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Abstract

Spectral methods offer scalable alternatives
to Markov chain Monte Carlo and expec-
tation maximization. However, these new
methods lack the rich priors associated with
probabilistic models. We examine Arora et
al.’s anchor words algorithm for topic mod-
eling and develop new, regularized algo-
rithms that not only mathematically resem-
ble Gaussian and Dirichlet priors but also
improve the interpretability of topic models.
Our new regularization approaches make
these efficient algorithms more flexible; we
also show that these methods can be com-
bined with informed priors.

1 Introduction

Topic models are of practical and theoretical inter-
est. Practically, they have been used to understand
political perspective (Paul and Girju, 2010), im-
prove machine translation (Eidelman et al., 2012),
reveal literary trends (Jockers, 2013), and under-
stand scientific discourse (Hall et al., 2008). The-
oretically, their latent variable formulation has
served as a foundation for more robust models
of other linguistic phenomena (Brody and Lapata,
2009).

Modern topic models are formulated as a la-
tent variable model. Like hidden Markov mod-
els (Rabiner, 1989, HMM), each token comes from
one of K unknown distributions. Unlike a HMM,
topic models assume that each document is an ad-
mixture of these hidden components called topics.
Posterior inference discovers the hidden variables
that best explain a dataset. Typical solutions use
MCMC (Griffiths and Steyvers, 2004) or variational
EM (Blei et al., 2003), which can be viewed as local
optimization: searching for the latent variables that
maximize the data likelihood.

An exciting vein of new research provides
provable polynomial-time alternatives. These ap-

proaches provide solutions to hidden Markov mod-
els (Anandkumar et al., 2012), mixture mod-
els (Kannan et al., 2005), and latent variable gram-
mars (Cohen et al., 2013). The key insight is not to
directly optimize observation likelihood but to in-
stead discover latent variables that can reconstruct
statistics of the assumed generative model. Unlike
search-based methods, which can be caught in lo-
cal minima, these techniques are often guaranteed
to find global optima.

These general techniques can be improved by
making reasonable assumptions about the models.
For example, Arora et al. (2012b)’s approach for in-
ference in topic models assume that each topic has
a unique “anchor” word (thus, we call this approach
anchor). This approach is fast and effective; be-
cause it only uses word co-occurrence information,
it can scale to much larger datasets than MCMC or
EM alternatives. We review the anchor method in
Section 2.

Despite their advantages, these techniques are
not a panacea. They do not accommodate the
rich priors that modelers have come to expect.
Priors can improve performance (Wallach et al.,
2009), provide domain adaptation (Daumé III,
2007; Finkel and Manning, 2009), and guide mod-
els to reflect users’ needs (Hu et al., 2013). In
Section 3, we regularize the anchor method to
trade-off the reconstruction fidelity with the penalty
terms that mimic Gaussian and Dirichlet priors.

Another shortcoming is that these models have
not been scrutinized using standard NLP evalua-
tions. Because these approaches emerged from
the theory community, anchor’s evaluations, when
present, typically use training reconstruction. In
Section 4, we show that our regularized models can
generalize to previously unseen data—as measured
by held-out likelihood (Blei et al., 2003)—and are
more interpretable (Chang et al., 2009; Newman
et al., 2010). We also show that our extension to
the anchor method enables new applications: for
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K number of topics
V vocabulary size
M document frequency: minimum documents an an-

chor word candidate must appear in
Q word co-occurrence matrix

Qi,j = p(w1 = i, w2 = j)
Q̄ conditional distribution of Q

Q̄i,j = p(w1 = j |w2 = i)
Q̄i,· row i of Q̄
A topic matrix, of size V ×K

Aj,k = p(w = j | z = k)
C anchor coefficient of size K × V

Cj,k = p(z = k |w = j)
S set of anchor word indexes {s1, . . . sK}
λ regularization weight

Table 1: Notation used. Matrices are in bold
(Q,C), sets are in script S

example, using an informed priors to discover con-
cepts of interest.

