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Abstract

In this paper, we present a manifold model
for medical relation extraction. Our model
is built upon a medical corpus containing
80M sentences (11 gigabyte text) and de-
signed to accurately and efficiently detect
the key medical relations that can facilitate
clinical decision making. Our approach
integrates domain specific parsing and typ-
ing systems, and can utilize labeled as well
as unlabeled examples. To provide users
with more flexibility, we also take label
weight into consideration. Effectiveness
of our model is demonstrated both theo-
retically with a proof to show that the so-
lution is a closed-form solution and exper-
imentally with positive results in experi-
ments.

1 Introduction

There exists a vast amount of knowledge sources
and ontologies in the medical domain. Such in-
formation is also growing and changing extremely
quickly, making the information difficult for peo-
ple to read, process and remember. The combi-
nation of recent developments in information ex-
traction and the availability of unparalleled medi-
cal resources thus offers us the unique opportunity
to develop new techniques to help healthcare pro-
fessionals overcome the cognitive challenges they
face in clinical decision making.

Relation extraction plays a key role in informa-
tion extraction. Using question answering as an
example (Wang et al., 2012): in question analy-
sis, the semantic relations between the question
focus and each term in the clue can be used to
identify the weight of each term so that better
search queries can be generated. In candidate an-
swer generation, relations enable the background
knowledge base to be used for potential candidate

answer generation. In candidate answer scoring,
relation-based matching algorithms can go beyond
explicit lexical and syntactic information to detect
implicit semantic relations shared across the ques-
tion and passages.

To construct a medical relation extraction sys-
tem, several challenges have to be addressed:

• The first challenge is how to identify a set of
relations that has sufficient coverage in the
medical domain. To address this issue, we
study a real-world diagnosis related question
set and identify a set of relations that has a
good coverage of the clinical questions.

• The second challenge is how to efficiently de-
tect relations in a large amount of medical
text. The medical corpus underlying our re-
lation extraction system contains 80M sen-
tences (11 gigabytes pure text). To extract
relations from a dataset at this scale, the re-
lation detectors have to be fast. In this paper,
we speed up relation detectors through pars-
ing adaptation and replacing non-linear clas-
sifiers with linear classifiers.

• The third challenge is that the labeled rela-
tion examples are often insufficient due to the
high labeling cost. When we build a naı̈ve
model to detect relations, the model tends to
overfit for the labeled data. To address this
issue, we develop a manifold model (Belkin
et al., 2006) that encourages examples (in-
cluding both labeled and unlabeled exam-
ples) with similar contents to be assigned
with similar scores. Our model goes beyond
regular regression models in that it applies
constraints to those coefficients, such that the
topology of the given data manifold will be
respected. Computing the optimal weights
in a regression model and preserving mani-
fold topology are conflicting objectives, we
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present a closed-form solution to ideally bal-
ance these two goals.

The contributions of this paper on medical rela-
tion extraction are three-fold:

• The problem setup is new. There is a
“fundamental” difference between our prob-
lem setup and the conventional setups, like
i2b2 (Uzuner et al., 2011). In i2b2 rela-
tion extraction task, entity mentions are man-
ually labeled, and each mention has 1 of 3
concepts: ‘treatment’, ‘problem’, and ‘test’.
To resemble real-world medical relation ex-
traction challenges where perfect entity men-
tions do not exist, our new setup requires
the entity mentions to be automatically de-
tected. The most well-known tool to detect
medical entity mentions is MetaMap (Aron-
son, 2001), which considers all terms as en-
tities and automatically associates each term
with a number of concepts from UMLS CUI
dictionary (Lindberg et al., 1993) with more
than 2.7 million distinct concepts (compared
to 3 in i2b2). The huge amount of entity
mentions, concepts and noisy concept assign-
ments provide a tough situation that people
have to face in real-world applications.

• From the perspective of relation extraction
applications, we identify “super relations”-
the key relations that can facilitate clinical
decision making (Table 1). We also present
approaches to collect training data for these
relations with a small amount of labeling ef-
fort.

• From the perspective of relation extraction
methodologies, we present a manifold model
for relation extraction utilizing both labeled
and unlabeled data. Our approach can also
take the label weight into consideration.

