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Abstract

This paper proposes a simple yet
effective framework for semi-supervised
dependency parsing at entire tree level,
referred to asambiguity-aware ensemble
training. Instead of only using 1-
best parse trees in previous work, our
core idea is to utilize parse forest
(ambiguous labelings) to combine
multiple 1-best parse trees generated
from diverse parsers on unlabeled data.
With a conditional random field based
probabilistic dependency parser, our
training objective is to maximize mixed
likelihood of labeled data and auto-parsed
unlabeled data with ambiguous labelings.
This framework offers two promising
advantages. 1) ambiguity encoded in
parse forests compromises noise in 1-best
parse trees. During training, the parser is
aware of these ambiguous structures, and
has the flexibility to distribute probability
mass to its preferred parse trees as long
as the likelihood improves. 2) diverse
syntactic structures produced by different
parsers can be naturally compiled into
forest, offering complementary strength
to our single-view parser. Experimental
results on benchmark data show that
our method significantly outperforms
the baseline supervised parser and
other entire-tree based semi-supervised
methods, such as self-training, co-training
and tri-training.

1 Introduction

Supervised dependency parsing has made great
progress during the past decade. However, it
is very difficult to further improve performance
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of supervised parsers. For example, Koo and
Collins (2010) and Zhang and McDonald (2012)
show that incorporating higher-order features into
a graph-based parser only leads to modest increase
in parsing accuracy. In contrast, semi-supervised
approaches, which can make use of large-scale
unlabeled data, have attracted more and more
interest. Previously, unlabeled data is explored to
derive useful local-context features such as word
clusters (Koo et al., 2008), subtree frequencies
(Chen et al., 2009; Chen et al., 2013), and word
co-occurrence counts (Zhou et al., 2011; Bansal
and Klein, 2011). A few effective learning meth-
ods are also proposed for dependency parsing to
implicitly utilize distributions on unlabeled data
(Smith and Eisner, 2007; Wang et al., 2008;
Suzuki et al., 2009). All above work leads to
significant improvement on parsing accuracy.

Another line of research is to pick up some
high-quality auto-parsed training instances from
unlabeled data using bootstrapping methods, such
as self-training (Yarowsky, 1995), co-training
(Blum and Mitchell, 1998), and tri-training (Zhou
and Li, 2005). However, these methods gain
limited success in dependency parsing. Although
working well on constituent parsing (McClosky et
al., 2006; Huang and Harper, 2009), self-training
is shown unsuccessful for dependency parsing
(Spreyer and Kuhn, 2009). The reason may be that
dependency parsing models are prone to amplify
previous mistakes during training on self-parsed
unlabeled data. Sagae and Tsujii (2007) apply
a variant of co-training to dependency parsing
and report positive results on out-of-domain text.
Søgaard and Rishøj (2010) combine tri-training
and parser ensemble to boost parsing accuracy.
Both work employs two parsers to process the
unlabeled data, and only select as extra training
data sentences on which the 1-best parse trees of
the two parsers are identical. In this way, the auto-
parsed unlabeled data becomes more reliable.
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w0 He1 saw2 a3 deer4 riding5 a6 bicycle7 in8 the9 park10 .11

Figure 1: An example sentence with an ambiguous parse forest.

However, one obvious drawback of these methods
is that they are unable to exploit unlabeled data
with divergent outputs from different parsers.
Our experiments show that unlabeled data with
identical outputs from different parsers tends to be
short (18.25 words per sentence on average), and
only has a small proportion of 40% (see Table 6).
More importantly, we believe that unlabeled data
with divergent outputs is equally (if not more)
useful. Intuitively, an unlabeled sentence with
divergent outputs should contain some ambiguous
syntactic structures (such as preposition phrase
attachment) that are very hard to resolve and
lead to the disagreement of different parsers.
Such sentences can provide more discriminative
instances for training which may be unavailable
in labeled data.