Having shown that regularization does improve
performance, in Section 5 we explore why. We
discuss the trade-off of training data reconstruction
with sparsity and why regularized topics are more
interpretable.

2 Anchor Words: Scalable Topic Models

In this section, we briefly review the anchor
method and place it in the context of topic model
inference. Once we have established the anchor
objective function, in the next section we regularize
the objective function.

Rethinking Data: Word Co-occurrence Infer-
ence in topic models can be viewed as a black box:
given a set of documents, discover the topics that
best explain the data. The difference between an-
chor and conventional inference is that while con-
ventional methods take a collection of documents
as input, anchor takes word co-occurrence statis-
tics. Given a vocabulary of size V , we represent
this joint distribution as Qi,j = p(w1 = i, w2 = j),
each cell represents the probability of words appear-
ing together in a document.

Like other topic modeling algorithms, the output
of the anchor method is the topic word distribu-
tions A with size V ∗ K, where K is the total
number of topics desired, a parameter of the al-
gorithm. The kth column of A will be the topic
distribution over all words for topic k, and Aw,k is
the probability of observing type w given topic k.

Anchors: Topic Representatives The anchor
method (Arora et al., 2012a) is based on the sepa-
rability assumption (Donoho and Stodden, 2003),

which assumes that each topic contains at least one
namesake “anchor word” that has non-zero proba-
bility only in that topic. Intuitively, this means that
each topic has unique, specific word that, when
used, identifies that topic. For example, while
“run”, “base”, “fly”, and “shortstop” are associated
with a topic about baseball, only “shortstop” is un-
ambiguous, so it could serve as this topic’s anchor
word.

Let’s assume that we knew what the anchor
words were: a set S that indexes rows in Q. Now
consider the conditional distribution of word i,
the probability of the rest of the vocabulary given
an observation of word i; we represent this as Q̄i,·,
as we can construct this by normalizing the rows of
Q. For an anchor word sa ∈ S, this will look like
a topic; Q̄“shortstop”,· will have high probability
for words associated with baseball.

The key insight of the anchor algorithm is that
the conditional distribution of polysemous non-
anchor words can be reconstructed as a linear com-
bination of the conditional distributions of anchor
words. For example, Q̄“fly”,· could be recon-
structed by combining the anchor words “insecta”,
“boeing”, and “shortshop”. We represent the coeffi-
cients of this reconstruction as a matrix C, where
Ci,k = p(z = k |w = i). Thus, for any word i,

Q̄i,· ≈
∑
sk∈S

Ci,kQ̄sk,·. (1)

The coefficient matrix is not the usual output of a
topic modeling algorithm. The usual output is the
probability of a word given a topic. The coefficient
matrix C is the probability of a topic given a word.
We use Bayes rule to recover the topic distribution
p(w = i|z = k) ≡

Ai,k ∝ p(z = k|w = i)p(w = i)

= Ci,k

∑
j

Q̄i,j (2)

where p(w) is the normalizer of Q to obtain Q̄w,·.
The geometric argument for finding the anchor

words is one of the key contributions of Arora et
al. (2012a) and is beyond the scope of this paper.
The algorithms in Section 3 use the anchor selec-
tion subroutine unchanged. The difference in our
approach is in how we discover the anchor coeffi-
cients C.

From Anchors to Topics After we have the an-
chor words, we need to find the coefficients that
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best reconstruct the data Q̄ (Equation 1). Arora
et al. (2012a) chose the C that minimizes the KL

divergence between Q̄i,· and the reconstruction
based on the anchor word’s conditional word vec-
tors

∑
sk∈S Ci,kQ̄sk,·,

Ci,· = argminCi,·DKL

Q̄i,· ||
∑
sk∈S

Ci,kQ̄sk,·

 .