The experimental results show that our relation
detectors are fast and outperform the state-of-the-
art approaches on medical relation extraction by a
large margin. We also apply our model to build a
new medical relation knowledge base as a comple-
ment to the existing knowledge bases.

2 Background

2.1 Medical Ontologies and Sources
Medical domain has a huge amount of natural lan-
guage content found in textbooks, encyclopedias,

guidelines, electronic medical records, and many
other sources. It is also growing at an extremely
high speed. Substantial understanding of the med-
ical domain has already been included in the Uni-
fied Medical Language System (UMLS) (Lind-
berg et al., 1993), which includes medical con-
cepts, relations, definitions, etc. The 2012 version
of the UMLS contains information about more
than 2.7 million concepts from over 160 source
vocabularies. Softwares for using this knowledge
also exist: MetaMap (Aronson, 2001) is able to
identify concepts in text. SEMREP (Rindflesch
and Fiszman, 2003) can detect some relations us-
ing hand-crafted rules.

2.2 Relation Extraction

To extract semantic relations from text, three types
of approaches have been applied. Rule-based
methods (Miller et al., 2000) employ a number
of linguistic rules to capture relation patterns.
Feature-based methods (Kambhatla, 2004; Zhao
and Grishman, 2005) transform relation instances
into a large amount of linguistic features like lex-
ical, syntactic and semantic features, and capture
the similarity between these feature vectors. Re-
cent results mainly rely on kernel-based meth-
ods. Many of them focus on using tree kernels to
learn parse tree structure related features (Collins
and Duffy, 2001; Culotta and Sorensen, 2004;
Bunescu and Mooney, 2005).

Other researchers study how different ap-
proaches can be combined to improve the extrac-
tion performance. For example, by combining tree
kernels and convolution string kernels, (Zhang et
al., 2006) achieved the state of the art performance
on ACE data (ACE, 2004). Recently, “distant su-
pervision” has emerged to be a popular choice for
training relation extractors without using manually
labeled data (Mintz et al., 2009; Jiang, 2009; Chan
and Roth, 2010; Wang et al., 2011; Riedel et al.,
2010; Ji et al., 2011; Hoffmann et al., 2011; Sur-
deanu et al., 2012; Takamatsu et al., 2012; Min et
al., 2013).

Various relation extraction approaches have
been adapted to the medical domain, most of
which focus on designing heuristic rules targeted
for diagnosis and integrating the medical ontology
in the existing extraction approaches. Results of
some of these approaches are reported on the i2b2
data (Uzuner et al., 2011).

829



3 Identifying Key Medical Relations

3.1 Super Relations in Medical Domain

The first step in building a relation extraction sys-
tem for medical domain is to identify the relations
that are important for clinical decision making.

Four main clinical tasks that physicians engage
in are discussed in (Demner-Fushman and Lin,
2007). They are Therapy- select treatments to of-
fer a patient, taking consideration of effectiveness,
risk, cost and other factors (prevention is under the
general category of Therapy), Diagnosis (includ-
ing differential diagnosis based on findings and di-
agnostic test), Etiology- identify the factors that
cause the disease and Prognosis- estimate the pa-
tient’s likely course over time. These activities can
be translated into “search tasks”. For example, the
search for therapy is usually the therapy selection
given a disease.

We did an independent study regarding what
clinical questions usually ask for on a set of 5,000
Doctor Dilemma (DD) questions from the Ameri-
can College of Physicians (ACP). This set includes
questions about diseases, treatments, lab tests, and
general facts1. Our analysis shows that about 15%
of these questions ask for treatments, preventions
or contraindicated drugs for a disease or another
way around, 4% are about diagnosis tests, 6% are
about the causes of a disease, 1% are about the lo-
cations of a disease, 25% are about the symptoms
of a disease, 8% are asking for definitions, 7% are
about guidelines and the remaining 34% questions
either express no relations or some relations that
are not very popular.

Based on the analysis in (Demner-Fushman and
Lin, 2007) and our own results, we decided to fo-
cus on seven key relations in the medical domain,
which are described in Table 1. We call these re-
lations “super relations”, since they cover most
questions in the DD question set and align well
with the analysis result in (Demner-Fushman and
Lin, 2007).