To solve above issues, this paper proposes
a more general and effective framework for
semi-supervised dependency parsing, referred to
asambiguity-aware ensemble training. Different
from traditional self/co/tri-training which only use
1-best parse trees on unlabeled data, our approach
adopts ambiguous labelings, represented by parse
forest, as gold-standard for unlabeled sentences.
Figure 1 shows an example sentence with an
ambiguous parse forest. The forest is formed by
two parse trees, respectively shown at the upper
and lower sides of the sentence. The differences
between the two parse trees are highlighted
using dashed arcs. The upper tree take“deer”
as the subject of“riding” , whereas the lower
one indicates that“he” rides the bicycle. The
other difference is where the preposition phrase
(PP) “in the park” should be attached, which
is also known as the PP attachment problem, a

notorious challenge for parsing. Reserving such
uncertainty has three potential advantages. First,
noise in unlabeled data is largely alleviated, since
parse forest encodes only a few highly possible
parse trees with high oracle score. Please note
that the parse forest in Figure 1 contains four
parse trees after combination of the two different
choices. Second, the parser is able to learn useful
features from the unambiguous parts of the parse
forest. Finally, with sufficient unlabeled data, it is
possible that the parser can learn to resolve such
uncertainty by biasing to more reasonable parse
trees.

To construct parse forest on unlabeled data, we
employ three supervised parsers based on different
paradigms, including our baseline graph-based
dependency parser, a transition-based dependency
parser (Zhang and Nivre, 2011), and a generative
constituent parser (Petrov and Klein, 2007). The
1-best parse trees of these three parsers are aggre-
gated in different ways. Evaluation on labeled data
shows the oracle accuracy of parse forest is much
higher than that of 1-best outputs of single parsers
(see Table 3). Finally, using a conditional random
field (CRF) based probabilistic parser, we train
a better model by maximizing mixed likelihood
of labeled data and auto-parsed unlabeled data
with ambiguous labelings. Experimental results
on both English and Chinese datasets demon-
strate that the proposed ambiguity-aware ensem-
ble training outperforms other entire-tree based
methods such as self/co/tri-training. In summary,
we make following contributions.

1. We propose a generalized ambiguity-aware
ensemble training framework for semi-
supervised dependency parsing, which can
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make better use of unlabeled data, especially
when parsers from different views produce
divergent syntactic structures.

2. We first employ a generative constituent pars-
er for semi-supervised dependency parsing.
Experiments show that the constituent parser
is very helpful since it produces more diver-
gent structures for our semi-supervised parser
than discriminative dependency parsers.

3. We build the first state-of-the-art CRF-based
dependency parser. Using the probabilistic
parser, we benchmark and conduct systemat-
ic comparisons among ours and all previous
bootstrapping methods, including self/co/tri-
training.

2 Supervised Dependency Parsing

Given an input sentencex = w0w1...wn, the goal
of dependency parsing is to build a dependency
tree as depicted in Figure 1, denoted byd =
{(h,m) : 0 ≤ h ≤ n, 0 < m ≤ n}, where(h,m)
indicates a directed arc from thehead word wh

to the modifier wm, andw0 is an artificial node
linking to the root of the sentence.

In parsing community, two mainstream meth-
ods tackle the dependency parsing problem from
different perspectives but achieve comparable ac-
curacy on a variety of languages. The graph-
based method views the problem as finding an
optimal tree from a fully-connected directed graph
(McDonald et al., 2005; McDonald and Pereira,
2006; Carreras, 2007; Koo and Collins, 2010),
while the transition-based method tries to find a
highest-scoring transition sequence that leads to
a legal dependency tree (Yamada and Matsumoto,
2003; Nivre, 2003; Zhang and Nivre, 2011).

2.1 Graph-based Dependency Parser
(GParser)

In this work, we adopt the graph-based paradigm
because it allows us to naturally derive conditional
probability of a dependency treed given a sen-
tencex, which is required to compute likelihood
of both labeled and unlabeled data. Under the
graph-based model, the score of a dependency tree
is factored into the scores of small subtreesp.

Score(x,d;w) = w · f(x,d)

=
∑
p⊆d

Score(x,p;w)

h m

(a) single dependency

h s

(b) adjacent sibling

m

Figure 2: Two types of scoring subtrees in our
second-order graph-based parsers.

Dependency featuresfdep(x, h, m):
wh, wm, th, tm, th±1, tm±1, tb, dir(h, m), dist(h, m)

Sibling featuresfsib(x, h, m, s):
wh, ws, wm, th, tm, ts, th±1, tm±1, ts±1

dir(h, m), dist(h, m)

Table 1: Brief illustration of the syntactic features.
ti denotes the POS tag ofwi. b is an index
betweenh andm. dir(i, j) anddist(i, j) denote
the direction and distance of the dependency(i, j).

