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Abstract

We propose three improvements to ad-
dress the drawbacks of state-of-the-art
transition-based constituent parsers. First,
to resolve the error propagation problem
of the traditional pipeline approach, we
incorporate POS tagging into the syntac-
tic parsing process. Second, to allevi-
ate the negative influence of size differ-
ences among competing action sequences,
we align parser states during beam-search
decoding. Third, to enhance the pow-
er of parsing models, we enlarge the fea-
ture set with non-local features and semi-
supervised word cluster features. Exper-
imental results show that these modifica-
tions improve parsing performance signif-
icantly. Evaluated on the Chinese Tree-
Bank (CTB), our final performance reach-
es 86.3% (F1) when trained on CTB 5.1,
and 87.1% when trained on CTB 6.0, and
these results outperform all state-of-the-art
parsers.

1 Introduction

Constituent parsing is one of the most fundamen-
tal tasks in Natural Language Processing (NLP). It
seeks to uncover the underlying recursive phrase
structure of sentences. Most of the state-of-the-
art parsers are based on the PCFG paradigm and
chart-based decoding algorithms (Collins, 1999;
Charniak, 2000; Petrov et al., 2006). Chart-based
parsers perform exhaustive search with dynam-
ic programming, which contributes to their high
accuracy, but they also suffer from higher run-
time complexity and can only exploit simple local
structural information.

Transition-based constituent parsing (Sagae and
Lavie, 2005; Wang et al., 2006; Zhang and Clark,
2009) is an attractive alternative. It utilizes a se-

ries of deterministic shift-reduce decisions to con-
struct syntactic trees. Therefore, it runs in linear
time and can take advantage of arbitrarily complex
structural features from already constructed sub-
trees. The downside is that they only search a tiny
fraction of the whole space and are therefore com-
monly considered to be less accurate than chart-
based parsers. Recent studies (Zhu et al., 2013;
Zhang et al., 2013) show, however, that this ap-
proach can also achieve the state-of-the-art perfor-
mance with improved training procedures and the
use of additional source of information as features.

However, there is still room for improvemen-
t for these state-of-the-art transition-based con-
stituent parsers. First, POS tagging is typically
performed separately as a preliminary step, and
POS tagging errors will propagate to the parsing
process. This problem is especially severe for lan-
guages where the POS tagging accuracy is rela-
tively low, and this is the case for Chinese where
there are fewer contextual clues that can be used
to inform the tagging process and some of the
tagging decisions are actually influenced by the
syntactic structure of the sentence. This creates
a chicken and egg problem that needs to be ad-
dressed when designing a parsing model. Second,
due to the existence of unary rules in constituen-
t trees, competing candidate parses often have d-
ifferent number of actions, and this increases the
disambiguation difficulty for the parsing model.
Third, transition-based parsers have the freedom
to define arbitrarily complex structural features,
but this freedom has not fully been taken advan-
tage of and most of the present approaches only
use simple structural features.

In this paper, we address these drawbacks to
improve the transition-based constituent parsing
for Chinese. First, we integrate POS tagging in-
to the parsing process and jointly optimize these
two processes simultaneously. Because non-local
syntactic information is now available to POS tag
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determination, the accuracy of POS tagging im-
proves, and this will in turn improve parsing ac-
curacy. Second, we propose a novel state align-
ment strategy to align candidate parses with dif-
ferent action sizes during beam-search decoding.
With this strategy, parser states and their unary
extensions are put into the same beam, therefore
the parsing model could decide whether or not
to use unary actions within local decision beam-
s. Third, we take into account two groups of
complex structural features that have not been
previously used in transition-based parsing: non-
local features (Charniak and Johnson, 2005) and
semi-supervised word cluster features (Koo et al.,
2008). With the help of the non-local features,
our transition-based parsing system outperform-
s all previous single systems in Chinese. After
integrating semi-supervised word cluster features,
the parsing accuracy is further improved to 86.3%
when trained on CTB 5.1 and 87.1% when trained
on CTB 6.0, and this is the best reported perfor-
mance for Chinese.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the standard transition-
based constituent parsing approach. Section 3
describes our three improvements to standard
transition-based constituent parsing. We discuss
and analyze the experimental results in Section 4.
Section 5 discusses related work. Finally, we con-
clude this paper in Section 6.

