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Abstract
The essence of distantly supervised rela-
tion extraction is that it is an incomplete
multi-label classification problem with s-
parse and noisy features. To tackle the s-
parsity and noise challenges, we propose
solving the classification problem using
matrix completion on factorized matrix of
minimized rank. We formulate relation
classification as completing the unknown
labels of testing items (entity pairs) in a s-
parse matrix that concatenates training and
testing textual features with training label-
s. Our algorithmic framework is based on
the assumption that the rank of item-by-
feature and item-by-label joint matrix is
low. We apply two optimization model-
s to recover the underlying low-rank ma-
trix leveraging the sparsity of feature-label
matrix. The matrix completion problem is
then solved by the fixed point continuation
(FPC) algorithm, which can find the glob-
al optimum. Experiments on two wide-
ly used datasets with different dimension-
s of textual features demonstrate that our
low-rank matrix completion approach sig-
nificantly outperforms the baseline and the
state-of-the-art methods.

1 Introduction

Relation Extraction (RE) is the process of gen-
erating structured relation knowledge from un-
structured natural language texts. Traditional su-
pervised methods (Zhou et al., 2005; Bach and
Badaskar, 2007) on small hand-labeled corpora,
such as MUC1 and ACE2, can achieve high pre-
cision and recall. However, as producing hand-
labeled corpora is laborius and expensive, the su-
pervised approach can not satisfy the increasing

1http://www.itl.nist.gov/iaui/894.02/related projects/muc/
2http://www.itl.nist.gov/iad/mig/tests/ace/

Figure 1: Training corpus generated by the basic
alignment assumption of distantly supervised re-
lation extraction. The relation instances are the
triples related to President Barack Obama in the
Freebase, and the relation mentions are some sen-
tences describing him in the Wikipedia.

demand of building large-scale knowledge reposi-
tories with the explosion of Web texts. To address
the lacking training data issue, we consider the dis-
tant (Mintz et al., 2009) or weak (Hoffmann et al.,
2011) supervision paradigm attractive, and we im-
prove the effectiveness of the paradigm in this pa-
per.

The intuition of the paradigm is that one
can take advantage of several knowledge bases,
such as WordNet3, Freebase4 and YAGO5, to
automatically label free texts, like Wikipedia6

and New York Times corpora7, based on some
heuristic alignment assumptions. An example
accounting for the basic but practical assumption
is illustrated in Figure 1, in which we know
that the two entities (<Barack Obama,
U.S.>) are not only involved in the rela-
tion instances8 coming from knowledge bases
(President-of(Barack Obama, U.S.)
and Born-in(Barack Obama, U.S.)),

3http://wordnet.princeton.edu
4http://www.freebase.com
5http://www.mpi-inf.mpg.de/yago-naga/yago
6http://www.wikipedia.org
7http://catalog.ldc.upenn.edu/LDC2008T19
8According to convention, we regard a structured triple

r(ei, ej) as a relation instance which is composed of a pair of
entities <ei, ej>and a relation name r with respect to them.
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Figure 2: The procedure of noise-tolerant low-rank matrix completion. In this scenario, distantly super-
vised relation extraction task is transformed into completing the labels for testing items (entity pairs) in
a sparse matrix that concatenates training and testing textual features with training labels. We seek to
recover the underlying low-rank matrix and to complete the unknown testing labels simultaneously.

but also co-occur in several relation mentions9

appearing in free texts (Barack Obama is
the 44th and current President of
the U.S. and Barack Obama was born
in Honolulu, Hawaii, U.S., etc.). We
extract diverse textual features from all those
relation mentions and combine them into a rich
feature vector labeled by the relation names
(President-of and Born-in) to produce a
weak training corpus for relation classification.

This paradigm is promising to generate large-
scale training corpora automatically. However, it
comes up against three technical challeges:

• Sparse features. As we cannot tell what
kinds of features are effective in advance, we
have to use NLP toolkits, such as Stanford
CoreNLP10, to extract a variety of textual fea-
tures, e.g., named entity tags, part-of-speech
tags and lexicalized dependency paths. Un-
fortunately, most of them appear only once in
the training corpus, and hence leading to very
sparse features.