3.2 Collect Training Data

This section presents how we collect training data
for each relation. The overall procedure is illus-
trated in Figure 1.

1Here’s an example of these questions and its answer:
Question: The syndrome characterized by joint pain, abdom-
inal pain, palpable purpura, and a nephritic sediment. An-
swer: Henoch-Schonlein purpura.

Large Amount of

Noisy Relation

Data

Medical Text
Relation Knowledge in

Medical Domain

Training Data for

Each Relation

For each relation, choose a
small amount of the most
representative examples

Annotation

Unlabeled Data

Labeled Data

Figure 1: Collect Training Data

Our medical corpus has incorporated a set
of medical books/journals2 and MEDLINE ab-
stracts. We also complemented these sources with
Wikipedia articles. In total, the corpus contains
80M sentences (11 gigabyte pure text).

The UMLS 2012 Release contains more than
600 relations and 50M relation instances under
around 15 categories. The RO category (RO
stands for “has Relationship Other than synony-
mous, narrower, or broader”) is the most inter-
esting one, and covers relations like “may treat”,
“has finding site”, etc. Each relation has a
certain number of Concept Unique Identifier
(CUI) pairs that are known to bear that rela-
tion. In UMLS, some relation information is
redundant. Firstly, half of these relations are
simply inverse of each other (e.g. the relation
“may treat” and “may be treated by”). Secondly,
there is a significant amount of redundancy even
among non-inverse relations (e.g. the relation
“has manifestation” and “disease has finding”).

From UMLS relations, we manually chose a
subset of them that are directly related to the su-
per relations discussed in Section 3.1. The cor-
respondences between them are given in Table 1.
One thing to note is that super relations are more
general than the UMLS relations, and one super
relation might integrate multiple UMLS relations.
Using the CUI pairs in the UMLS relation knowl-

2This is a full list of the books and journals used in
our corpus: ACP-Medical Knowledge Self-Assessment Pro-
gram, EBSCO-Dynamed, EBSCO-Quick Lessons, EBSCO-
EBCS, EBSCO-Clinical Review, Wiley-Essential Evidence
Plus: EBMG Guidelines, Wiley-Essential Evidence Topics,
Wiley-Essential Evidence Plus: EBMG Summaries, Wiley-
POEMs, Wiley-The Breast Journal, New England Journal
of Medicine, Journal Watch, NCCN-CME, NCCN-GUS,
NCCN-Compendium, NCCN-Templates, NCCN-Guidelines
for Patients, NCCN-Physician Guidelines, Merck Manual of
Diagnosis and Therapy, and UpToDate.
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Table 1: Super relations & their arguments, UMLS sources and noise% in the annotation data
Super Relations Argument 1 Argument 2 UMLS Sources Noise% in Annotation Data

treats disease treatments may treat, treats 16%
prevents disease treatments may prevent 49%

contraindicates disease treatments contraindicated drug 97%
diagnoses disease tests may diagnose 63%

causes disease causes cause of, causative agent of 66%
location of disease locations has finding site 41%

disease has primary anatomic site
symptom of disease symptoms disease has finding 66%

disease may have finding
has manifestation

has definitional manifestation

edge base, we associate each super relation with a
set of CUI pairs.

To collect the training data for each super re-
lation, we need to collect sentences that express
the relation. To achieve this, we parsed all 80M
sentences in our medical corpus, looking for the
sentences containing the terms that are associated
with the CUI pairs in the knowledge base. This
(distant supervision) approach resulted in a huge
amount of sentences that contain the desired rela-
tions, but also brought in a lot of noise in the form
of false positives. For example, we know from
the knowledge base that “antibiotic drug” may
treat “Lyme disease”. However the sentence “This
paper studies the relationship between antibiotic
drug and Lyme disease” contains both terms but
does not express the “treats” relation.

