. More recent re-
search started to minimize this direct supervision
by using latent meaning representations (Berant et

2https://code.google.com/p/jacana

al., 2013; Kwiatkowski et al., 2013) or distant su-
pervision (Krishnamurthy and Mitchell, 2012).

We instead attack the problem of QA from a KB
from an IE perspective: we learn directly the pat-
tern of QA pairs, represented by the dependency
parse of questions and the Freebase structure of
answer candidates, without the use of intermedi-
ate, general purpose meaning representations.

The data challenge is more formally framed as
ontology or (textual) schema matching (Hobbs,
1985; Rahm and Bernstein, 2001; Euzenat and
Shvaiko, 2007): matching structure of two on-
tologies/databases or (in extension) mapping be-
tween KB relations and NL text. In terms of
the latter, Cai and Yates (2013) and Berant et al.
(2013) applied pattern matching and relation inter-
section between Freebase relations and predicate-
argument triples from the ReVerb OpenIE sys-
tem (Fader et al., 2011). Kwiatkowski et al.
(2013) expanded their CCG lexicon with Wik-
tionary word tags towards more domain indepen-
dence. Fader et al. (2013) learned question para-
phrases from aligning multiple questions with the
same answers generated by WikiAnswers. The
key factor to their success is to have a huge text
source. Our work pushes the data challenge to the
limit by mining directly from ClueWeb, a 5TB
collection of web data.

Finally, the KB community has developed other
means for QA without semantic parsing (Lopez et
al., 2005; Frank et al., 2007; Unger et al., 2012;
Yahya et al., 2012; Shekarpour et al., 2013). Most
of these work executed SPARQL queries on in-
terlinked data represented by RDF (Resource De-
scription Framework) triples, or simply performed
triple matching. Heuristics and manual templates
were also commonly used (Chu-Carroll et al.,
2012). We propose instead to learn discriminative
features from the data with shallow question anal-
ysis. The final system captures intuitive patterns
of QA pairs automatically.

4 Graph Features

Our model is inspired by an intuition on how ev-
eryday people search for answers. If you asked
someone: what is the name of justin bieber
brother,3 and gave them access to Freebase, that
person might first determine that the question

3All examples used in this paper come from the train-
ing data crawled from Google Suggest. They are low-
ercased and some contain typos.
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is about Justin Bieber (or his brother), go to
Justin Bieber’s Freebase page, and search for his
brother’s name. Unfortunately Freebase does not
contain an exact relation called brother, but in-
stead sibling. Thus further inference (i.e., brother
↔ male sibling) has to be made. In the following
we describe how we represent this process.

4.1 Question Graph

In answering our example query a person might
take into consideration multiple constraints. With
regards to the question, we know we are looking
for the name of a person based on the following:
• the dependency relation nsubj(what, name)

and prep of(name, brother) indicates that the
question seeks the information of a name;4

• the dependency relation prep of(name,
brother) indicates that the name is about a
brother (but we do not know whether it is a
person name yet);

• the dependency relation nn(brother, bieber)
and the facts that, (i) Bieber is a person and (ii)
a person’s brother should also be a person, indi-
cate that the name is about a person.

This motivates the design of dependency-based
features. We show one example in Figure 1(a),
left side. The following linguistic information is
of interest:
• question word (qword), such as what/who/how

many. We use a list of 9 common qwords. 5

• question focus (qfocus), a cue of expected an-
swer types, such as name/money/time. We
keep our analysis simple and do not use a ques-
tion classifier, but simply extract the noun de-
pendent of qword as qfocus.

• question verb (qverb), such as is/play/take, ex-
tracted from the main verb of the question.
Question verbs are also good hints of answer
types. For instance, play is likely to be followed
by an instrument, a movie or a sports team.

• question topic (qtopic). The topic of the ques-
tion helps us find relevant Freebase pages. We
simply apply a named entity recognizer to find
the question topic. Note that there can be more
than one topic in the question.