• Noisy features. Not all relation mentions
express the corresponding relation instances.
For example, the second relation mention in
Figure 1 does not explicitly describe any rela-
tion instance, so features extracted from this
sentence can be noisy. Such analogous cases
commonly exist in feature extraction.

• Incomplete labels. Similar to noisy fea-
9The sentences that contain the given entity pair are called

relation mentions.
10http://nlp.stanford.edu/downloads/corenlp.shtml

tures, the generated labels can be in-
complete. For example, the fourth re-
lation mention in Figure 1 should have
been labeled by the relation Senate-of.
However, the incomplete knowledge base
does not contain the corresponding relation
instance (Senate-of(Barack Obama,
U.S.)). Therefore, the distant supervision
paradigm may generate incomplete labeling
corpora.

In essence, distantly supervised relation extrac-
tion is an incomplete multi-label classification task
with sparse and noisy features.

In this paper, we formulate the relation-
extraction task from a novel perspective of using
matrix completion with low rank criterion. To the
best of our knowledge, we are the first to apply this
technique on relation extraction with distant super-
vision. More specifically, as shown in Figure 2, we
model the task with a sparse matrix whose rows
present items (entity pairs) and columns contain
noisy textual features and incomplete relation la-
bels. In such a way, relation classification is trans-
formed into a problem of completing the unknown
labels for testing items in the sparse matrix that
concatenates training and testing textual features
with training labels, based on the assumption that
the item-by-feature and item-by-label joint matrix
is of low rank. The rationale of this assumption
is that noisy features and incomplete labels are
semantically correlated. The low-rank factoriza-
tion of the sparse feature-label matrix delivers the
low-dimensional representation of de-correlation
for features and labels.
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We contribute two optimization models, DRM-
C11-b and DRMC-1, aiming at exploiting the s-
parsity to recover the underlying low-rank matrix
and to complete the unknown testing labels simul-
taneously. Moreover, the logistic cost function is
integrated in our models to reduce the influence of
noisy features and incomplete labels, due to that
it is suitable for binary variables. We also modify
the fixed point continuation (FPC) algorithm (Ma
et al., 2011) to find the global optimum.

Experiments on two widely used datasets
demonstrate that our noise-tolerant approaches
outperform the baseline and the state-of-the-art
methods. Furthermore, we discuss the influence of
feature sparsity, and our approaches consistently
achieve better performance than compared meth-
ods under different sparsity degrees.

2 Related Work

The idea of distant supervision was firstly pro-
posed in the field of bioinformatics (Craven and
Kumlien, 1999). Snow et al. (2004) used Word-
Net as the knowledge base to discover more h-
pyernym/hyponym relations between entities from
news articles. However, either bioinformatic
database or WordNet is maintained by a few ex-
perts, thus hardly kept up-to-date.

As we are stepping into the big data era, the
explosion of unstructured Web texts simulates us
to build more powerful models that can automat-
ically extract relation instances from large-scale
online natural language corpora without hand-
labeled annotation. Mintz et al. (2009) adopt-
ed Freebase (Bollacker et al., 2008; Bollacker
et al., 2007), a large-scale crowdsourcing knowl-
edge base online which contains billions of rela-
tion instances and thousands of relation names, to
distantly supervise Wikipedia corpus. The basic
alignment assumption of this work is that if a pair
of entities participate in a relation, all sentences
that mention these entities are labeled by that rela-
tion name. Then we can extract a variety of textu-
al features and learn a multi-class logistic regres-
sion classifier. Inspired by multi-instance learn-
ing (Maron and Lozano-Pérez, 1998), Riedel et al.
(2010) relaxed the strong assumption and replaced
all sentences with at least one sentence. Hoff-
mann et al. (2011) pointed out that many entity
pairs have more than one relation. They extend-

11It is the abbreviation for Distant supervision for Relation
extraction with Matrix Completion

ed the multi-instance learning framework (Riedel
et al., 2010) to the multi-label circumstance. Sur-
deanu et al. (2012) proposed a novel approach to
multi-instance multi-label learning for relation ex-
traction, which jointly modeled all the sentences in
texts and all labels in knowledge bases for a giv-
en entity pair. Other literatures (Takamatsu et al.,
2012; Min et al., 2013; Zhang et al., 2013; Xu
et al., 2013) addressed more specific issues, like
how to construct the negative class in learning or
how to adopt more information, such as name en-
tity tags, to improve the performance.