The most reliable way to clean the training data
is to ask annotators to go through the sentences
and assign the sentences with positive/negative la-
bels. However, it will not work well when we have
millions of sentences to vet. To minimize the hu-
man labeling effort, we ran a K-medoids clustering
on the sentences associated with each super rela-
tion and kept the cluster centers as the most rep-
resentative sentences for annotation. Depending
on the number of the sentences we collected for
each relation, the #clusters was chosen from 3,000
- 6,000. The similarity of two sentences is defined
as the bag-of-words similarity of the dependency
paths connecting arguments. Part of the resulting
data was manually vetted by our annotators, and
the remaining was held as unlabeled data for fur-
ther experiments.

Our relation annotation task is quite straightfor-
ward, since both arguments are given and the de-
cision is a Yes-or-No decision. The noise rate of
each relation (#sentences expressing the relation
/ #sentences) is reported in Table 1 based on the

annotation results. The noise rates differ signifi-
cantly from one relation to another. For “treats”
relation, only 16% of the sentences are false posi-
tives. For “contraindicates” relation, the noise rate
is 97%.

To grow the size of the negative training set for
each super relation, we also added a small amount
of the most representative examples (also coming
from K-medoids clustering) from each unrelated
UMLS relation to the training set as negative ex-
amples. This resulted in more than 10,000 extra
negative examples for each relation.

3.3 Parsing and Typing

The most well-known tool to detect medical en-
tity mentions is MetaMap (Aronson, 2001), which
considers all terms as entities and automatically
associates each term with a number of concepts
from UMLS CUI dictionary (Lindberg et al.,
1993) with 2.7 million distinct concepts.

The parser used in our system is Medi-
calESG, an adaptation of ESG (English Slot
Grammar) (McCord et al., 2012) to the medical
domain with extensions of medical lexicons inte-
grated in the UMLS 2012 Release. Compared to
MetaMap, MedicalESG is based on the same med-
ical lexicons, 10 times faster and produces very
similar parsing results.

We use the semantic types defined in
UMLS (Lindberg et al., 1993) to categorize
argument types. The UMLS consists of a set
of 133 subject categories, or semantic types,
that provide a consistent categorization of more
than 2M concepts represented in the UMLS
Metathesaurus. Our system assigns each relation
argument with one or more UMLS semantic types
through a two step process. Firstly, we use Med-
icalESG to process the input sentence, identify
segments of text that correspond to concepts in
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Figure 2: A Parse Tree Example

the UMLS Metathesaurus and associate each of
them with one or more UMLS CUIs (Concept
Unique Identifier). Then we do a CUI lookup in
UMLS to find the corresponding semantic types
for each CUI.

Most relation arguments are associated with
multiple semantic types. For example, the term
“tetracycline hydrochloride” has two types: “Or-
ganic Chemical” and “Antibiotic”. Sometimes,
the semantic types are noisy due to ambiguity of
terms. For example, the term “Hepatitis b” is asso-
ciated with both “Pharmacologic Substance” and
“Disease or Syndrome” based on UMLS. The rea-
son for this is that people use “Hepatitis b” to rep-
resent both “the disease of Hepatitis b” and “Hep-
atitis b vaccine”, so UMLS assigns both types to it.
This is a concern for relation extraction, since two
types bear opposite meanings. Our current strat-
egy is to integrate all associated types, and rely on
the relation detector trained with the labeled data
to decide how to weight different types based upon
the context.

Here is an illustrative example. Consider the
sentence: “Antibiotics are the standard therapy
for Lyme disease”: MedicalESG first generates
a dependency parse tree (Figure 2) to represent
grammatical relations between the words in the
sentence, and then associates the words with CUIs.
For example, “Antibiotics” is associated with CUI
“C0003232” and “Lyme disease” is associated
with two CUIs: “C0024198” and “C0717360”.
CUI lookup will assign “Antibiotics” with a se-
mantic type “Antibiotic”, and “Lyme disease” with
three semantic types: “Disease or Syndrome”,
“Pharmacologic Substance” and “Immunologic
Factor”. This sentence expresses a “treats” rela-
tion between “Antibiotics” and “Lyme disease”.

4 Relation Extraction with Manifold
Models

4.1 Motivations
Given a few labeled examples and many unlabeled
examples for a relation, we want to build a re-
lation detector leveraging both labeled and unla-
beled data. Following the manifold regularization
idea (Belkin et al., 2006), our strategy is to learn
a function that assigns a score to each example.
Scores are fit so that examples (both labeled and
unlabeled) with similar content get similar scores,
and scores of labeled examples are close to their
labels. Integration of the unlabeled data can help
solve overfitting problems when the labeled data
is not sufficient.