2 Transition-based Constituent Parsing

This section describes the transition-based con-
stituent parsing model, which is the basis of Sec-
tion 3 and the baseline model in Section 4.

2.1 Transition-based Constituent Parsing
Model

A transition-based constituent parsing model is a
quadruple C = (S, T, s0, St), where S is a set of
parser states (sometimes called configurations), T
is a finite set of actions, s0 is an initialization func-
tion to map each input sentence into a unique ini-
tial state, and St ∈ S is a set of terminal states.
Each action t ∈ T is a transition function to tran-
sit a state into a new state. A parser state s ∈ S is
defined as a tuple s = (σ, β), where σ is a stack
which is maintained to hold partial subtrees that
are already constructed, and β is a queue which is
used for storing word-POS pairs that remain un-
processed. In particular, the initial state has an
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Figure 1: Two constituent trees for an example
sentence w0w1w2 with POS tags abc. The cor-
responding action sequences are given below, the
spans of each nodes are annotated and the head n-
odes are written with Bold font type.

empty stack σ and a queue β containing the entire
input sentence (word-POS pairs), and the terminal
states have an empty queue β and a stack σ con-
taining only one complete parse tree. The task of
transition-based constituent parsing is to scan the
input POS-tagged sentence from left to right and
perform a sequence of actions to transform the ini-
tial state into a terminal state.

In order to construct lexicalized constituen-
t parse trees, we define the following actions for
the action set T according to (Sagae and Lavie,
2005; Wang et al., 2006; Zhang and Clark, 2009):

• SHIFT (sh): remove the first word-POS pair
from β, and push it onto the top of σ;

• REDUCE-UNARY-X (ru-x): pop the top
subtree from σ, construct a new unary node
labeled with X for the subtree, then push the
new subtree back onto σ. The head of the
new subtree is inherited from its child;

• REDUCE-BINARY-{L/R}-X (rl/rr-x): pop
the top two subtrees from σ, combine them
into a new tree with a node labeled with X,
then push the new subtree back onto σ. The
left (L) and right (R) versions of the action
indicate whether the head of the new subtree
is inherited from its left or right child.

With these actions, our parser can process trees
with unary and binary branches easily. For exam-
ple, in Figure 1, for the input sentence w0w1w2

and its POS tags abc, our parser can construct t-
wo parse trees using action sequences given below
these trees. However, parse trees in Treebanks of-
ten contain an arbitrary number of branches. To
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Type Feature Templates

unigrams

p0tc, p0wc, p1tc, p1wc, p2tc
p2wc, p3tc, p3wc, q0wt, q1wt
q2wt, q3wt, p0lwc, p0rwc
p0uwc, p1lwc, p1rwc, p1uwc

bigrams

p0wp1w, p0wp1c, p0cp1w, p0cp1c
p0wq0w, p0wq0t, p0cq0w, p0cq0t
q0wq1w, q0wq1t, q0tq1w, q0tq1t
p1wq0w, p1wq0t, p1cq0w, p1cq0t

trigrams
p0cp1cp2c, p0wp1cp2c, p0cp1wq0t
p0cp1cp2w, p0cp1cq0t, p0wp1cq0t
p0cp1wq0t, p0cp1cq0w

Table 1: Baseline features, where pi represents the
ith subtree in the stack σ and qi denotes the ith
item in the queue β. w refers to the head lexicon,
t refers to the head POS, and c refers to the con-
stituent label. pil and pir refer to the left and right
child for a binary subtree pi, and piu refers to the
child of a unary subtree pi.

process such trees, we employ binarization and
debinarization processes described in Zhang and
Clark (2009) to transform multi-branch trees into
binary-branch trees and restore the generated bi-
nary trees back to their original forms.

2.2 Modeling, Training and Decoding

To determine which action t ∈ T should the parser
perform at a state s ∈ S, we use a linear model to
score each possible 〈s, t〉 combination:

score(s, t) = ~w · φ(s, t) =
∑

i

wifi(s, t) (1)

where φ(s, t) is the feature function used for map-
ping a state-action pair into a feature vector, and
~w is the weight vector. The score of a parser state
s is the sum of the scores for all state-action pairs
in the transition path from the initial state to the
current state. Table 1 lists the feature templates
used in our baseline parser, which is adopted from
Zhang and Clark (2009). To train the weight vec-
tor ~w, we employ the averaged perceptron algo-
rithm with early update (Collins and Roark, 2004).