We adopt the second-order graph-based depen-
dency parsing model of McDonald and Pereira
(2006) as our core parser, which incorporates
features from the two kinds of subtrees in Fig. 2.1

Then the score of a dependency tree is:

Score(x,d;w) =
∑

{(h,m)}⊆d

wdep · fdep(x, h,m)

+
∑

{(h,s),(h,m)}⊆d

wsib · fsib(x, h, s,m)

where fdep(x, h,m) and fsib(x, h, s,m) are the
feature vectors of the two subtree in Fig. 2;
wdep/sib are feature weight vectors; the dot prod-
uct gives scores contributed by corresponding sub-
trees.

For syntactic features, we adopt those of Bohnet
(2010) which include two categories correspond-
ing to the two types of scoring subtrees in Fig. 2.
We summarize the atomic features used in each
feature category in Table 1. These atomic features
are concatenated in different combinations to com-
pose rich feature sets. Please refer to Table 4 of
Bohnet (2010) for the complete feature list.

2.2 CRF-based GParser

Previous work on graph-based dependency pars-
ing mostly adopts linear models and perceptron
based training procedures, which lack probabilis-
tic explanations of dependency trees and do not
need to compute likelihood of labeled training

1Higher-order models of Carreras (2007) and Koo and
Collins (2010) can achieve higher accuracy, but has much
higher time cost (O(n4)). Our approach is applicable to these
higher-order models, which we leave for future work.
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data. Instead, we build a log-linear CRF-based
dependency parser, which is similar to the CRF-
based constituent parser of Finkel et al. (2008).
Assuming the feature weightsw are known, the
probability of a dependency treed given an input
sentencex is defined as:

p(d|x;w) =
exp{Score(x,d;w)}

Z(x;w)

Z(x;w) =
∑

d′∈Y(x)

exp{Score(x,d′;w)} (1)

whereZ(x) is the normalization factor andY(x)
is the set of all legal dependency trees forx.

Suppose the labeled training data is
D = {(xi,di)}Ni=1. Then the log likelihood
of D is:

L(D;w) =
N∑

i=1

log p(di|xi;w)

The training objective is to maximize the log
likelihood of the training dataL(D). The partial
derivative with respect to the feature weightsw is:

∂L(D;w)
∂w

=
N∑

i=1

 f(xi,di) −∑
d′∈Y(xi)

p(d′|xi;w)f(xi,d′)


(2)

where the first term is the empirical counts and
the second term is the model expectations. Since
Y(xi) contains exponentially many dependency
trees, direct calculation of the second term is
prohibitive. Instead, we can use the classic inside-
outside algorithm to efficiently compute the model
expectations withinO(n3) time complexity, where
n is the input sentence length.

3 Ambiguity-aware Ensemble Training

In standard entire-tree based semi-supervised
methods such as self/co/tri-training, automatically
parsed unlabeled sentences are used as additional
training data, and noisy 1-best parse trees are
considered as gold-standard. To alleviate the
noise, the tri-training method only uses unlabeled
data on which multiple parsers from different
views produce identical parse trees. However,
unlabeled data with divergent syntactic structures
should be more useful. Intuitively, if several
parsers disagree on an unlabeled sentence, it
implies that the unlabeled sentence contains
some difficult syntactic phenomena which are

not sufficiently covered in manually labeled
data. Therefore, exploiting such unlabeled data
may introduce more discriminative syntactic
knowledge, largely compensating labeled training
data.

To address above issues, we proposeambiguity-
aware ensemble training, which can be interpreted
as ageneralized tri-trainingframework. The key
idea is the use ofambiguous labelingsfor the
purpose of aggregating multiple 1-best parse trees
produced by several diverse parsers. Here, “am-
biguous labelings” mean an unlabeled sentence
may have multiple parse trees as gold-standard
reference, represented by parse forest (see Figure
1). The training procedure aims to maximize
mixed likelihood of both manually labeled and
auto-parsed unlabeled data with ambiguous label-
ings. For an unlabeled instance, the model is
updated to maximize the probability of its parse
forest, instead of a single parse tree in traditional
tri-training. In other words, the model is free to
distribute probability mass among the trees in the
parse forest to its liking, as long as the likelihood
improves (Täckström et al., 2013).