4.2 Features
We use 8 groups of features to represent each rela-
tion example. These features are commonly used
for relation extraction.

• (1) Semantic types of argument 1, such as
“Antibiotic”.

• (2) Semantic types of argument 2.

• (3) Syntactic features representing the depen-
dency path between two arguments, such as
“subj”, “pred”, “mod nprep” and “objprep”
(between arguments “antibiotic” and “lyme
disease”) in Figure 2.

• (4) Features modeling the incoming and out-
going links of both arguments. These fea-
tures are useful to determine if a relation goes
from argument 1 to argument 2 or vice versa.

• (5) Topic features modeling the words in
the dependency path. In the example given
in Figure 2, the dependency path contains
the following words: “be”, “standard ther-
apy” and “for”. These features as well as
the features in (6) are achieved by projecting
the words onto a 100 dimensional LSI topic
space (Deerwester et al., 1990) constructed
from our medical corpus.

• (6) Topic features modeling the words in the
whole sentence.

• (7) Bag-of-words features modeling the de-
pendency path. In (7) and (8), we only con-
sider the words that have occurred in the pos-
itive training data.
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Notations:
The input dataset X = {x1, · · · , xm} is repre-
sented as a feature-instance matrix.
The desired label vector Y = {y1, · · · , yl} repre-
sents the labels of {x1, · · · , xl}, where l ≤ m.
W is a weight matrix, where Wi,j = e−‖xi−xj‖2

models the similarity of xi and xj .
‖xi − xj‖ stands for the Euclidean distance be-
tween xi and xj in the vector space.
D is a diagonal matrix: Di,i =

∑
j Wi,j .

L = D−0.5(D −W )D−0.5 is called normalized
graph Laplacian matrix.
∆ is a user defined l × l diagonal matrix, where
∆i represents the weight of label yi.

A =

(
∆ 0
0 0

)
is an m×m matrix.

V = [y1, · · · yl, 0, · · · , 0] is a 1×m matrix.
µ is a weight scalar.
()+ represents pseudo inverse.
Algorithm:

1. Represent each example using features:
X = {x1, · · · , xm}, where xi is the ith ex-
ample.

2. Construct graph Laplacian matrix L
modeling the data manifold.

3. Construct vector V = [y1, · · · yl, 0, · · · , 0].
4. Compute projection function f for each

relation: f = (X(A+ µL)XT )+XAV T .

Figure 3: Notations and the Algorithm to Train a
Manifold Model for Relation Extraction

• (8) Bag-of-words features modeling the
whole sentence.

In relation extraction, many recent approaches
use non-linear kernels to get the similarity of two
relation examples. To classify a relation exam-
ple, a lot of dot product computations are required.
This is very time consuming and becomes a bottle-
neck in using relation extraction to facilitate clin-
ical decision making. To speed up the classifier
during the apply time, we decided to use a linear
classifier instead of non-linear classifiers.

We represent all features in a single feature
space. For example, we use a vector of 133 en-

tries (UMLS contains 133 semantic types) to rep-
resent the types of argument 1. If argument 1 is
associated with two types: “Organic Chemical”
and “Antibiotic”, we set the two corresponding en-
tries to 1 and all the other entries to 0. Similar ap-
proaches are used to represent the other features.

4.3 The Main Algorithm
The problem we want to solve is formalized as fol-
lows: given a relation dataset X = {x1, · · · , xm},
and the desired label Y = {y1, · · · , yl} for
{x1, · · · , xl}, where l ≤ m, we want to construct
a mapping function f to project any example xi to
a new space, where fT xi matches xi’s desired la-
bel yi. In addition, we also want f to preserve the
manifold topology of the dataset, such that similar
examples (both labeled and unlabeled) get simi-
lar scores. Here, the label is ‘+1’ for positive ex-
amples, and ‘-1’ for negative examples. Notations
and the main algorithm to construct f for each re-
lation are given in Figure 3.