Then we convert the dependency parse into a more
generic question graph, in the following steps:

4We use the Stanford collapsed dependency form.
5who, when, what, where, how, which, why, whom,

whose.

1. if a node was tagged with a question feature,
then replace this node with its question feature,
e.g., what→ qword=what;

2. (special case) if a qtopic node was tagged as
a named entity, then replace this node with
its its named entity form, e.g., bieber →
qtopic=person;

3. drop any leaf node that is a determiner, prepo-
sition or punctuation.

The converted graph is shown in Figure 1(a),
right side. We call this a question feature graph,
with every node and relation a potential feature
for this question. Then features are extracted
in the following form: with s the source and
t the target node, for every edge e(s, t) in the
graph, extract s, t, s | t and s | e | t as
features. For the edge, prep of(qfocus=name,
brother), this would mean the following features:
qfocus=name, brother, qfocus=name|brother,
and qfocus=name|prep of|brother.

We show with examples why these features
make sense later in §6 Table 6. Furthermore, the
reason that we have kept some lexical features,
such as brother, is that we hope to learn from
training a high correlation between brother and
some Freebase relations and properties (such as
sibling and male) if we do not possess an exter-
nal resource to help us identify such a correlation.

4.2 Freebase Topic Graph

Given a topic, we selectively roll out the Free-
base graph by choosing those nodes within a few
hops of relationship to the topic node, and form
a topic graph. Besides incoming and/or outgo-
ing relationships, nodes also have properties: a
string that describes the attribute of a node, for
instance, node type, gender or height (for a per-
son). One major difference between relations and
properties is that both arguments of a relation are
nodes, while only one argument of a property is a
node, the other a string. Arguments of relations are
usually interconnected, e.g., London can be the
place of birth for Justin Bieber, or capital of
the UK. Arguments of properties are attributes that
are only “attached” to certain nodes and have no
outgoing edges. Figure 1(b) shows an example.

Both relationship and property of a node are
important to identifying the answer. They con-
nect the nodes with the question and describe
some unique characteristics. For instance, with-
out the properties type:person and gender:male,
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(a) Dependence parse with annotated question features in dashed boxes (left) and converted feature graph (right) with
only relevant and general information about the original question kept. Note that the left is a real but incorrect parse.
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(b) A view of Freebase graph on the Justin Bieber topic with nodes in solid boxes and properties in
dashed boxes. The hatching node, Jaxon Bieber, is the answer. Freebase uses a dummy parent node
for a list of nodes with the same relation.

Figure 1: Dependency parse and excerpted Freebase topic graph on the question what is the name of
justin bieber brother.
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we would not have known the node Jaxon Bieber
represents a male person. These properties, along
with the sibling relationship to the topic node, are
important cues for answering the question. Thus
for the Freebase graph, we use relations (with di-
rections) and properties as features for each node.

Additionally, we have analyzed how Freebase
relations map back to the question. Some of the
mapping can be simply detected as paraphras-
ing or lexical overlap. For example, the per-
son.parents relationship helps answering ques-
tions about parenthood. However, most Freebase
relations are framed in a way that is not com-
monly addressed in natural language questions.
For instance, for common celebrity gossip ques-
tions like who cheated on celebrity A, it is
hard for a system to find the Freebase relation
celebrity.infidelity.participant as the target rela-
tion if it had not observed this pattern in training.

Thus assuming there is an alignment model that
is able to tell how likely one relation maps to the
original question, we add extra alignment-based
features for the incoming and outgoing relation of
each node. Specifically, for each relation rel in
a topic graph, we compute P (rel | question) to
rank the relations. Finally the ranking (e.g., top
1/2/5/10/100 and beyond) of each relation is used
as features instead of a pure probability. We de-
scribe such an alignment model in § 5.