We employ the beam search decoding algorith-
m (Zhang and Clark, 2009) to balance the trade-
off between accuracy and efficiency. Algorithm
1 gives details of the process. In the algorithm,
we maintain a beam (sometimes called agenda)
to keep k best states at each step. The first beam0

Algorithm 1 Beam-search Constituent Parsing

Input: A POS-tagged sentence, beam size k.
Output: A constituent parse tree.

1: beam0 ← {s0} . initialization
2: i← 0 . step index
3: loop
4: P ← {} . a priority queue
5: while beami is not empty do
6: s← POP(beami)
7: for all possible t ∈ T do
8: snew ← apply t to s
9: score snew with E.q (1)

10: insert snew into P
11: beami+1 ← k best states of P
12: sbest ← best state in beami+1

13: if sbest ∈ St then
14: return sbest

15: i← i+ 1

is initialized with the initial state s0 (line 1). At
step i, each of the k states in beami is extended
by applying all possible actions (line 5-10). For
all newly generated states, only the k best states
are preserved for beami+1 (line 11). The decod-
ing process repeats until the highest scored state in
beami+1 reaches a terminal state (line 12-14).

3 Joint POS Tagging and Parsing with
Non-local Features

To address the drawbacks of the standard
transition-based constituent parsing model (de-
scribed in Section 1), we propose a model to joint-
ly solve POS tagging and constituent parsing with
non-local features.

3.1 Joint POS Tagging and Parsing
POS tagging is often taken as a preliminary step
for transition-based constituent parsing, therefore
the accuracy of POS tagging would greatly affec-
t parsing performance. In our experiment (de-
scribed in Section 4.2), parsing accuracy would
decrease by 8.5% in F1 in Chinese parsing when
using automatically generated POS tags instead of
gold-standard ones. To tackle this issue, we inte-
grate POS tagging into the transition-based con-
stituent parsing process and jointly optimize these
two processes simultaneously. Inspired from Ha-
tori et al. (2011), we modify the sh action by as-
signing a POS tag for the word when it is shifted:

• SHIFT-X (sh-x): remove the first word from
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β, assign POS tag X to the word and push it
onto the top of σ.

With such an action, POS tagging becomes a nat-
ural part of transition-based parsing. However,
some feature templates in Table 1 become unavail-
able, because POS tags for the look-ahead words
are not specified yet under the joint framework.
For example, for the template q0wt , the POS tag
of the first word q0 in the queue β is required, but
it is not specified yet at the present state.

To overcome the lack of look-ahead POS tags,
we borrow the concept of delayed features origi-
nally developed for dependency parsing (Hatori et
al., 2011). Features that require look-ahead POS
tags are defined as delayed features. In these fea-
tures, look-ahead POS tags are taken as variables.
During parsing, delayed features are extracted and
passed from one state to the next state. When a
sh-x action is performed, the look-ahead POS
tag of some delayed features is specified, there-
fore these delayed features can be transformed in-
to normal features (by replacing variable with the
newly specified POS tag). The remaining delayed
features will be transformed similarly when their
look-ahead POS tags are specified during the fol-
lowing parsing steps.

3.2 State Alignment

Assuming an input sentence contains n words, in
order to reach a terminal state, the initial state re-
quires n sh-x actions to consume all words in β,
and n − 1 rl/rr-x actions to construct a com-
plete parse tree by consuming all the subtrees in
σ. However, ru-x is a very special action. It on-
ly constructs a new unary node for the subtree on
top of σ, but does not consume any items in σ or
β. As a result, the number of ru-x actions varies
among terminal states for the same sentence. For
example, the parse tree in Figure 1a contains no
ru-x action, while the parse tree for the same in-
put sentence in Figure 1b contains four ru-x ac-
tions. This makes the lengths of complete action
sequences very different, and the parsing model
has to disambiguate among terminal states with
varying action sizes. Zhu et al. (2013) proposed a
padding method to align terminal states containing
different number of actions. The idea is to append
some IDLE actions to terminal states with shorter
action sequence, and make sure all terminal states
contain the same number of actions (including I-
DLE actions).

Algorithm 2 Beam-search with State Alignment

Input: A word-segmented sentence, beam size k.
Output: A constituent parse tree.