3.1 Likelihood of the Unlabeled Data

The auto-parsed unlabeled data with ambiguous
labelings is denoted asD′ = {(ui,Vi)}Mi=1, where
ui is an unlabeled sentence, andVi is the corre-
sponding parse forest. Then the log likelihood of
D′ is:

L(D′;w) =
M∑
i=1

log

 ∑
d′∈Vi

p(d′|ui;w)


wherep(d′|ui;w) is the conditional probability of
d′ givenui, as defined in Eq. (1). For an unlabeled
sentenceui, the probability of its parse forestVi is
the summation of the probabilities of all the parse
trees contained in the forest.

Then we can derive the partial derivative of the
log likelihood with respect tow:

∂L(D′;w)
∂w

=
M∑
i=1


∑

d′∈Vi

p̃(d′|ui,Vi;w)f(ui,d
′)

−
∑

d′∈Y(ui)

p(d′|ui;w)f(ui,d
′)


(3)

wherep̃(d′|ui,Vi;w) is the probability ofd′ un-
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der the space constrained by the parse forestVi.

p̃(d′|ui,Vi;w) =
exp{Score(ui,d′;w)}

Z(ui,Vi;w)

Z(ui,Vi;w) =
∑
d′∈Vi

exp{Score(ui,d′;w)}

The second term in Eq. (3) is the same with the
second term in Eq. (2). The first term in Eq. (3)
can be efficiently computed by running the inside-
outside algorithm in the constrained search space
Vi.

3.2 Stochastic Gradient Descent (SGD)
Training

We apply L2-norm regularized SGD training to
iteratively learn feature weightsw for our CRF-
based baseline and semi-supervised parsers. We
follow the implementation in CRFsuite.2 At each
step, the algorithm approximates a gradient with
a small subset of the training examples, and then
updates the feature weights. Finkel et al. (2008)
show that SGD achieves optimal test performance
with far fewer iterations than other optimization
routines such as L-BFGS. Moreover, it is very
convenient to parallel SGD since computations
among examples in the same batch is mutually
independent.

Training with the combined labeled and unla-
beled data, the objective is to maximize the mixed
likelihood:

L(D;D′) = L(D) + L(D′)

SinceD′ contains much more instances thanD
(1.7M vs. 40K for English, and 4M vs. 16K for
Chinese), it is likely that the unlabeled data may
overwhelm the labeled data during SGD training.
Therefore, we propose a simple corpus-weighting
strategy, as shown in Algorithm 1, whereDb

i,k

is the subset of training data used inkth update
and b is the batch size;ηk is the update step,
which is adjusted following the simulated anneal-
ing procedure (Finkel et al., 2008). The idea is
to use a fraction of training data (Di) at each
iteration, and do corpus weighting by randomly
sampling labeled and unlabeled instances in a
certain proportion (N1 vs. M1).

Once the feature weightsw are learnt, we can

2
http://www.chokkan.org/software/crfsuite/

Algorithm 1 SGD training with mixed labeled and
unlabeled data.
1: Input: Labeled dataD = {(xi,di)}Ni=1, and unlabeled

dataD′ = {(ui,Vi)}Mj=1; Parameters:I , N1, M1, b
2: Output: w
3: Initialization: w(0) = 0, k = 0;
4: for i = 1 to I do {iterations}
5: Randomly selectN1 instances fromD and M1

instances fromD′ to compose a new datasetDi, and
shuffle it.

6: TraverseDi: a small batchDb
i,k ⊆ Di at one step.

7: wk+1 = wk + ηk
1
b
∇L(Db

i,k;wk)
8: k = k + 1
9: end for

parse the test data to find the optimal parse tree.

d∗ = arg max
d′∈Y(x)

p(d′|x;w)

= arg max
d′∈Y(x)

Score(x,d′;w)

This can be done with the Viterbi decoding algo-
rithm described in McDonald and Pereira (2006)
in O(n3) parsing time.

3.3 Forest Construction with Diverse Parsers

To construct parse forests for unlabeled data, we
employ three diverse parsers, i.e., our baseline
GParser, a transition-based parser (ZPar3) (Zhang
and Nivre, 2011), and a generative constituen-
t parser (Berkeley Parser4) (Petrov and Klein,
2007). These three parsers are trained on labeled
data and then used to parse each unlabeled sen-
tence. We aggregate the three parsers’ outputs on
unlabeled data in different ways and evaluate the
effectiveness through experiments.