4.3 Feature Production

We combine question features and Freebase fea-
tures (per node) by doing a pairwise concatena-
tion. In this way we hope to capture the associa-
tion between question patterns and answer nodes.
For instance, in a loglinear model setting, we ex-
pect to learn a high feature weight for features like:

qfocus=money|node type=currency
and a very low weight for:

qfocus=money|node type=person.
This combination greatly enlarges the total

number of features, but owing to progress in large-
scale machine learning such feature spaces are less
of a concern than they once were (concrete num-
bers in § 6 Model Tuning).

5 Relation Mapping

In this section we describe a “translation” table be-
tween Freebase relations and NL words was built.

5.1 Formula
The objective is to find the most likely rela-
tion a question prompts. For instance, for the
question who is the father of King George
VI, the most likely relation we look for is peo-
ple.person.parents. To put it more formally,
given a question Q of a word vector w, we want
to find out the relation R that maximizes the prob-
ability P (R | Q).

More interestingly, for the question who is
the father of the Periodic Table, the ac-
tual relation that encodes its original mean-
ing is law.invention.inventor, rather than peo-
ple.person.parents. This simple example points
out that every part of the question could change
what the question inquires eventually. Thus we
need to count for each word w in Q. Due to the
bias and incompleteness of any data source, we
approximate the true probability of P with P̃ un-
der our specific model. For the simplicity of com-
putation, we assume conditional independence be-
tween words and apply Naive Bayes:

P̃ (R | Q) ∝ P̃ (Q | R)P̃ (R)
≈ P̃ (w | R)P̃ (R)
≈

∏
w

P̃ (w | R)P̃ (R)

where P̃ (R) is the prior probability of a relation
R and P̃ (w | R) is the conditional probability of
word w given R.

It is possible that we do not observe a certain
relation R when computing the above equation.
In this case we back off to the “sub-relations”: a
relation R is a concatenation of a series of sub-
relations R = r = r1.r2.r3. . . .. For instance, the
sub-relations of people.person.parents are peo-
ple, person, and parents. Again, we assume con-
ditional independence between sub-relations and
apply Naive Bayes:

P̃backoff(R | Q) ≈ P̃ (r | Q)
≈

∏
r

P̃ (r | Q)

∝
∏
r

P̃ (Q | r)P̃ (r)

≈
∏
r

∏
w

P̃ (w | r)P̃ (r)

One other reason that we estimated
P̃ (w | r) and P̃ (r) for sub-relations is
that Freebase relations share some com-
mon structures in between them. For in-
stance, both people.person.parents and
fictional universe.fictional character.parents
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indicate the parent relationship but the latter is
much less commonly annotated. We hope that the
shared sub-relation, parents, can help better esti-
mate for the less annotated. Note that the backoff
model would have a much smaller value than the
original, due to double multiplication

∏
r

∏
w. In

practice we normalize it by the sub-relations size
to keep it at the same scale with P̃ (R | Q).

Finally, to estimate the prior and conditional
probability, we need a massive data collection.

5.2 Steps
The ClueWeb096 dataset is a collection of 1 billion
webpages (5TB compressed in raw HTML) in 10
languages by Carnegie Mellon University in 2009.
FACC1, the Freebase Annotation of the ClueWeb
Corpus version 1 (Gabrilovich et al., 2013), con-
tains index and offset of Freebase entities within
the English portion of ClueWeb. Out of all 500
million English documents, 340 million were au-
tomatically annotated with at least one entity, with
an average of 15 entity mentions per document.
The precision and recall of annotation were esti-
mated at 80−85% and 70−85% (Orr et al., 2013).

Given these two resources, for each binary Free-
base relation, we can find a collection of sentences
each of which contains both of its arguments, then
simply learn how words in these sentences are as-
sociated with this relation, i.e., P̃ (w | R) and
P̃ (w | r). By counting how many times each rela-
tion R was annotated, we can estimate P̃ (R) and
P̃ (r). The learning task can be framed in the fol-
lowing short steps:
1. We split each HTML document by sentences

(Kiss and Strunk, 2006) using NLTK (Bird and
Loper, 2004) and extracted those with at least
two Freebase entities which has at least one di-
rect established relation according to Freebase.