(3)
The anchor method is fast, as it only de-

pends on the size of the vocabulary once the co-
occurrence statistics Q are obtained. However, it
does not support rich priors for topic models, while
MCMC (Griffiths and Steyvers, 2004) and varia-
tional EM (Blei et al., 2003) methods can. This
prevents models from using priors to guide the
models to discover particular themes (Zhai et al.,
2012), or to encourage sparsity in the models (Yao
et al., 2009). In the rest of this paper, we correct
this lacuna by adding regularization inspired by
Bayesian priors to the anchor algorithm.

3 Adding Regularization

In this section, we add regularizers to the anchor
objective (Equation 3). In this section, we briefly
review regularizers and then add two regularizers,
inspired by Gaussian (L2, Section 3.1) and Dirich-
let priors (Beta, Section 3.2), to the anchor objec-
tive function (Equation 3).

Regularization terms are ubiquitous. They typ-
ically appear as an additional term in an opti-
mization problem. Instead of optimizing a func-
tion just of the data x and parameters β, f(x, β),
one optimizes an objective function that includes
a regularizer that is only a function of parame-
ters: f(w, β) + r(β). Regularizers are critical in
staid methods like linear regression (Ng, 2004),
in workhorse methods such as maximum entropy
modeling (Dudı́k et al., 2004), and also in emerging
fields such as deep learning (Wager et al., 2013).

In addition to being useful, regularization terms
are appealing theoretically because they often corre-
spond to probabilistic interpretations of parameters.
For example, if we are seeking the MLE of a proba-
bilistic model parameterized by β, p(x|β), adding
a regularization term r(β) =

∑L
i=1 β

2
i corresponds

to adding a Gaussian prior

f(βi) =
1√

2πσ2
exp

{
− β2

i

2σ2

}
(4)

Corpus Train Dev Test Vocab
NIPS 1231 247 262 12182

20NEWS 11243 3760 3726 81604
NYT 9255 2012 1959 34940

Table 2: The number of documents in the train,
development, and test folds in our three datasets.

and maximizing log probability of the posterior
(ignoring constant terms) (Rennie, 2003).

3.1 L2 Regularization
The simplest form of regularization we can add is
L2 regularization. This is similar to assuming that
probability of a word given a topic comes from a
Gaussian distribution. While the distribution over
topics is typically Dirichlet, Dirichlet distributions
have been replaced by logistic normals in topic
modeling applications (Blei and Lafferty, 2005)
and for probabilistic grammars of language (Cohen
and Smith, 2009).

Augmenting the anchor objective with an L2

penalty yields

Ci,· =argminCi,·DKL

Q̄i,· ||
∑
sk∈S

Ci,kQ̄sk,·


+ λ‖Ci,· − µi,·‖22, (5)

where regularization weight λ balances the impor-
tance of a high-fidelity reconstruction against the
regularization, which encourages the anchor coeffi-
cients to be close to the vector µ. When the mean
vector µ is zero, this encourages the topic coeffi-
cients to be zero. In Section 4.3, we use a non-zero
mean µ to encode an informed prior to encourage
topics to discover specific concepts.

3.2 Beta Regularization
The more common prior for topic models is a
Dirichlet prior (Minka, 2000). However, we cannot
apply this directly because the optimization is done
on a row-by-row basis of the anchor coefficient
matrix C, optimizing C for a fixed word w for and
all topics. If we want to model the probability of
a word, it must be the probability of word w in a
topic versus all other words.

Modeling this dichotomy (one versus all others
in a topic) is possible. The constructive definition
of the Dirichlet distribution (Sethuraman, 1994)
states that if one has a V -dimensional multinomial
θ ∼ Dir(α1 . . . αV ), then the marginal distribution
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of θw follows θw ∼ Beta(αw,
∑

i 6=w αi). This is
the tool we need to consider the distribution of a
single word’s probability.