1: beam0 ← {s0} . initialization
2: for i← 0 to 2n− 1 do . n is sentence length
3: P0 ← {}, P1 ← {} . two priority queues
4: while beami is not empty do
5: s← POP(beami)
6: for t ∈ {sh-x,rl-x,rr-x} do
7: snew ← apply t to s
8: score snew with E.q (1)
9: insert snew into P0

10: for all state s in P0 do
11: for all possible t ∈ {ru-x} do
12: snew ← apply t to s
13: score snew with E.q (1)
14: insert snew into P1

15: insert all states of P1 into P0

16: beami+1 ← k best states of P0

17: return the best state in beam2n−1

We propose a novel method to align states dur-
ing the parsing process instead of just aligning ter-
minal states like Zhu et al. (2013). We classify all
the actions into two groups according to whether
they consume items in σ or β. sh-x, rl-x, and
rr-x belong to consuming actions, and ru-x be-
longs to non-consuming action. Algorithm 2 gives
the details of our method. It is based on the beam
search decoding algorithm described in Algorith-
m 1. Different from Algorithm 1, Algorithm 2 is
guaranteed to perform 2n− 1 parsing steps for an
input sentence containing n words (line 2), and
divides each parsing step into two parsing phas-
es. In the first phase (line 4-9), each of the k s-
tates in beami is extended by consuming action-
s. In the second phase (line 10-14), each of the
newly generated states is further extended by non-
consuming actions. Then, all these states extend-
ed by both consuming and non-consuming action-
s are considered together (line 15), and only the
k highest-scored states are preserved for beami+1

(line 16). After these 2n − 1 parsing steps, the
highest scored state in beam2n−1 is returned as
the final result (line 17). Figure 2 shows the states
aligning process for the two trees in Figure 1. We
find that our new method aligns states with their
ru-x extensions in the same beam, therefore the
parsing model could make decisions on whether
using ru-x actions or not within local decision
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Figure 2: State alignment for the two trees in Fig-
ure 1, where s0 is the initial state, T0 and T1 are
terminal states corresponding to the two trees in
Figure 1. For clarity, we represent each state as a
rectangle with the label of top subtree in the stack
σ. We also denote sh-x with→, ru-x with ↑ or
↓, rl-x with↗, and rr-x with↘.

beams.

3.3 Feature Extension

One advantage of transition-based constituen-
t parsing is that it is capable of incorporating ar-
bitrarily complex structural features from the al-
ready constructed subtrees in σ and unprocessed
words in β. However, all the feature templates
given in Table 1 are just some simple structural
features. To further improve the performance of
our transition-based constituent parser, we con-
sider two group of complex structural features:
non-local features (Charniak and Johnson, 2005;
Collins and Koo, 2005) and semi-supervised word
cluster features (Koo et al., 2008).

Table 2 lists all the non-local features we want
to use. These features have been proved very help-
ful for constituent parsing (Charniak and Johnson,
2005; Collins and Koo, 2005). But almost all pre-
vious work considered non-local features only in
parse reranking frameworks. Instead, we attempt
to extract non-local features from newly construct-
ed subtrees during the decoding process as they
become incrementally available and score newly
generated parser states with them. One difficul-
ty is that the subtrees built by our baseline pars-
er are binary trees (only the complete parse tree
is debinarized into its original multi-branch form),
but most of the non-local features need to be ex-
tracted from their original multi-branch forms. To
resolve this conflict, we integrate the debinariza-
tion process into the parsing process, i.e., when a

(Collins and Koo, 2005) (Charniak and Johnson, 2005)
Rules CoPar HeadTree
Bigrams CoLenPar
Grandparent Rules RightBranch
Grandparent Bigrams Heavy
Lexical Bigrams Neighbours
Two-level Rules NGramTree
Two-level Bigrams Heads
Trigrams Wproj
Head-Modifiers Word

Table 2: Non-local features for constituent pars-
ing.

new subtree is constructed during parsing, we de-
binarize it immediately if it is not rooted with an
intermediate node 1. The other subtrees for sub-
sequent parsing steps will be built based on these
debinarized subtrees. After the modification, our
parser can extract non-local features incrementally
during the parsing process.