2. The extraction formed two parallel corpora,
one with “relation - sentence” pairs (for esti-
mating P̃ (w | R) and P̃ (R)) and the other with
“subrelations - sentence” pairs (for P̃ (w | r)
and P̃ (r)). Each corpus has 1.2 billion pairs.

3. The tricky part was to align these 1.2 billion
pairs. Since the relations on one side of these
pairs are not natural sentences, we ran the
most simple IBM alignment Model 1 (Brown
et al., 1993) to estimate the translation proba-
bility with GIZA++ (Och and Ney, 2003). To
speed up, the 1.2 billion pairs were split into
6http://lemurproject.org/clueweb09/

0 ≤ 10 ≤ 102 ≤ 103 ≤ 104 > 104

7.0% 0.7% 1.2% 0.4% 1.3% 89.5%
Table 1: Percentage of answer relations (the in-
coming relation connected to the answer node)
with respect to how many sentences we learned
this relation from in CluewebMapping. For in-
stance, the first column says there are 7% of an-
swer relations for which we cannot find a mapping
(so we had to use the backoff probability estima-
tion); the last column says there are 89.5% of an-
swer relations that we were able to learn the map-
ping between this relation and text based on more
than 10 thousand relation-sentence pairs. The total
number of answer relations is 7886.

100 even chunks. We ran 5 iterations of EM on
each one and finally aligned the 1.2 billion pairs
from both directions. To symmetrize the align-
ment, common MT heuristics INTERSECTION,
UNION, GROW-DIAG-FINAL, and GROW-DIAG-
FINAL-AND (Koehn, 2010) were separately ap-
plied and evaluated later.

4. Treating the aligned pairs as observation, the
co-occurrence matrix between aligning rela-
tions and words was computed. There were
10,484 relations and sub-relations in all, and we
kept the top 20,000 words.

5. From the co-occurrence matrix we computed
P̃ (w | R), P̃ (R), P̃ (w | r) and P̃ (r).

Hand-checking the learned probabilities shows
both success, failure and some bias. For in-
stance, for the film.actor.film relation (mapping
from film names to actor names), the top words
given by P̃ (w | R) are won, star, among, show.
For the film.film.directed by relation, some im-
portant stop words that could indicate this re-
lation, such as by and with, rank directly after
director and direct. However, due to signifi-
cant popular interest in certain news categories,
and the resultant catering by websites to those
information desires, then for example we also
learned a heavily correlated connection between
Jennifer Aniston and celebrity.infidelity.victim,
and between some other you-know-who names
and celebrity.infidelity.participant.

We next formally evaluate how the learned map-
ping help predict relations from words.
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5.3 Evaluation

Both ClueWeb and its Freebase annotation has a
bias. Thus we were firstly interested in the cov-
erage of mined relation mappings. As a com-
parison, we used a dataset of relation mapping
contributed by Berant et al. (2013) and Lin et al.
(2012). The idea is very similar: they intersected
Freebase relations with predicates in (arg1, predi-
cate, arg2) triples extracted from ReVerb to learn
the mapping between Freebase relations and triple
predicates. Note the scale difference: although
ReVerb was also extracted from ClueWeb09,
there were only 15 million triples to intersect with
the relations, while we had 1.2 billion alignment
pairs. We call this dataset ReverbMapping and
ours CluewebMapping.

The evaluation dataset, WEBQUESTIONS, was
also contributed by Berant et al. (2013). It con-
tains 3778 training and 2032 test questions col-
lected from the Google Suggest service. All ques-
tions were annotated with answers from Freebase.
Some questions have more than one answer, such
as what to see near sedona arizona?.