Our work is more relevant to Riedel et al.’s
(2013) which considered the task as a matrix fac-
torization problem. Their approach is composed
of several models, such as PCA (Collins et al.,
2001) and collaborative filtering (Koren, 2008).
However, they did not concern about the data noise
brought by the basic assumption of distant super-
vision.

3 Model

We apply a new technique in the field of ap-
plied mathematics, i.e., low-rank matrix comple-
tion with convex optimization. The breakthrough
work on this topic was made by Candès and Recht
(2009) who proved that most low-rank matrices
can be perfectly recovered from an incomplete
set of entries. This promising theory has been
successfully applied on many active research ar-
eas, such as computer vision (Cabral et al., 2011),
recommender system (Rennie and Srebro, 2005)
and system controlling (Fazel et al., 2001). Our
models for relation extraction are based on the
theoretic framework proposed by Goldberg et al.
(2010), which formulated the multi-label trans-
ductive learning as a matrix completion problem.
The new framework for classification enhances the
robustness to data noise by penalizing differen-
t cost functions for features and labels.

3.1 Formulation

Suppose that we have built a training corpus for
relation classification with n items (entity pairs),
d-dimensional textual features, and t labels (rela-
tions), based on the basic alignment assumption
proposed by Mintz et al. (2009). Let Xtrain ∈
Rn×d and Ytrain ∈ Rn×t denote the feature matrix
and the label matrix for training, respectively. The
linear classifier we adopt aims to explicitly learn
the weight matrix W ∈ Rd×t and the bias column
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vector b ∈ Rt×1 with the constraint of minimizing
the loss function l,

arg min
W,b

l(Ytrain,
[

1 Xtrain

] [ bT

W

]
), (1)

where 1 is the all-one column vector. Then we can
predict the label matrix Ytest ∈ Rm×t of m testing
items with respect to the feature matrix Xtest ∈
Rm×d. Let

Z =
[
Xtrain Ytrain
Xtest Ytest

]
.

This linear classification problem can be trans-
formed into completing the unobservable entries
in Ytest by means of the observable entries in
Xtrain, Ytrain and Xtest, based on the assumption
that the rank of matrix Z ∈ R(n+m)×(d+t) is low.
The model can be written as,

arg min
Z∈R(n+m)×(d+t)

rank(Z)

s.t. ∀(i, j) ∈ ΩX , zij = xij ,

(1 ≤ i ≤ n+m, 1 ≤ j ≤ d),
∀(i, j) ∈ ΩY , zi(j+d) = yij ,

(1 ≤ i ≤ n, 1 ≤ j ≤ t),

(2)

where we use ΩX to represent the index set of ob-
servable feature entries in Xtrain and Xtest, and
ΩY to denote the index set of observable label en-
tries in Ytrain.

Formula (2) is usually impractical for real prob-
lems as the entries in the matrix Z are corrupted
by noise. We thus define

Z = Z∗ + E,

where Z∗ as the underlying low-rank matrix

Z∗ =
[
X∗ Y ∗

]
=
[
X∗train Y ∗train
X∗test Y ∗test

]
,

and E is the error matrix

E =
[
EXtrain EYtrain

EXtest 0

]
.

The rank function in Formula (2) is a non-convex
function that is difficult to be optimized. The sur-
rogate of the function can be the convex nucle-
ar norm ||Z||∗ =

∑
σk(Z) (Candès and Recht,

2009), where σk is the k-th largest singular val-
ue of Z. To tolerate the noise entries in the error
matrix E, we minimize the cost functions Cx and
Cy for features and labels respectively, rather than
using the hard constraints in Formula (2).