This requires including the topic matrix as part
of the objective function. The topic matrix is a lin-
ear transformation of the coefficient matrix (Equa-
tion 2). The objective for beta regularization be-
comes

Ci,· =argminCi,·DKL

Q̄i,· ||
∑
sk∈S

Ci,kQ̄sk,·


− λ

∑
sk∈S

log (Beta(Ai,k; a, b)), (6)

where λ again balances reconstruction against the
regularization. To ensure the tractability of this
algorithm, we enforce a convex regularization func-
tion, which requires that a > 1 and b > 1. If we
enforce a uniform prior—EBeta(a,b) [Ai,k] = 1

V —
and that the mode of the distribution is also 1

V ,1

this gives us the following parametric form for a
and b:

a =
x

V
+ 1, and b =

(V − 1)x
V

+ 1 (7)

for real x greater than zero.

3.3 Initialization and Convergence
Equation 5 and Equation 6 are optimized using L-
BFGS gradient optimization (Galassi et al., 2003).
We initialize C randomly from Dir(α) with α =
60
V (Wallach et al., 2009). We update C after opti-
mizing all V rows. The newly updated C replaces
the old topic coefficients. We track how much
the topic coefficients C change between two con-
secutive iterations i and i + 1 and represent it as
∆C ≡ ‖Ci+1−Ci‖2. We stop optimization when
∆C ≤ δ. When δ = 0.1, the L2 and unregularized
anchor algorithm converges after a single iteration,
while beta regularization typically converges after
fewer than ten iterations (Figure 4).

4 Regularization Improves Topic Models

In this section, we measure the performance of
our proposed regularized anchor word algorithms.
We will refer to specific algorithms in bold. For
example, the original anchor algorithm is an-
chor. Our L2 regularized variant is anchor-L2,

1For a, b < 1, the expected value is still the uniform
distribution but the mode lies at the boundaries of the simplex.
This corresponds to a sparse Dirichlet distribution, which our
optimization cannot at present model.

and our beta regularized variant is anchor-beta.
To provide conventional baselines, we also com-
pare our methods against topic models from varia-
tional inference (Blei et al., 2003, variational) and
MCMC (Griffiths and Steyvers, 2004; McCallum,
2002, MCMC).

We apply these inference strategies on three di-
verse corpora: scientific articles from the Neural
Information Processing Society (NIPS),2 Internet
newsgroups postings (20NEWS),3 and New York
Times editorials (Sandhaus, 2008, NYT). Statistics
for the datasets are summarized in Table 2. We split
each dataset into a training fold (70%), develop-
ment fold (15%), and a test fold (15%): the training
data are used to fit models; the development set are
used to select parameters (anchor thresholdM , doc-
ument prior α, regularization weight λ); and final
results are reported on the test fold.

We use two evaluation measures, held-out likeli-
hood (Blei et al., 2003, HL) and topic interpretabil-
ity (Chang et al., 2009; Newman et al., 2010, TI).
Held-out likelihood measures how well the model
can reconstruct held-out documents that the model
has never seen before. This is the typical evaluation
for probabilistic models. Topic interpretability is a
more recent metric to capture how useful the topics
can be to human users attempting to make sense of
a large datasets.

Held-out likelihood cannot be computed with
existing anchor algorithms, so we use the topic
distributions learned from anchor as input to a ref-
erence variational inference implementation (Blei
et al., 2003) to compute HL. This requires an ad-
ditional parameter, the Dirichlet prior α for the
per-document distribution over topics. We select α
using grid search on the development set.

To compute TI and evaluate topic coherence,
we use normalized pairwise mutual informa-
tion (NPMI) (Lau et al., 2014) over topics’ twenty
most probable words. Topic coherence is com-
puted against the NPMI of a reference corpus. For
coherence evaluations, we use both intrinsic and
extrinsic text collections to compute NPMI. Intrin-
sic coherence (TI-i) is computed on training and
development data at development time and on train-
ing and test data at test time. Extrinsic coherence
(TI-e) is computed from English Wikipedia articles,
with disjoint halves (1.1 million pages each) for
distinct development and testing TI-e evaluation.