Semi-supervised word cluster features have
been successfully applied to many NLP tasks
(Miller et al., 2004; Koo et al., 2008; Zhu et
al., 2013). Here, we adopt such features for our
transition-based constituent parser. Given a large-
scale unlabeled corpus (word segmentation should
be performed), we employ the Brown cluster al-
gorithm (Liang, 2005) to cluster all words into a
binary tree. Within this binary tree, words ap-
pear as leaves, left branches are labeled with 0 and
right branches are labeled with 1. Each word can
be uniquely identified by its path from the root,
and represented as a bit-string. By using various
length of prefixes of the bit-string, we can produce
word clusters of different granularities (Miller et
al., 2004). Inspired from Koo et al. (2008), we
employ two types of word clusters: (1) taking 4
bit-string prefixes of word clusters as replacements
of POS tags, and (2) taking 8 bit-string prefixes as
replacements of words. Using these two types of
clusters, we construct semi-supervised word clus-
ter features by mimicking the template structure of
the original baseline features in Table 1.

4 Experiment

4.1 Experimental Setting
We conducted experiments on the Penn Chinese
Treebank (CTB) version 5.1 (Xue et al., 2005):
Articles 001-270 and 400-1151 were used as the
training set, Articles 301-325 were used as the
development set, and Articles 271-300 were used

1Intermediate nodes are produced by binarization process.
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as the test set. Standard corpus preparation step-
s were performed before our experiments: emp-
ty nodes and functional tags were removed, and
the unary chains were collapsed to single unary
rules as Harper and Huang (2011). To build word
clusters, we used the unlabeled Chinese Gigaword
(LDC2003T09) and conducted Chinese word seg-
mentation using a CRF-based segmenter.

We used EVALB 2 tool to evaluate parsing per-
formance. The metrics include labeled precision
(LP ), labeled recall (LR), bracketing F1 and POS
tagging accuracy. We set the beam size k to 16,
which brings a good balance between efficiency
and accuracy. We tuned the optimal number of
iterations of perceptron training algorithm on the
development set.

4.2 Pipeline Approach vs Joint POS Tagging
and Parsing

In this subsection, we conducted some experi-
ments to illustrate the drawbacks of the pipeline
approach and the advantages of our joint approach.
We built three parsing systems: Pipeline-Gold
system is our baseline parser (described in Sec-
tion 2) taking gold-standard POS tags as input;
Pipeline system is our baseline parser taking as
input POS tags automatically assigned by Stan-
ford POS Tagger 3; and JointParsing system is
our joint POS tagging and transition-based pars-
ing system described in subsection 3.1. We trained
these three systems on the training set and evalu-
ated them on the development set. The second,
third and forth rows in Table 3 show the parsing
performances. We can see that the parsing F1 de-
creased by about 8.5 percentage points in F1 score
when using automatically assigned POS tags in-
stead of gold-standard ones, and this shows that
the pipeline approach is greatly affected by the
quality of its preliminary POS tagging step. Af-
ter integrating the POS tagging step into the pars-
ing process, our JointParsing system improved the
POS tagging accuracy to 94.8% and parsing F1

to 85.8%, which are significantly better than the
Pipeline system. Therefore, the joint parsing ap-
proach is much more effective for transition-based
constituent parsing.

4.3 State Alignment Evaluation
We built two new systems to verify the effective-
ness of our state alignment strategy proposed in

2http://nlp.cs.nyu.edu/evalb/
3http://nlp.stanford.edu/downloads/tagger.shtml

System LP LR F1 POS

Pipeline-Gold 92.2 92.5 92.4 100
Pipeline 83.9 83.8 83.8 93.0
JointParsing 85.1 86.6 85.8 94.8
Padding 85.4 86.4 85.9 94.8
StateAlign 86.9 85.9 86.4 95.2
Nonlocal 88.0 86.5 87.2 95.3
Cluster 89.0 88.3 88.7 96.3
Nonlocal&Cluster 89.4 88.7 89.1 96.2

Table 3: Parsing performance on Chinese devel-
opment set.

Subsection 3.2. The first system Padding extend-
s our JointParsing system by aligning terminal s-
tates with the padding strategy proposed in Zhu et
al. (2013), and the second system StateAlign ex-
tends the JointParsing system with our state align-
ment strategy. The fifth and sixth rows of Table 3
give the performances of these two systems. Com-
pared with the JointParsing system which does not
employ any alignment strategy, the Padding sys-
tem only achieved a slight improvement on pars-
ing F1 score, but no improvement on POS tag-
ging accuracy. In contrast, our StateAlign system
achieved an improvement of 0.6% on parsing F1 s-
core and 0.4% on POS tagging accuracy. All these
results show us that our state alignment strategy is
more helpful for beam-search decoding.