According to Formula (1), Z∗ ∈ R(n+m)×(d+t)

can be represented as [X∗,WX∗] instead of
[X∗, Y ∗], by explicitly modeling the bias vector
b. Therefore, this convex optimization model is
called DRMC-b,

arg min
Z,b

µ||Z||∗ +
1
|ΩX |

∑
(i,j)∈ΩX

Cx(zij , xij)

+
λ

|ΩY |
∑

(i,j)∈ΩY

Cy(zi(j+d) + bj , yij),

(3)

where µ and λ are the positive trade-off weights.
More specifically, we minimize the nuclear norm
||Z||∗ via employing the regularization terms, i.e.,
the cost functions Cx and Cy for features and la-
bels.

If we implicitly model the bias vector b,
Z∗ ∈ R(n+m)×(1+d+t) can be denoted by
[1, X∗,W′

X∗] instead of [X∗, Y ∗], in which W
′

takes the role of [bT ; W] in DRMC-b. Then we
derive another optimization model called DRMC-
1,

arg min
Z

µ||Z||∗ +
1
|ΩX |

∑
(i,j)∈ΩX

Cx(zi(j+1), xij)

+
λ

|ΩY |
∑

(i,j)∈ΩY

Cy(zi(j+d+1), yij)

s.t. Z(:, 1) = 1,
(4)

where Z(:, 1) denotes the first column of Z.
For our relation classification task, both features

and labels are binary. We assume that the actual
entry u belonging to the underlying matrix Z∗ is
randomly generated via a sigmoid function (Jor-
dan, 1995): Pr(u|v) = 1/(1 + e−uv), given the
observed binary entry v from the observed sparse
matrix Z. Then, we can apply the log-likelihood
cost function to measure the conditional probabil-
ity and derive the logistic cost function for Cx and
Cy,

C(u, v) = − logPr(u|v) = log(1 + e−uv),

After completing the entries in Ytest, we adop-
t the sigmoid function to calculate the conditional
probability of relation rj , given entity pair pi per-
taining to yij in Ytest,

Pr(rj |pi) =
1

1 + e−yij
, yij ∈ Ytest.

Finally, we can achieve Top-N predicted relation
instances via ranking the values of Pr(rj |pi).
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4 Algorithm

The matrix rank minimization problem is NP-
hard. Therefore, Candés and Recht (2009) sug-
gested to use a convex relaxation, the nuclear nor-
m minimization instead. Then, Ma et al. (2011)
proposed the fixed point continuation (FPC) algo-
rithm which is fast and robust. Moreover, Gold-
frab and Ma (2011) proved the convergence of the
FPC algorithm for solving the nuclear norm mini-
mization problem. We thus adopt and modify the
algorithm aiming to find the optima for our noise-
tolerant models, i.e., Formulae (3) and (4).

4.1 Fixed point continuation for DRMC-b
Algorithm 1 describes the modified FPC algorithm
for solving DRMC-b, which contains two steps for
each iteration,

Gradient step: In this step, we infer the ma-
trix gradient g(Z) and bias vector gradient g(b) as
follows,

g(zij) =


1
|ΩX |

−xij

1+exijzij , (i, j) ∈ ΩX

λ
|ΩY |

−yi(j−d)

1+e
yi(j−d)(zij+bj) , (i, j − d) ∈ ΩY

0, otherwise

and

g(bj) =
λ

|ΩY |
∑

i:(i,j)∈ΩY

−yij
1 + eyij(zi(j+d)+bj)

.

We use the gradient descents A = Z − τzg(Z)
and b = b − τbg(b) to gradually find the global
minima of the cost function terms in Formula (3),
where τz and τb are step sizes.

Shrinkage step: The goal of this step is to min-
imize the nuclear norm ||Z||∗ in Formula (3). We
perform the singular value decomposition (SVD)
(Golub and Kahan, 1965) for A at first, and then
cut down each singular value. During the iteration,
any negative value in Σ− τzµ is assigned by zero,
so that the rank of reconstructed matrix Z will be
reduced, where Z = Umax(Σ− τzµ, 0)VT.