4.4 Justification
The solution to the problem defined in Section 4.3
is given by the mapping function f to minimize
the following cost function:

C(f) =
∑
i≤l

αi(f
T xi − yi)

2 + µ
∑
i,j

Wi,j(f
T xi − fT xj)

2.

The first term of C(f) is based on labeled ex-
amples, and penalizes the difference between the
mapping result of xi and its desired label yi. αi is
a user specified parameter, representing the weight
of label yi. The second term of C(f) does not take
label information into account. It encourages the
neighborhood relationship (geometry of the man-
ifold) within X to be preserved in the mapping.
When xi and xj are similar, the corresponding
Wi,j is big. If f maps xi and xj to different posi-
tions, f will be penalized. The second term is use-
ful to bound the mapping function f and prevents
overfitting from happening. Here µ is the weight
of the second term. When µ = 0, the model dis-
regards the unlabeled data, and the data manifold
topology is not respected.

Compared to manifold regularization (Belkin
et al., 2006), we do not include the RKHS norm
term. Instead, we associate each labeled example
with an extra weight for label confidence. This
weight is particularly useful when the training
data comes from “Crowdsourcing”, where we ask
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multiple workers to complete the same task to
correct errors. In that scenario, weights can be as-
signed to labels based upon annotator agreement.

Theorem 1: f = (X(A + µL)XT )+XAV T

minimizes the cost function C(f).
Proof:
Given the input X , we want to find the optimal
mapping function f such that C(f) is minimized:

f = arg min
f

C(f).

It can be verified that∑
i≤l

αi(f
T xi − yi)

2 = fT XAXT f − 2fT XAV T + VAV T .

We can also verify that

µ
∑
i,j

(fT xi − fT xj)2Wi,j = µfT XLXT f.

So C(f) can be written as

fT XAXT f − 2fT XAV T + VAV T + µfT XLXT f.

Using the Lagrange multiplier trick to differentiate
C(f) with respect to f , we have

2XAXT f + 2µXLXT f = 2XAV T .

This implies that

X(A+ µL)XT f = XAV T .

So
f = (X(A+ µL)XT )+XAV T ,

where “+” represents pseudo inverse.

4.5 Advantages
Our algorithm offers the following advantages:

• The algorithm exploits unlabeled data, which
helps prevent “overfitting” from happening.

• The algorithm provides users with the flex-
ibility to assign different labels with differ-
ent weights. This feature is useful when the
training data comes from “crowdsourcing” or
“distant supervision”.

• Different from many approaches in this area,
our algorithm provides a closed-form solu-
tion of the result. The solution is global opti-
mal regarding the cost function C(f).

• The algorithm is computationally efficient at
the apply time (as fast as linear regressions).

5 Experiments

5.1 Cross-Validation Test
We use a cross-validation test3 with the relation
data generated in Section 3.2 to compare our ap-
proaches against the state-of-the-art approaches.
The task is to classify the examples into positive
or negative for each relation. We applied a 5-fold
cross-validation. In each round of validation, we
used 20% of the data for training and 80% for test-
ing. The F1 scores reported here are the average
of all 5 rounds. We used MedicalESG to process
the input text for all approaches.

5.1.1 Data and Parameters
This dataset includes 7 relations. We do not con-
sider the relation of “contraindicates” in this test,
since it has too few positive examples. On average,
each relation contains about 800 positive examples
and more than 13,000 negative examples. To elim-
inate the examples that are trivial to classify, we
removed the negative examples that do not bear
the valid argument types. This removed the exam-
ples that can be easily classified by a type filter,
resulting in 3,000 negatives on average per rela-
tion. For each relation, we also collected 5,000
unlabeled examples and put them into two sets:
unlabeled set 1 and 2 (2,500 examples in each set).

No parameter tuning was taken and no relation
specific heuristic rules were applied in all tests. In
all manifold models, µ = 1. In SVM implemen-
tations, the trade-off parameter between training
error and margin was set to 1 for all experiments.