2http://cs.nyu.edu/˜roweis/data.html
3http://qwone.com/˜jason/20Newsgroups/
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Figure 1: Grid search for document frequency M for our datasets with 20 topics (other configurations not
shown) on development data. The performance on both HL and TI score indicate that the unregularized
anchor algorithm is very sensitive to M . The M selected here is applied to subsequent models.
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Figure 2: Selection of λ based on HL and TI scores on the development set. The value of λ = 0 is
equivalent to the original anchor algorithm; regularized versions find better solutions as the regularization
weight λ becomes non-zero.

4.1 Grid Search for Parameters on
Development Set

Anchor Threshold A good anchor word must
have a unique, specific context but also explain
other words well. A word that appears only once
will have a very specific cooccurence pattern but
will explain other words’ coocurrence poorly be-
cause the observations are so sparse. As discussed
in Section 2, the anchor method uses document
frequency M as a threshold to only consider words
with robust counts.

Because all regularizations benefit equally
from higher-quality anchor words, we use cross-
validation to select the document frequency cut-
off M using the unregularized anchor algorithm.
Figure 1 shows the performance of anchor with
different M on our three datasets with 20 topics for
our two measures HL and TI-i.

Regularization Weight Once we select a cutoff
M for each combination of dataset, number of top-
ics K and a evaluation measure, we select a reg-
ularization weight λ on the development set. Fig-
ure 2 shows that beta regularization framework im-
proves topic interpretability TI-i on all datasets and
improved the held-out likelihood HL on 20NEWS.
The L2 regularization also improves held-out like-
lihood HL for the 20NEWS corpus (Figure 2).

In the interests of space, we do not show the
figures for selecting M and λ using TI-e, which is
similar to TI-i: anchor-beta improves TI-e score on
all datasets, anchor-L2 improves TI-e on 20NEWS

and NIPS with 20 topics and NYT with 40 topics.

4.2 Evaluating Regularization

With document frequency M and regularization
weight λ selected from the development set, we
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compare the performance of those models on the
test set. We also compare with standard implemen-
tations of Latent Dirichlet Allocation: Blei’s LDAC

(variational) and Mallet (mcmc). We run 100 iter-
ations for LDAC and 5000 iterations for Mallet.

Each result is averaged over three random runs
and appears in Figure 3. The highly-tuned, widely-
used implementations uniformly have better held-
out likelihood than anchor-based methods, but the
much faster anchor methods are often comparable.
Within anchor-based methods, L2-regularization
offers comparable held-out likelihood as unregular-
ized anchor, while anchor-beta often has better
interpretability. Because of the mismatch between
the specialized vocabulary of NIPS and the general-
purpose language of Wikipedia, TI-e has a high
variance.

4.3 Informed Regularization

A frequent use of priors is to add information to a
model. This is not possible with the existing an-
chor method. An informed prior for topic models
seeds a topic with words that describe a topic of in-
terest. In a topic model, these seeds will serve as a
“magnet”, attracting similar words to the topic (Zhai
et al., 2012).

We can achieve a similar goal with anchor-L2.
Instead of encouraging anchor coefficients to be
zero in Equation 5, we can instead encourage word
probabilities to close to an arbitrary mean µi,k.
This vector can reflect expert knowledge.

One example of a source of expert knowledge
is Linguistic Inquiry and Word Count (Pennebaker
and Francis, 1999, LIWC), a dictionary of key-
words related to sixty-eight psychological concepts
such as positive emotions, negative emotions, and
death. For example, it associates “excessive, estate,
money, cheap, expensive, living, profit, live, rich,
income, poor, etc.” for the concept materialism.

We associate each anchor word with its closest
LIWC category based on the cooccurrence matrix
Q. This is computed by greedily finding the an-
chor word that has the highest cooccurrence score
for any LIWC category: we define the score of a
category to anchor word wsk

as
∑

iQsk,i, where i
ranges over words in this category; we compute the
scores of all categories to all anchor words; then
we find the highest score and assign the category to
that anchor word; we greedily repeat this process
until all anchor words have a category.

Given these associations, we create a goal mean

µi,k. If there are Li anchor words associated with
LIWC word i, µi,k = 1

Li
if this keyword i is associ-

ated with anchor word wsk
and zero otherwise.