To accelerate the convergence, we use a con-
tinuation method to improve the speed. µ is ini-
tialized by a large value µ1, thus resulting in the
fast reduction of the rank at first. Then the conver-
gence slows down as µ decreases while obeying
µk+1 = max(µkηµ, µF ). µF is the final value of
µ, and ηµ is the decay parameter.

For the stopping criteria in inner iterations, we
define the relative error to measure the residual of
matrix Z between two successive iterations,

Algorithm 1 FPC algorithm for solving DRMC-b
Input:

Initial matrix Z0, bias b0; Parameters µ, λ;
Step sizes τz, τb.

Set Z = Z0, b = b0.
foreach µ = µ1 > µ2 > ... > µF do

while relative error > ε do
Gradient step:
A = Z− τzg(Z),b = b− τbg(b).
Shrinkage step:
UΣVT = SVD(A),
Z = U max(Σ− τzµ, 0) VT.

end while
end foreach

Output: Completed Matrix Z, bias b.

||Zk+1 − Zk||F
max(1, ||Zk||F )

≤ ε,

where ε is the convergence threshold.

4.2 Fixed point continuation for DRMC-1
Algorithm 2 is similar to Algorithm 1 except for
two differences. First, there is no bias vector b.
Second, a projection step is added to enforce the
first column of matrix Z to be 1. In addition, The
matrix gradient g(Z) for DRMC-1 is

g(zij) =


1
|ΩX |

−xi(j−1)

1+e
xi(j−1)zij , (i, j − 1) ∈ ΩX

λ
|ΩY |

−yi(j−d−1)

1+e
yi(j−d−1)zij , (i, j − d− 1) ∈ ΩY

0, otherwise

.

Algorithm 2 FPC algorithm for solving DRMC-1
Input:

Initial matrix Z0; Parameters µ, λ;
Step sizes τz .

Set Z = Z0.
foreach µ = µ1 > µ2 > ... > µF do

while relative error > ε do
Gradient step: A = Z− τzg(Z).
Shrinkage step:
UΣVT = SVD(A),
Z = U max(Σ− τzµ, 0) VT.
Projection step: Z(:, 1) = 1.

end while
end foreach

Output: Completed Matrix Z.

843



Dataset # of training
tuples

# of testing
tuples

% with more
than one label

# of features # of relation
labels

NYT’10 4,700 1,950 7.5% 244,903 51
NYT’13 8,077 3,716 0% 1,957 51

Table 1: Statistics about the two widely used datasets.

Model NYT’10 (θ=2) NYT’10 (θ=3) NYT’10 (θ=4) NYT’10 (θ=5) NYT’13
DRMC-b 51.4 ± 8.7 (51) 45.6 ± 3.4 (46) 41.6 ± 2.5 (43) 36.2 ± 8.8(37) 84.6 ± 19.0 (85)
DRMC-1 16.0 ± 1.0 (16) 16.4 ± 1.1(17) 16 ± 1.4 (17) 16.8 ± 1.5(17) 15.8 ± 1.6 (16)

Table 2: The range of optimal ranks for DRMC-b and DRMC-1 through five-fold cross validation. The
threshold θ means filtering the features that appear less than θ times. The values in brackets pertaining to
DRMC-b and DRMC-1 are the exact optimal ranks that we choose for the completed matrices on testing
sets.

5 Experiments

In order to conduct reliable experiments, we adjust
and estimate the parameters for our approaches,
DRMC-b and DRMC-1, and compare them with
other four kinds of landmark methods (Mintz et
al., 2009; Hoffmann et al., 2011; Surdeanu et al.,
2012; Riedel et al., 2013) on two public datasets.

5.1 Dataset
The two widely used datasets that we adopt are
both automatically generated by aligning Freebase
to New York Times corpora. The first dataset12,
NYT’10, was developed by Riedel et al. (2010),
and also used by Hoffmann et al. (2011) and Sur-
deanu et al. (2012). Three kinds of features, name-
ly, lexical, syntactic and named entity tag fea-
tures, were extracted from relation mentions. The
second dataset13, NYT’13, was also released by
Riedel et al. (2013), in which they only regarded
the lexicalized dependency path between two enti-
ties as features. Table 1 shows that the two datasets
differ in some main attributes. More specifically,
NYT’10 contains much higher dimensional fea-
tures than NYT’13, whereas fewer training and
testing items.