5.1.2 Baseline Approaches
We compare our approaches to three state-of-the-
art approaches including SVM with convolution
tree kernels (Collins and Duffy, 2001), linear re-
gression and SVM with linear kernels (Schölkopf
and Smola, 2002). To adapt the tree kernel to med-
ical domain, we followed the approach in (Nguyen
et al., 2009) to take the syntactic structures into
consideration. We also added the argument types
as features to the tree kernel. In the tree kernel im-
plementation, we assigned the tree structure and
the vector corresponding to the argument types

3If we take the perfect entity mentions and the associated
concepts provided by i2b2 (Uzuner et al., 2011) as the input,
our system can directly apply to i2b2 relation extraction data.
However, the i2b2 data has a tough data use agreement. Our
legal team held several rounds of negotiations with the i2b2
data owner and then decided we should not use it due to the
high legal risks. We are not aware of other available medical
relation extraction datasets that fit for our evaluations.
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Table 2: F1 Scores from a Five-Fold Cross Validation Experiment
SVM SVM Linear Manifold Manifold Manifold Manifold
Tree Linear Regression Unlabeled Predicted Labels Predicted Labels Unlabeled+Predicted

Kernel Kernel with Weights without Weights Labels with Weights
treats 0.7648 0.7850 0.7267 0.8025 0.8041 0.7884 0.8085

prevents 0.2859 0.3887 0.3922 0.5502 0.5696 0.6349 0.6332
causes 0.3885 0.5024 0.5219 0.5779 0.5088 0.3978 0.5081

location of 0.6113 0.6009 0.4968 0.7275 0.7363 0.6964 0.7454
diagnoses 0.5520 0.4934 0.3202 0.6468 0.6485 0.5720 0.6954

symptom of 0.4398 0.5611 0.5984 0.6347 0.5314 0.4515 0.5968
average 0.5071 0.5553 0.5094 0.6566 0.6331 0.5902 0.6646

with equal weights. The SVM with linear kernels
and the linear regression model used the same fea-
tures as the manifold models.

5.1.3 Settings for the Manifold Models
We tested our manifold model for each relation un-
der three different settings:

(1) Manifold Unlabeled: We combined the la-
beled data and unlabeled set 1 in training. We set
αi = 1 for i ∈ [1, l].

(2) Manifold Predicted Labels: We combined
labeled data and unlabeled set 2 in training. αi =
1 for i ∈ [1, l]. Different from the previous set-
ting, we gave a label estimation to all the exam-
ples in the unlabeled set 2 based on the noise rate
(Noise%) from Table 1. The label of all unla-
beled examples was set to “+1” when 100% − 2 ·
Noise% > 0, or “-1” otherwise. Two weighting
strategies were applied:

• With Weights: We let label weight αi =
|100%− 2 ·Noise%| for all xi coming from
the unlabeled set 2. This setting represents an
empirical rule to estimate the label and con-
fidence of each unlabeled example based on
the sampling result.

• Without Weights: αi is always set to 1.

(3) Manifold UnLabeled+Predicted Labels: a
combination of setting (1) and (2). In this setting,
the data from unlabeled set 1 was used as unla-
beled data and the data from unlabeled set 2 was
used as labeled data (With Weights).

5.1.4 Results
The results are summarized in Table 2.

The tree kernel-based approach and linear re-
gression achieved similar F1 scores, while linear
SVM made a 5% improvement over them. One
thing to note is that the results from these ap-
proaches vary significantly. The reason for this is
that the labeled training data is not sufficient. So

the approaches that completely depend on the la-
beled data are likely to run into overfitting. Linear
SVM performed better than the other two, since
the large-margin constraint together with the lin-
ear model constraint can alleviate overfitting.

By integrating unlabeled data, the manifold
model under setting (1) made a 15% improvement
over linear regression model on F1 score, where
the improvement was significant across all rela-
tions.

Under setting (2), the With Weights strategy
achieved a slightly worse F1 score than the previ-
ous setting but much better result than the baseline
approaches. This tells us that estimating the label
of unlabeled examples based upon the sampling
result is one way to utilize unlabeled data and may
help improve the relation extraction results. The
results also show that the label weight is important
for this setting, since the Without Weights strategy
did not perform very well.