We evaluated on the training set in two aspects:
coverage and prediction performance. We define
answer node as the node that is the answer and
answer relation as the relation from the answer
node to its direct parent. Then we computed how
much and how well the answer relation was trig-
gered by ReverbMapping and CluewebMapping.
Thus for the question, who is the father of King
George VI, we ask two questions: does the map-
ping, 1. (coverage) contain the answer relation
people.person.parents? 2. (precision) predict
the answer relation from the question?

Table 1 shows the coverage of CluewebMap-
ping, which covers 93.0% of all answer rela-
tions. Among them, we were able to learn the rule
mapping using more than 10 thousand relation-
sentence pairs for each of the 89.5% of all an-
swer relations. In contrast, ReverbMapping covers
89.7% of the answer relations.

Next we evaluated the prediction performance,
using the evaluation metrics of information re-
trieval. For each question, we extracted all rela-
tions in its corresponding topic graph, and ranked
each relation with whether it is the answer re-
lation. For instance, for the previous exam-
ple question, we want to rank the relation peo-
ple.person.parents as number 1. We com-
puted standard MAP (Mean Average Precision)

and MRR (Mean Reciprocal Rank), shown in Ta-
ble 2(a). As a simple baseline, “word overlap”
counts the overlap between relations and the ques-
tion. CluewebMapping ranks each relation by
P̃ (R | Q). ReverbMapping does the same, ex-
cept that we took a uniform distribution on P̃ (w |
R) and P̃ (R) since the contributed dataset did
not include co-occurrence counts to estimate these
probabilities.7 Note that the median rank from
CluewebMapping is only 12, indicating that half
of all answer relations are ranked in the top 12.

Table 2(b) further shows the percentage of
answer relations with respect to their rank-
ing. CluewebMapping successfully ranked 19%
of answer relations as top 1. A sample
of these includes person.place of birth, loca-
tion.containedby, country.currency used, reg-
ular tv appearance.actor, etc. These percentage
numbers are good clue for feature design: for in-
stance, we may be confident in a relation if it is
ranked top 5 or 10 by CluewebMapping.

To conclude, we found that CluewebMapping
provides satisfying coverage on the 3778 training
questions: only 7% were missing, despite the bi-
ased nature of web data. Also, CluewebMapping
gives reasonably good precision on its prediction,
despite the noisy nature of web data. We move on
to fully evaluate the final QA F1.

6 Experiments

We evaluate the final F1 in this section. The sys-
tem of comparison is that of Berant et al. (2013).
Data We re-used WEBQUESTIONS, a dataset
collected by Berant et al. (2013). It contains 5810
questions crawled from the Google Suggest ser-
vice, with answers annotated on Amazon Mechan-
ical Turk. All questions contain at least one an-
swer from Freebase. This dataset has been split by
65%/35% into TRAIN-ALL and TEST. We further
randomly divided TRAIN-ALL by 80%/20% to a
smaller TRAIN and development set DEV. Note
that our DEV set is different from that of Berant
et al. (2013), but the final result on TEST is di-
rectly comparable. Results are reported in terms
of macro F1 with partial credit (following Berant
et al. (2013)) if a predicted answer list does not
have a perfect match with all gold answers, as a

7The way we used ReverbMapping was not how Berant et
al. (2013) originally used it: they employed a discriminative
log-linear model to judge relations and that might yield better
performance. As a fair comparison, ranking of CluewebMap-
ping under uniform distribution is also included in Table 2(a).
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Median Rank MAP MRR

word overlap 471 0.0380 0.0590

ReverbMapping 60 0.0691 0.0829

CluewebMapping 12 0.2074 0.2900

with uniform dist. 61 0.0544 0.0561

(a) Ranking on answer relations. Best result on
CluewebMapping was under the GROW-DIAG-FINAL-AND
heuristics (row 3) when symmetrizing alignment from both
directions. The last row shows ranking of CluewebMapping
under uniform distribution (assuming counting on words and
relations is not known).