4.4 Feature Extension Evaluation

In this subsection, we examined the usefulness
of the new non-local features and the semi-
supervised word cluster features described in Sub-
section 3.3. We built three new parsing system-
s based on the StateAlign system: Nonlocal sys-
tem extends the feature set of StateAlign system
with non-local features, Cluster system extends
the feature set with semi-supervised word cluster
features, and Nonlocal&Cluster system extend the
feature set with both groups of features. Parsing
performances of the three systems are shown in
the last three rows of Table 3. Compared with the
StateAlign system which takes only the baseline
features, the non-local features improved parsing
F1 by 0.8%, while the semi-supervised word clus-
ter features result in an improvement of 2.3% in
parsing F1 and an 1.1% improvement on POS tag-
ging accuracy. When integrating both groups of
features, the final parsing F1 reaches 89.1%. Al-
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Type System LP LR F1 POS

Our Systems

Pipeline 80.0 80.3 80.1 94.0
JointParsing 82.4 83.0 82.7 95.1
Padding 82.7 83.6 83.2 95.1
StateAlign 84.2 82.9 83.6 95.5
Nonlocal 85.6 84.2 84.9 95.9
Cluster 85.2 84.5 84.9 95.8
Nonlocal&Cluster 86.6 85.9 86.3 96.0

Single Systems
Petrov and Klein (2007) 81.9 84.8 83.3 -
Zhu et al. (2013) 82.1 84.3 83.2 -

Reranking Systems
Charniak and Johnson (2005)∗ 80.8 83.8 82.3 -
Wang and Zong (2011) - - 85.7 -

Semi-supervised Systems Zhu et al. (2013) 84.4 86.8 85.6 -

Table 4: Parsing performance on Chinese test set. ∗Huang (2009) adapted the parse reranker to CTB5.

l these results show that both the non-local fea-
tures and the semi-supervised features are helpful
for our transition-based constituent parser.

4.5 Final Results on Test Set

In this subsection, we present the performances of
our systems on the CTB test set. The correspond-
ing results are listed in the top rows of Table 4.
We can see that all these systems maintain a simi-
lar relative relationship as they do on the develop-
ment set, which shows the stability of our systems.

To further illustrate the effectiveness of our
systems, we compare them with some state-of-
the-art systems. We group parsing systems into
three categories: single systems, reranking sys-
tems and semi-supervised systems. Our Pipeline,
JointParsing, Padding, StateAlign and Nonlocal
systems belong to the category of single system-
s, because they don’t utilize any extra process-
ing steps or resources. Our Cluster and Nonlo-
cal&Cluster systems belong to semi-supervised
systems, because both of them have employed
semi-supervised word cluster features. The pars-
ing performances of state-of-the-art systems are
shown in the bottom rows of Table 4. We can see
that the final F1 of our Nonlocal system reached
84.9%, and it outperforms state-of-the-art single
systems by more than 1.6%. As far as we know,
this is the best result on the CTB test set acquired
by single systems. Our Nonlocal&Cluster sys-
tem further improved the parsing F1 to 86.3%,
and it outperforms all reranking systems and semi-
supervised systems. To our knowledge, this is the

System F1

Huang and Harper (2009) 85.2
Nonlocal&Cluster 87.1

Table 5: Parsing performance based on CTB 6.

best reported performance in Chinese parsing.
All previous experiments were conducted on

CTB 5. To check whether more labeled data can
further improve our parsing system, we evaluat-
ed our Nonlocal&Cluster system on the Chinese
TreeBank version 6.0 (CTB6), which is a super
set of CTB5 and contains more annotated data.
We used the same development set and test set
as CTB5, and took all the remaining data as the
new training set. Table 5 shows the parsing per-
formances on CTB6. Our Nonlocal&Cluster sys-
tem improved the final F1 to 87.1%, which is 1.9%
better than the state-of-the-art performance on CT-
B6 (Huang and Harper, 2009). Compared with it-
s performance on CTB5 (in Table 4), our Nonlo-
cal&Cluster system also got 0.8% improvemen-
t. All these results show that our approach can
become more powerful when given more labeled
training data.