We apply anchor-L2 with informed priors on
NYT with twenty topics and compared the topics
against the original topics from anchor. Table 3
shows that the topic with anchor word “soviet”,
when combined with LIWC, draws in the new words
“bush” and “nuclear”; reflecting the threats of force
during the cold war. For the topic with topic word
“arms”, when associated with the LIWC category
with the terms “agree” and “agreement”, draws

in “clinton”, who represented a more conciliatory
foreign policy compared to his republican prede-
cessors.

5 Discussion

Having shown that regularization can improve the
anchor topic modeling algorithm, in this section
we discuss why these regularizations can improve
the model and the implications for practitioners.

Efficiency Efficiency is a function of the number
of iterations and the cost of each iteration. Both
anchor and anchor-L2 require a single iteration,
although the latter’s iteration is slightly more ex-
pensive. For beta, as described in Section 3.2,
we update anchor coefficients C row by row, and
then repeat the process over several iterations until
it converges. However, it often converges within
ten iterations (Figure 4) on all three datasets: this
requires much fewer iterations than MCMC or vari-
ational inference, and the iterations are less expen-
sive. In addition, since we optimize each row Ci,·
independently, the algorithm can be easily paral-
lelized.

Sensitivity to Document Frequency While the
original anchor is sensitive to the document fre-
quency M (Figure 1), adding regularization makes
this less critical. Both anchor-L2 and anchor-beta
are less sensitive to M than anchor.

To highlight this, we compare the topics of an-
chor and anchor-beta whenM = 100. As Table 4
shows, the words “article”, “write”, “don” and
“doe” appear in most of anchor’s topics. While
anchor-L2 also has some bad topics, it still can find
reasonable topics, demonstrating anchor-beta’s
greater robustness to suboptimal M .

L2 (Sometimes) Improves Generalization As
Figure 2 shows, anchor-L2 sometimes improves
held-out development likelihood for the smaller
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Figure 3: Comparing anchor-beta and anchor-L2 against the original anchor and the traditional vari-
ational and MCMC on HL score and TI score. variational and mcmc provide the best held-out gener-
alization. anchor-beta sometimes gives the best TI score and is consistently better than anchor. The
specialized vocabulary of NIPS causes high variance for the extrinsic interpretability evaluation (TI-e).

Topic Shared Words Original (Top, green) vs. Informed L2 (Bottom, orange)

soviet american make president soviet union
war years

gorbachev moscow russian force economic world europe politi-
cal communist lead reform germany country
military state service washington bush army unite chief troops
officer nuclear time week

district assembly board city county district
member state york

representative manhattan brooklyn queens election bronx council
island local incumbent housing municipal
people party group social republican year make years friend
vote compromise million

peace american force government israel peace
political president state unite
washington

war military country minister leaders nation world palestinian
israeli election
offer justice aid deserve make bush years fair clinton hand

arms arms bush congress force iraq make north
nuclear president state washington weapon

administration treaty missile defense war military korea
reagan
agree agreement american accept unite share clinton
years

trade administration america american country
economic government make president state
trade unite washington

world market japan foreign china policy price political
business economy congress year years clinton bush
buy

Table 3: Examples of topic comparison between anchor and informed anchor-L2. A topic is labeled
with the anchor word for that topic. The bold words are the informed prior from LIWC. With an informed
prior, relevant words appear in the top words of a topic; this also draws in other related terms (red).

20NEWS corpus. However, the λ selected on devel-
opment data does not always improve test set per-
formance. This, in Figure 3, anchor-beta closely
tracks anchor. Thus, L2 regularization does not
hurt generalization while imparting expressiveness
and robustness to parameter settings.

Beta Improves Interpretability Figure 3 shows
that anchor-beta improves topic interpretability
(TI) compared to unregularized anchor methods. In

this section, we try to understand why.