1 ≤ 5 ≤ 10 ≤ 50 ≤ 100 > 100

w. o. 3.5 4.7 2.5 3.9 4.1 81.3

R.M. 2.6 9.1 8.6 26.0 13.0 40.7

C.M. 19.0 19.9 8.9 22.3 7.5 22.4

(b) Percentage of answer relations w.r.t. ranking number
(header). w.o.: word overlap; R.M.: ReverbMapping; C.M.:
CluewebMapping.

Table 2: Evaluation on answer relation ranking
prediction on 3778 training questions.

lot of questions in WEBQUESTIONS contain more
than one answer.
Search With an Information Retrieval (IR)
front-end, we need to locate the exact Freebase
topic node a question is about. For this pur-
pose we used the Freebase Search API (Freebase,
2013a).All named entities 8 in a question were sent
to this API, which returned a ranked list of rele-
vant topics. We also evaluated how well the search
API served the IR purpose. WEBQUESTIONS not
only has answers annotated, but also which Free-
base topic nodes the answers come from. Thus
we evaluated the ranking of retrieval with the gold
standard annotation on TRAIN-ALL, shown in Ta-
ble 3. The top 2 results of the Search API con-
tain gold standard topics for more than 90% of the
questions and the top 10 results contain more than
95%. We took this as a “good enough” IR front-
end and used it on TEST.

Once a topic is obtained we query the Freebase
Topic API (Freebase, 2013b) to retrieve all rele-
vant information, resulting in a topic graph. The
API returns almost identical information as dis-
played via a web browser to a user viewing this
topic. Given that turkers annotated answers based
on the topic page via a browser, this supports the
assumption that the same answer would be located
in the topic graph, which is then passed to the QA
engine for feature extraction and classification.

8When no named entities are detected, we fall back to
noun phrases.

top 1 2 3 5 10
# 3263 3456 3532 3574 3604
% 86.4 91.5 93.5 94.6 95.4

Table 3: Evaluation on the Freebase Search API:
how many questions’ top n retrieved results con-
tain the gold standard topic. Total number of ques-
tions is 3778 (size of TRAIN-ALL). There were
only 5 questions with no retrieved results.

P R F1

basic 57.3 30.1 39.5
+ word overlap 56.0 31.4 40.2

+ CluewebMapping 59.9 35.4 44.5
+both 59.0 35.4 44.3

Table 4: F1 on DEV with different feature settings.

Model Tuning We treat QA on Freebase as a
binary classification task: for each node in the
topic graph, we extract features and judge whether
it is the answer node. Every question was pro-
cessed by the Stanford CoreNLP suite with the
caseless model. Then the question features (§4.1)
and node features (§4.2) were combined (§4.3)
for each node. The learning problem is chal-
lenging: for about 3000 questions in TRAIN,
there are 3 million nodes (1000 nodes per topic
graph), and 7 million feature types. We em-
ployed a high-performance machine learning tool,
Classias (Okazaki, 2009). Training usually
took around 4 hours. We experimented with vari-
ous discriminative learners on DEV, including lo-
gistic regression, perceptron and SVM, and found
L1 regularized logistic regression to give the best
result. The L1 regularization encourages sparse
features by driving feature weights towards zero,
which was ideal for the over-generated feature
space. After training, we had around 30 thousand
features with non-zero weights, a 200 fold reduc-
tion from the original features.

Also, we did an ablation test on DEV about
how additional features on the mapping between
Freebase relations and the original questions help,
with three feature settings: 1) “basic” features in-
clude feature productions read off from the fea-
ture graph (Figure 1); 2) “+ word overlap” adds
additional features on whether sub-relations have
overlap with the question; and 3) “+ CluewebMap-
ping” adds the ranking of relation prediction given
the question according to CluewebMapping. Ta-
ble 4 shows that the additional CluewebMapping
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P R F1

Gold Retrieval 45.4 52.2 48.6
Freebase Search API 38.8 45.8 42.0
Berant et al. (2013) - - 31.4

Table 5: F1 on TEST with Gold Retrieval and
Freebase Search API as the IR front end. Berant
et al. (2013) actually reported accuracy on this
dataset. However, since their system predicted an-
swers for almost every question (p.c.), it is roughly
that precision=recall=F1=accuracy for them.

features improved overall F1 by 5%, a 13% rel-
ative improvement: a remarkable gain given that
the model already learned a strong correlation be-
tween question types and answer types (explained
more in discussion and Table 6 later).