4 Experiments and Analysis

To verify the effectiveness of our proposed ap-
proach, we conduct experiments on Penn Tree-
bank (PTB) and Penn Chinese Treebank 5.1 (CT-
B5). For English, we follow the popular practice
to split data into training (sections 2-21), devel-
opment (section 22), and test (section 23). For
CTB5, we adopt the data split of (Duan et al.,
2007). We convert original bracketed structures
into dependency structures using Penn2Malt with
its default head-finding rules.

For unlabeled data, we follow Chen et al. (2013)
and use the BLLIP WSJ corpus (Charniak et al.,
2000) for English and Xinhua portion of Chinese

3
http://people.sutd.edu.sg/ ˜ yue_zhang/doc/

4
https://code.google.com/p/berkeleyparser/
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Train Dev Test Unlabeled
PTB 39,832 1,700 2,416 1.7M

CTB5 16,091 803 1,910 4M

Table 2: Data sets (in sentence number).

Gigaword Version 2.0 (LDC2009T14) (Huang,
2009) for Chinese. We build a CRF-based bigram
part-of-speech (POS) tagger with the features de-
scribed in (Li et al., 2012), and produce POS tags
for all train/development/test/unlabeled sets (10-
way jackknifing for training sets). The tagging ac-
curacy on test sets is97.3% on English and94.0%
on Chinese. Table 2 shows the data statistics.

We measure parsing performance using the s-
tandard unlabeled attachment score (UAS), ex-
cluding punctuation marks. For significance test,
we adopt Dan Bikel’s randomized parsing evalua-
tion comparator (Noreen, 1989).5

4.1 Parameter Setting

When training our CRF-based parsers with SGD,
we use the batch sizeb = 100 for all experiments.
We run SGD forI = 100 iterations and choose
the model that performs best on development
data. For the semi-supervised parsers trained with
Algorithm 1, we useN1 = 20K and M1 = 50K
for English, andN1 = 15K and M1 = 50K for
Chinese, based on a few preliminary experiments.
To accelerate the training, we adopt parallelized
implementation of SGD and employ 20 threads for
each run. For semi-supervised cases, one iteration
takes about 2 hours on an IBM server having 2.0
GHz Intel Xeon CPUs and 72G memory.

Default parameter settings are used for training
ZPar and Berkeley Parser. We run ZPar for 50
iterations, and choose the model that achieves
highest accuracy on the development data. For
Berkeley Parser, we use the model after 5 split-
merge iterations to avoid over-fitting the train-
ing data according to the manual. The phrase-
structure outputs of Berkeley Parser are converted
into dependency structures using the same head-
finding rules.

4.2 Methodology Study on Development Data

Using three supervised parsers, we have many
options to construct parse forest on unlabeled data.
To examine the effect of different ways for forest
construction, we conduct extensive methodology
study on development data. Table 3 presents the

5
http://www.cis.upenn.edu/ ˜ dbikel/software.html

results. We divide the systems into three types: 1)
supervised single parsers; 2) CRF-based GParser
with conventional self/co/tri-training; 3) CRF-
based GParser with our approach. For the latter
two cases, we also present the oracle accuracy and
averaged head number per word (“Head/Word”)
of parse forest when applying different ways to
construct forests on development datasets.

The first major row presents performance of
the three supervised parsers. We can see that the
three parsers achieve comparable performance on
English, but the performance of ZPar is largely
inferior on Chinese.

The second major rowshows the results when
we use single 1-best parse trees on unlabeled
data. When using the outputs of GParser itself
(“Unlabeled← G”), the experiment reproduces
traditional self-training. The results on both En-
glish and Chinese re-confirm thatself-training
may not work for dependency parsing, which
is consistent with previous studies (Spreyer and
Kuhn, 2009). The reason may be that dependency
parsers are prone to amplify previous mistakes on
unlabeled data during training.

The next two experiments in the second ma-
jor row reimplementco-training, where another
parser’s 1-best results are projected into unlabeled
data to help the core parser. Using unlabeled
data with the results of ZPar (“Unlabeled← Z”)
significantly outperforms the baseline GParser by
0.30% (93.15-82.85) on English. However, the
improvement on Chinese is not significant. Using
unlabeled data with the results of Berkeley Parser
(“Unlabeled← B”) significantly improves parsing
accuracy by 0.55% (93.40-92.85) on English and
1.06% (83.34-82.28) on Chinese. We believe the
reason is that being a generative model designed
for constituent parsing, Berkeley Parser is more
different from discriminative dependency parsers,
and therefore can provide more divergent syntactic
structures. This kind of syntactic divergence is
helpful because it can provide complementary
knowledge from a different perspective. Surdeanu
and Manning (2010) also show that the diversity of
parsers is important for performance improvement
when integrating different parsers in the super-
vised track. Therefore, we can conclude that
co-training helps dependency parsing, especially
when using a more divergent parser.