Compared to setting (1) and (2), setting (3)
made use of 2,500 more unlabeled examples,
and achieved the best performance among all ap-
proaches. On one hand, this result shows that
using more unlabeled data can further improve
the result. On the other hand, the insignificant
improvement over (1) and (2) strongly indicates
that how to utilize more unlabeled data to achieve
a significant improvement is non-trivial and de-
serves more attention. To what extensions the un-
labeled data can help the learning process is an
open problem. Generally speaking, when the ex-
isting data is sufficient to characterize the dataset
geometry, adding more unlabeled data will not
help (Singh et al., 2008).

We tested the tree kernel-based approach with-
out integrating the medical types as well. That re-
sulted in very poor performance: the average F1

score was below 30%. We also applied the rules
used in SEMREP (Rindflesch and Fiszman, 2003)
to this dataset. Since the relations detected by
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SEMREP rules cannot be perfectly aligned with
super relations, we cannot directly compare the re-
sults. Overall speaking, SEMREP rules are very
conservative and detect very few relations from the
same text.

5.2 Knowledge Base (KB) Construction

The UMLS Metathesaurus (Lindberg et al., 1993)
contains a large amount of manually extracted re-
lation knowledge. Such knowledge is invaluable
for people to collect training data to build new
relation detectors. One downside of using this
KB is its incompleteness. For example, it only
contains the treatments for about 8,000 diseases,
which are far from sufficient. Further, the medical
knowledge is changing extremely quickly, making
people hard to understand it, and update it in the
knowledge base in a timely manner.

To address these challenges, we constructed our
own relation KB as a complement to the UMLS
relation KB. We directly ran our relation detec-
tors (trained with all labeled and unlabeled exam-
ples) on our medical corpus to extract relations.
Then we combined the results and put them in a
new KB. The new KB covers all super relations
and stores the knowledge in the format of (rela-
tion name, argument 1, argument 2, confidence),
where the confidence is computed based on the re-
lation detector confidence score and relation pop-
ularity in the corpus. The most recent version of
our relation KB contains 3.4 million such entries.

We compared this new KB against UMLS KB
using an answer generation task on a set of 742
Doctor Dilemma questions. We first ran our rela-
tion detectors to detect the relation(s) in the ques-
tion clue involving question focus (what the ques-
tion asks for). Then we searched against both KBs
using the relation name and the non-focus argu-
ment for the missing argument. The search re-
sults were then generated as potential answers. We
used the same relations to do KB lookup, so the
results are directly comparable. Since most ques-
tions only have one correct answer, the precision
number is not very important in this experiment.

If we detect multiple relations in the question,
and the same answer is generated from more than
one relations, we sum up all those confidence
scores to make such answers more preferable.
Sometimes, we may generate too many answers
from KBs. For example, if the detected relation
is “location of” and the non-focus argument is

“skin”, then thousands of answers can be gener-
ated. In this scenario, we sort the answers based
upon the confidence scores and only consider up
to p answers for each question. In our test, we
considered three numbers for p: 20, 50 and 3,000.

From Table 3, we can see that the new KB out-
performs the most popularly-used UMLS KB at
all recall levels by a large margin. This result in-
dicates that the new KB has a much better knowl-
edge coverage. The UMLS KB is manually cre-
ated and thus more precise. In our experiment, the
UMLS KB generated fewer answers than the new
KB. For example, when up to 20 answers were
generated for each question, the UMLS KB gen-
erated around 4,700 answers for the whole ques-
tion set, while the new KB generated about 7,600
answers.

Construction of the new KB cost 16 machines
(using 4×2.8G cores per machine) 8 hours. The
reported computation time is for the whole corpus
with 11G pure text.

Table 3: Knowledge Base Comparison
Recall@20 Recall@50 Recall@3000

Our KB 135/742 182/742 301/742
UMLS KB 42/742 52/742 73/742

6 Conclusions

In this paper, we identify a list of key relations that
can facilitate clinical decision making. We also
present a new manifold model to efficiently extract
these relations from text. Our model is developed
to utilize both labeled and unlabeled examples. It
further provides users with the flexibility to take
label weight into consideration. Effectiveness of
the new model is demonstrated both theoretically
and experimentally. We apply the new model to
construct a relation knowledge base (KB), and use
it as a complement to the existing manually cre-
ated KBs.
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