We first compare the topics from the original
anchor against anchor-beta to analyze the topics
qualitatively. Table 5 shows that beta regulariza-
tion promotes rarer words within a topic and de-
motes common words. For example, in the topic
about hockey with the anchor word game, “run”
and “good”—ambiguous, polysemous words—in
the unregularized topic are replaced by “playoff”
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Topic anchor anchor-beta
frequently

article write don doe make time people good
file question

article write don doe make people time good
email file

debate
write article people make don doe god key gov-
ernment time

people make god article write don doe key
point government

wings game team write wings article win red play
hockey year

game team wings win red hockey play season
player fan

stats player team write game article stats year good
play doe

stats player season league baseball fan team in-
dividual playoff nhl

compile program file write email doe windows call prob-
lem run don

compile program code file ftp advance package
error windows sun

Table 4: Topics from anchor and anchor-beta with M = 100 on 20NEWS with 20 topics. Each topic is
identified with its associated anchor word. When M = 100, the topics of anchor suffer: the four colored
words appear in almost every topic. anchor-beta, in contrast, is less sensitive to suboptimal M .
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Figure 4: Convergence of anchor coefficient C for
anchor-beta. ∆C is the difference of current C
from theC at the previous iteration. C is converged
within ten iterations for all three datasets.

and “trade” in the regularized topic. These words
are less ambiguous and more likely to make sense
to a consumer of topic models.

Figure 5 shows why this happens. Compared
to the unregularized topics from anchor, the beta
regularized topic steals from the rich and creates a
more uniform distribution. Thus, highly frequent
words do not as easily climb to the top of the distri-
bution, and the topics reflect topical, relevant words
rather than globally frequent terms.

6 Conclusion

A topic model is a popular tool for quickly get-
ting the gist of large corpora. However, running
such an analysis on these large corpora entail a
substantial computational cost. While techniques
such as anchor algorithms offer faster solutions, it
comes at the cost of the expressive priors common
in Bayesian formulations.

This paper introduces two different regulariza-

tions that offer users more interpretable models
and the ability to inject prior knowledge without
sacrificing the speed and generalizability of the
underlying approach. However, one sacrifice that
this approach does make is the beautiful theoretical
guarantees of previous work. An important piece
of future work is a theoretical understanding of
generalizability in extensible, regularized models.

Incorporating other regularizations could further
improve performance or unlock new applications.
Our regularizations do not explicitly encourage
sparsity; applying other regularizations such as L1

could encourage true sparsity (Tibshirani, 1994),
and structured priors (Andrzejewski et al., 2009)
could efficiently incorporate constraints on topic
models.

These regularizations could improve spectral al-
gorithms for latent variables models, improving the
performance for other NLP tasks such as latent vari-
able PCFGs (Cohen et al., 2013) and HMMs (Anand-
kumar et al., 2012), combining the flexibility and
robustness offered by priors with the speed and
accuracy of new, scalable algorithms.
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Figure 5: How beta regularization influences the topic distribution. Each topic is identified with its
associated anchor word. Compared to the unregularized anchor method, anchor-beta steals probability
mass from the “rich” and prefers a smoother distribution of probability mass. These words often tend to
be unimportant, polysemous words common across topics.

Topic Shared Words anchor (Top, green) vs. anchor-beta (Bottom, orange)

computer computer means science screen system phone university problem doe work windows internet
software chip mac set fax technology information data
quote mhz pro processor ship remote print devices complex cpu
electrical transfer ray engineering serial reduce

power power play period supply
ground light battery engine

car good make high problem work back turn control current
small time
circuit oil wire unit water heat hot ranger input total joe plug

god god jesus christian bible faith church life christ belief
religion hell word lord truth love

people make things true doe
sin christianity atheist peace heaven

game game team player play win fan hockey season baseball
red wings score division league goal leaf cup toronto

run good
playoff trade

drive drive disk hard scsi controller card floppy ide mac bus
speed monitor switch apple cable internal port meg

problem work
ram pin

Table 5: Comparing topics—labeled by their anchor word—from anchor and anchor-beta. With beta
regularization, relevant words are promoted, while more general words are suppressed, improving topic
coherence.
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