The last experiment in the second major row
is known astri-training, which only uses unla-

462



English Chinese
UAS Oracle Head/Word UAS Oracle Head/Word

GParser 92.85
— —

82.28
— —Supervised ZPar 92.50 81.04

Berkeley 92.70 82.46
Unlabeled← G (self-train) 92.88 92.85

1.000

82.14 82.28

1.000Semi-supervised GParserUnlabeled← Z (co-train) 93.15† 92.50 82.54 81.04
with Single 1-best Trees Unlabeled← B (co-train) 93.40† 92.70 83.34† 82.46

Unlabeled← B=Z (tri-train) 93.50† 97.52 83.10† 95.05
Unlabeled← Z+G 93.18† 94.97 1.053 82.78 86.66 1.136
Unlabeled← B+G 93.35† 96.37 1.080 83.24† 89.72 1.188

Semi-supervised GParserUnlabeled← B+Z 93.78†‡ 96.18 1.082 83.86†‡ 89.54 1.199
Ambiguity-aware EnsembleUnlabeled← B+(Z∩G) 93.77†‡ 95.60 1.050 84.26†‡ 87.76 1.106

Unlabeled← B+Z+G 93.50† 96.95 1.112 83.30† 91.50 1.281

Table 3: Main results on development data. G is short for GParser, Z for ZPar, and B for Berkeley Parser.
† means the corresponding parser significantly outperforms supervised parsers, and‡ means the result
significantly outperforms co/tri-training at confidence level of p < 0.01.

beled sentences on which Berkeley Parser and
ZPar produce identical outputs (“Unlabeled←
B=Z”). We can see that with the verification of
two views, the oracle accuracy is much higher
than using single parsers (97.52% vs. 92.85% on
English, and 95.06% vs. 82.46% on Chinese).
Although using less unlabeled sentences (0.7M
for English and 1.2M for Chinese),tri-training
achieves comparable performance to co-training
(slightly better on English and slightly worse on
Chinese).

The third major row shows the results of
the semi-supervised GParser with our proposed
approach. We experiment with different com-
binations of the 1-best parse trees of the three
supervised parsers. The first three experiments
combine 1-best outputs of two parsers to compose
parse forest on unlabeled data. “Unlabeled←
B+(Z∩G)” means that the parse forest is initialized
with the Berkeley parse and augmented with the
intersection of dependencies of the 1-best outputs
of ZPar and GParser. In the last setting, the parse
forest contains all three 1-best results.

When the parse forests of the unlabeled data
are the union of the outputs of GParser and ZPar,
denoted as “Unlabeled← Z+G”, each word has
1.053 candidate heads on English and 1.136 on
Chinese, and the oracle accuracy is higher than
using 1-best outputs of single parsers (94.97%
vs. 92.85% on English, 86.66% vs. 82.46%
on Chinese). However, we find that although
the parser significantly outperforms the supervised
GParser on English, it does not gain significant im-
provement over co-training with ZPar (“Unlabeled
← Z”) on both English and Chinese.

Combining the outputs of Berkeley Parser and

GParser (“Unlabeled← B+G”), we get higher
oracle score (96.37% on English and 89.72% on
Chinese) and higher syntactic divergence (1.085
candidate heads per word on English, and 1.188
on Chinese) than “Unlabeled← Z+G”, which
verifies our earlier discussion that Berkeley Pars-
er produces more different structures than ZPar.
However, it leads to slightly worse accuracy than
co-training with Berkeley Parser (“Unlabeled←
B”). This indicates that adding the outputs of
GParser itself does not help the model.

Combining the outputs of Berkeley Parser and
ZPar (“Unlabeled← B+Z”), we get the best per-
formance on English, which is also significantly
better than both co-training (“Unlabeled← B”)
and tri-training (“Unlabeled← B=Z”) on both
English and Chinese. This demonstrates thatour
proposed approach can better exploit unlabeled
data than traditional self/co/tri-training. More
analysis and discussions are in Section 4.4.