4.6 Error Analysis
To better understand the linguistic behavior of
our systems, we employed the berkeley-parser-
analyser tool 4 (Kummerfeld et al., 2013) to cat-
egorize the errors. Table 6 presents the average

4http://code.google.com/p/berkeley-parser-analyser/
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System NP
Int. Unary 1-Word

Span Coord Mod.
Attach

Verb
Args

Diff
Label

Clause
Attach

Noun
Edge

Worst 1.75 0.74 0.44 0.49 0.39 0.37 0.29 0.15 0.14
Pipeline
JointParsing
Padding
StateAlign
Nonlocal
Cluster
Nonlocal&Cluster
Best 1.33 0.42 0.28 0.29 0.19 0.21 0.17 0.07 0.09

Table 6: Parse errors on Chinese test set. The shaded area of each bar indicates average number of that
error type per sentence, and the completely full bar indicates the number in the Worst row.

System VV→NN NN→VV DEC→DEG JJ→NN NR→NN DEG→DEC NN→NR NN→JJ

Worst 0.26 0.18 0.15 0.09 0.08 0.07 0.06 0.05
Pipeline
JointParsing
Padding
StateAlign
Nonlocal
Cluster
Nonlocal&Cluster
Best 0.14 0.10 0.03 0.07 0.05 0.03 0.03 0.02

Table 7: POS tagging error patterns on Chinese test set. For each error pattern, the left hand side tag is
the gold-standard tag, and the right hand side is the wrongly assigned tag.

number of errors for each error type by our pars-
ing systems. We can see that almost all the Worst
numbers are produced by the Pipeline system. The
JointParsing system reduced errors of all types
produced by the Pipeline system except for the
coordination error type (Coord). The StateAlign
system corrected a lot of the NP-internal errors
(NP Int.). The Nonlocal system and the Cluster
system produced similar numbers of errors for al-
l error types. The Nonlocal&Cluster system pro-
duced the Best numbers for all the error types. NP-
internal errors are still the most frequent error type
in our parsing systems.

Table 7 presents the statistics of frequent POS
tagging error patterns. We can see that JointPars-
ing system disambiguates {VV, NN} and {DEC,
DEG} better than Pipeline system, but cannot deal
with the NN→JJ pattern very well. StateAlign
system got better results in most of the patterns,
but cannot disambiguate {NR, NN} well. Non-
local&Cluster system got the best results in dis-
ambiguating the most ambiguous POS tag pairs of
{VV, NN}, {DEC, DEG}, {JJ, NN} and {NN, N-
R}.

5 Related Work

Joint POS tagging with parsing is not a new idea.
In PCFG-based parsing (Collins, 1999; Charniak,
2000; Petrov et al., 2006), POS tagging is consid-
ered as a natural step of parsing by employing lex-
ical rules. For transition-based parsing, Hatori et
al. (2011) proposed to integrate POS tagging with
dependency parsing. Our joint approach can be
seen as an adaption of Hatori et al. (2011)’s ap-
proach for constituent parsing. Zhang et al. (2013)
proposed a transition-based constituent parser to
process an input sentence from the character level.
However, manual annotation of the word-internal
structures need to be added to the original Tree-
bank in order to train such a parser.

Non-local features have been successfully used
for constituent parsing (Charniak and Johnson,
2005; Collins and Koo, 2005; Huang, 2008).
However, almost all of the previous work use non-
local features at the parse reranking stage. The
reason is that the single-stage chart-based parser
cannot use non-local structural features. In con-
trast, the transition-based parser can use arbitrari-
ly complex structural features. Therefore, we can
concisely utilize non-local features in a single-
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stage parsing system.

6 Conclusion

In this paper, we proposed three improvements to
transition-based constituent parsing for Chinese.
First, we incorporated POS tagging into transition-
based constituent parsing to resolve the error prop-
agation problem of the pipeline approach. Second,
we proposed a state alignment strategy to align
competing decision sequences that have different
number of actions. Finally, we enhanced our pars-
ing model by enlarging the feature set with non-
local features and semi-supervised word cluster
features. Experimental results show that all these
methods improved the parsing performance sub-
stantially, and the final performance of our parsing
system outperformed all state-of-the-art systems.
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