5.2 Parameter setting
In this part, we address the issue of setting param-
eters: the trade-off weights µ and λ, the step sizes
τz and τb, and the decay parameter ηµ.

We set λ = 1 to make the contribution of the
cost function terms for feature and label matrices
equal in Formulae (3) and (4). µ is assigned by a
series of values obeying µk+1 = max(µkηµ, µF ).

12http://iesl.cs.umass.edu/riedel/ecml/
13http://iesl.cs.umass.edu/riedel/data-univSchema/

We follow the suggestion in (Goldberg et al.,
2010) that µ starts at σ1ηµ, and σ1 is the largest
singular value of the matrix Z. We set ηµ = 0.01.
The final value of µ, namely µF , is equal to 0.01.
Ma et al. (2011) revealed that as long as the non-
negative step sizes satisfy τz < min(4|ΩY |

λ , |ΩX |)
and τb <

4|ΩY |
λ(n+m) , the FPC algorithm will guaran-

tee to converge to a global optimum. Therefore,
we set τz = τb = 0.5 to satisfy the above con-
straints on both two datasets.

5.3 Rank estimation

Even though the FPC algorithm converges in iter-
ative fashion, the value of ε varying with different
datasets is difficult to be decided. In practice, we
record the rank of matrix Z at each round of iter-
ation until it converges at a rather small threshold
ε = 10−4. The reason is that we suppose the opti-
mal low-rank representation of the matrix Z con-
veys the truly effective information about underly-
ing semantic correlation between the features and
the corresponding labels.

We use the five-fold cross validation on the val-
idation set and evaluate the performance on each
fold with different ranks. At each round of itera-
tion, we gain a recovered matrix and average the
F114 scores from Top-5 to Top-all predicted rela-
tion instances to measure the performance. Figure
3 illustrates the curves of average F1 scores. After
recording the rank associated with the highest F1
score on each fold, we compute the mean and the
standard deviation to estimate the range of optimal
rank for testing. Table 2 lists the range of optimal
ranks for DRMC-b and DRMC-1 on NYT’10 and
NYT’13.

14F1 = 2×precision×recall
precision+recall
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(a) DRMC-b on NYT’10 validation set (θ = 5).
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(b) DRMC-1 on NYT’10 validation set (θ = 5).
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(c) DRMC-b on NYT’13 validation set.
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(d) DRMC-1 on NYT’13 validation set.

Figure 3: Five-fold cross validation for rank estimation on two datasets.

On both two datasets, we observe an identical
phenomenon that the performance gradually in-
creases as the rank of the matrix declines before
reaching the optimum. However, it sharply de-
creases if we continue reducing the optimal rank.
An intuitive explanation is that the high-rank ma-
trix contains much noise and the model tends to be
overfitting, whereas the matrix of excessively low
rank is more likely to lose principal information
and the model tends to be underfitting.

5.4 Method Comparison

Firstly, we conduct experiments to compare our
approaches with Mintz-09 (Mintz et al., 2009),
MultiR-11 (Hoffmann et al., 2011), MIML-12 and
MIML-at-least-one-12 (Surdeanu et al., 2012) on
NYT’10 dataset. Surdeanu et al. (2012) released
the open source code15 to reproduce the experi-
mental results on those previous methods. More-
over, their programs can control the feature spar-

15http://nlp.stanford.edu/software/mimlre.shtml

sity degree through a threshold θ which filters the
features that appears less than θ times. They set
θ = 5 in the original code by default. Therefore,
we follow their settings and adopt the same way
to filter the features. In this way, we guarantee
the fair comparison for all methods. Figure 4 (a)
shows that our approaches achieve the significant
improvement on performance.