During experimental trials, we find that “Unla-
beled←B+(Z∩G)” can further boost performance
on Chinese. A possible explanation is that by
using the intersection of the outputs of GParser
and ZPar, the size of the parse forest is better
controlled, which is helpful considering that ZPar
performs worse on this data than both Berkeley
Parser and GParser.

Adding the output of GParser itself (“Unlabeled
← B+Z+G”) leads to accuracy drop, although the
oracle score is higher (96.95% on English and
91.50% on Chinese) than “Unlabeled← B+Z”.
We suspect the reason is that the model is likely to
distribute the probability mass to these parse trees
produced by itself instead of those by Berkeley
Parser or ZPar under this setting.
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Sup Semi
McDonald and Pereira (2006) 91.5

—Koo and Collins (2010)[higher-order] 93.04
Zhang and McDonald (2012)[higher-order] 93.06

Zhang and Nivre (2011)[higher-order] 92.9
Koo et al. (2008)[higher-order] 92.02 93.16

Chen et al. (2009)[higher-order] 92.40 93.16
Suzuki et al. (2009)[higher-order,cluster] 92.70 93.79

Zhou et al. (2011)[higher-order] 91.98 92.64
Chen et al. (2013)[higher-order] 92.76 93.77

This work 92.34 93.19

Table 4: UAS comparison on English test data.

In summary, we can conclude thatour proposed
ambiguity-aware ensemble training is significant-
ly better than both the supervised approaches and
the semi-supervised approaches that use 1-best
parse trees. Appropriately composing the forest
parse, our approach outperforms the best results of
co-training or tri-training by 0.28% (93.78-93.50)
on English and 0.92% (84.26-83.34) on Chinese.

4.3 Comparison with Previous Work

We adopt the best settings on development data
for semi-supervised GParser with our proposed
approach, and make comparison with previous
results on test data. Table 4 shows the results.

The first major row lists several state-of-the-
art supervised methods. McDonald and Pereira
(2006) propose a second-order graph-based parser,
but use a smaller feature set than our work. Koo
and Collins (2010) propose a third-order graph-
based parser. Zhang and McDonald (2012) ex-
plore higher-order features for graph-based de-
pendency parsing, and adopt beam search for
fast decoding. Zhang and Nivre (2011) propose
a feature-rich transition-based parser. All work
in the second major row adopts semi-supervised
methods. The results show that our approach
achieves comparable accuracy with most previous
semi-supervised methods. Both Suzuki et al.
(2009) and Chen et al. (2013) adopt the higher-
order parsing model of Carreras (2007), and Suzu-
ki et al. (2009) also incorporate word cluster
features proposed by Koo et al. (2008) in their sys-
tem. We expect our approach may achieve higher
performance with such enhancements, which we
leave for future work. Moreover, our method
may be combined with other semi-supervised ap-
proaches, since they are orthogonal in method-
ology and utilize unlabeled data from different
perspectives.

Table 5 make comparisons with previous results

UAS

Supervised

Li et al. (2012)[joint] 82.37
Bohnet and Nivre (2012)[joint] 81.42
Chen et al. (2013)[higher-order] 81.01

This work 81.14

Semi Chen et al. (2013)[higher-order] 83.08
This work 82.89

Table 5: UAS comparison on Chinese test data.

Unlabeled data UAS #Sent Len Head/Word Oracle
NULL 92.34 0 — — —

Consistent(tri-train) 92.94 0.7M 18.25 1.000 97.65
Low divergence 92.94 0.5M 28.19 1.062 96.53
High divergence 93.03 0.5M 27.85 1.211 94.28

ALL 93.19 1.7M 24.15 1.087 96.09

Table 6: Performance of our semi-supervised
GParser with different sets of “Unlabeled←
B+Z” on English test set. “Len” means averaged
sentence length.

on Chinese test data. Li et al. (2012) and Bohnet
and Nivre (2012) use joint models for POS tagging
and dependency parsing, significantly outperform-
ing their pipeline counterparts. Our approach can
be combined with their work to utilize unlabeled
data to improve both POS tagging and parsing
simultaneously. Our work achieves comparable
accuracy with Chen et al. (2013), although they
adopt the higher-order model of Carreras (2007).
Again, our method may be combined with their
work to achieve higher performance.