Finally, the ratio of positive vs. negative exam-
ples affect final F1: the more positive examples,
the lower the precision and the higher the recall.
Under the original setting, this ratio was about
1 : 275. This produced precision around 60%
and recall around 35% (c.f. Table 4). To optimize
for F1, we down-sampled the negative examples to
20%, i.e., a new ratio of 1 : 55. This boosted the
final F1 on DEV to 48%. We report the final TEST

result under this down-sampled training. In prac-
tice the precision/recall balance can be adjusted by
the positive/negative ratio.
Test Results Table 5 gives the final F1 on TEST.
“Gold Retrieval” always ranked the correct topic
node top 1, a perfect IR front-end assumption. In
a more realistic scenario, we had already evaluated
that the Freebase Search API returned the correct
topic node 95% of the time in its top 10 results (c.f.
Table 3), thus we also tested on the top 10 results
returned by the Search API. To keep things sim-
ple, we did not perform answer voting, but sim-
ply extracted answers from the first (ranked by the
Search API) topic node with predicted answer(s)
found. The final F1 of 42.0% gives a relative im-
provement over previous best result (Berant et al.,
2013) of 31.4% by one third.

One question of interest is whether our system,
aided by the massive web data, can be fairly com-
pared to the semantic parsing approaches (note
that Berant et al. (2013) also used ClueWeb in-
directly through ReVerb). Thus we took out
the word overlapping and CluewebMapping based
features, and the new F1 on TEST was 36.9%.

The other question of interest is that whether
our system has acquired some level of “machine

wgt. feature
5.56 qfocus=money|type=Currency

5.35 qverb=die|type=Cause Of Death

5.11 qword=when|type=datetime

4.56 qverb=border|rel=location.adjoins

3.90 qword=why|incoming relation rank=top 3

2.94 qverb=go|qtopic=location|type=Tourist attraction

-3.94 qtopic=location|rel=location.imports exports.date

-2.93 qtopic=person|rel=education.end date

Table 6: A sample of the top 50 most positive/neg-
ative features. Features are production between
question and node features (c.f. Figure 1).

intelligence”: how much does it know what the
question inquires? We discuss it below through
feature and error analysis.
Discussion The combination between questions
and Freebase nodes captures some real gist of QA
pattern typing, shown in Table 6 with sampled fea-
tures and weights. Our system learned, for in-
stance, when the question asks for geographic ad-
jacency information (qverb=border), the correct
answer relation to look for is location.adjoins.
Detailed comparison with the output from Berant
et al. (2013) is a work in progress and will be pre-
sented in a follow-up report.

7 Conclusion

We proposed an automatic method for Question
Answering from structured data source (Free-
base). Our approach associates question features
with answer patterns described by Freebase and
has achieved state-of-the-art results on a balanced
and realistic QA corpus. To compensate for the
problem of domain mismatch or overfitting, we
exploited ClueWeb, mined mappings between KB
relations and natural language text, and showed
that it helped both relation prediction and an-
swer extraction. Our method employs relatively
lightweight machinery but has good performance.
We hope that this result establishes a new baseline
against which semantic parsing researchers can
measure their progress towards deeper language
understanding and answering of human questions.
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Jérôme Euzenat and Pavel Shvaiko. 2007. Ontology
matching. Springer.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of EMNLP.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-Driven Learning for Open Ques-
tion Answering. In Proceedings of ACL.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans
Uszkoreit, Berthold Crysmann, Brigitte Jörg, and
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