We also perform the experiments to compare
our approaches with the state-of-the-art NFE-1316

(Riedel et al., 2013) and its sub-methods (N-13,
F-13 and NF-13) on NYT’13 dataset. Figure 4 (b)
illustrates that our approaches still outperform the
state-of-the-art methods. In practical application-
s, we also concern about the precision on Top-N
predicted relation instances. Therefore, We com-
pare the precision of Top-100s, Top-200s and Top-
500s for DRMC-1, DRMC-b and the state-of-the-

16Readers may refer to the website,
http://www.riedelcastro.org/uschema for the details of
those methods. We bypass the description due to the
limitation of space.
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(b) NYT’13 testing set.

Figure 4: Method comparison on two testing sets.
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Figure 5: Precision-Recall curve for DRMC-b and DRMC-1 with different ranks on two testing sets.

Top-N NFE-13 DRMC-b DRMC-1
Top-100 62.9% 82.0% 80.0%
Top-200 57.1% 77.0% 80.0%
Top-500 37.2% 70.2% 77.0%
Average 52.4% 76.4% 79.0%

Table 3: Precision of NFE-13, DRMC-b and
DRMC-1 on Top-100, Top-200 and Top-500 pre-
dicted relation instances.

art method NFE-13 (Riedel et al., 2013). Table 3
shows that DRMC-b and DRMC-1 achieve 24.0%
and 26.6% precision increments on average, re-
spectively.

6 Discussion

We have mentioned that the basic alignment as-
sumption of distant supervision (Mintz et al.,
2009) tends to generate noisy (noisy features and

incomplete labels) and sparse (sparse features) da-
ta. In this section, we discuss how our approaches
tackle these natural flaws.

Due to the noisy features and incomplete label-
s, the underlying low-rank data matrix with tru-
ly effective information tends to be corrupted and
the rank of observed data matrix can be extremely
high. Figure 5 demonstrates that the ranks of da-
ta matrices are approximately 2,000 for the initial
optimization of DRMC-b and DRMC-1. Howev-
er, those high ranks result in poor performance.
As the ranks decline before approaching the op-
timum, the performance gradually improves, im-
plying that our approaches filter the noise in data
and keep the principal information for classifica-
tion via recovering the underlying low-rank data
matrix.

Furthermore, we discuss the influence of the
feature sparsity for our approaches and the state-
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Figure 6: Feature sparsity discussion on NYT’10 testing set. Each row (from top to bottom, θ = 4, 3, 2)
illustrates a suite of experimental results. They are, from left to right, five-fold cross validation for
rank estimation on DRMC-b and DRMC-1, method comparison and precision-recall curve with different
ranks, respectively.

of-the-art methods. We relax the feature filtering
threshold (θ = 4, 3, 2) in Surdeanu et al.’s (2012)
open source program to generate more sparse fea-
tures from NYT’10 dataset. Figure 6 shows that
our approaches consistently outperform the base-
line and the state-of-the-art methods with diverse
feature sparsity degrees. Table 2 also lists the
range of optimal rank for DRMC-b and DRMC-
1 with different θ. We observe that for each ap-
proach, the optimal range is relatively stable. In
other words, for each approach, the amount of tru-
ly effective information about underlying seman-
tic correlation keeps constant for the same dataset,
which, to some extent, explains the reason why our
approaches are robust to sparse features.

7 Conclusion and Future Work

In this paper, we contributed two noise-tolerant
optimization models17, DRMC-b and DRMC-1,
for distantly supervised relation extraction task
from a novel perspective. Our models are based on
matrix completion with low-rank criterion. Exper-

17The source code can be downloaded from https://
github.com/nlpgeek/DRMC/tree/master

iments demonstrated that the low-rank represen-
tation of the feature-label matrix can exploit the
underlying semantic correlated information for re-
lation classification and is effective to overcome
the difficulties incurred by sparse and noisy fea-
tures and incomplete labels, so that we achieved
significant improvements on performance.

Our proposed models also leave open question-
s for distantly supervised relation extraction task.
First, they can not process new coming testing
items efficiently, as we have to reconstruct the data
matrix containing not only the testing items but al-
so all the training items for relation classification,
and compute in iterative fashion again. Second,
the volume of the datasets we adopt are relatively
small. For the future work, we plan to improve our
models so that they will be capable of incremental
learning on large-scale datasets (Chang, 2011).
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