4.4 Analysis

To better understand the effectiveness of our pro-
posed approach, we make detailed analysis using
the semi-supervised GParser with “Unlabeled←
B+Z” on English datasets.

Contribution of unlabeled data with regard
to syntactic divergence: We divide the unlabeled
data into three sets according to the divergence of
the 1-best outputs of Berkeley Parser and ZPar.
The first set contains those sentences that the two
parsers produce identical parse trees, denoted by
“consistent”, which corresponds to the setting for
tri-training. Other sentences are split into two sets
according to averaged number of heads per word
in parse forests, denoted by “low divergence” and
“high divergence” respectively. Then we train
semi-supervised GParser using the three sets of
unlabeled data. Table 6 illustrates the results and
statistics. We can see that unlabeled data with
identical outputs from Berkeley Parser and ZPar
tends to be short sentences (18.25 words per sen-
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tence on average). Results show all the three sets
of unlabeled data can help the parser. Especially,
the unlabeled data with highly divergent struc-
tures leads to slightly higher improvement. This
demonstrates thatour approach can better exploit
unlabeled data on which parsers of different views
produce divergent structures.

Impact of unlabeled data size: To under-
stand how our approach performs with regards to
the unlabeled data size, we train semi-supervised
GParser with different sizes of unlabeled data. Fig.
3 shows the accuracy curve on the test set. We
can see that the parser consistently achieves higher
accuracy with more unlabeled data, demonstrating
the effectiveness of our approach. We expect
that our approach has potential to achieve higher
accuracy with more additional data.

 92.3

 92.4

 92.5

 92.6

 92.7

 92.8

 92.9

 93

 93.1

 93.2

0 50K 100K 200K 500K 1M 1.7M

U
A

S

Unlabeled Data Size

B+Z Parser

Figure 3: Performance of GParser with different
sizes of “Unlabeled← B+Z” on English test set.

5 Related Work

Our work is originally inspired by the work of
Täckström et al. (2013). They first apply the
idea of ambiguous labelings to multilingual parser
transfer in the unsupervised parsing field, which
aims to build a dependency parser for a resource-
poor target language by making use of source-
language treebanks. Different from their work, we
explore the idea for semi-supervised dependency
parsing where a certain amount of labeled training
data is available. Moreover, we for the first
time build a state-of-the-art CRF-based depen-
dency parser and conduct in-depth comparisons
with previous methods. Similar ideas of learning
with ambiguous labelings are previously explored
for classification (Jin and Ghahramani, 2002) and
sequence labeling problems (Dredze et al., 2009).

Our work is also related with the parser ensem-
ble approaches such as stacked learning and re-
parsing in the supervised track. Stacked learning

uses one parser’s outputs as guide features for
another parser, leading to improved performance
(Nivre and McDonald, 2008; Torres Martins et
al., 2008). Re-parsing merges the outputs of
several parsers into a dependency graph, and then
apply Viterbi decoding to find a better tree (Sagae
and Lavie, 2006; Surdeanu and Manning, 2010).
One possible drawback of parser ensemble is that
several parsers are required to parse the same
sentence during the test phase. Moreover, our
approach can benefit from these methods in that
we can get parse forests of higher quality on
unlabeled data (Zhou, 2009).

6 Conclusions

This paper proposes a generalized training
framework of semi-supervised dependency
parsing based on ambiguous labelings. For
each unlabeled sentence, we combine the 1-best
parse trees of several diverse parsers to compose
ambiguous labelings, represented by a parse
forest. The training objective is to maximize the
mixed likelihood of both the labeled data and
the auto-parsed unlabeled data with ambiguous
labelings. Experiments show that our framework
can make better use of the unlabeled data,
especially those with divergent outputs from
different parsers, than traditional tri-training.
Detailed analysis demonstrates the effectiveness
of our approach. Specifically, we find that our
approach is very effective when using divergent
parsers such as the generative parser, and it is also
helpful to properly balance the size and oracle
accuracy of the parse forest of the unlabeled data.

For future work, among other possible
extensions, we would like to see how our
approach performs when employing more diverse
parsers to compose the parse forest of higher
quality for the unlabeled data, such as the easy-
first non-directional dependency parser (Goldberg
and Elhadad, 2010) and other constituent parsers
(Collins and Koo, 2005; Charniak and Johnson,
2005; Finkel et al., 2008).
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