
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 336–346,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Product Feature Mining: Semantic Clues versus Syntactic Constituents

Liheng Xu, Kang Liu, Siwei Lai and Jun Zhao
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
{lhxu, kliu, swlai, jzhao}@nlpr.ia.ac.cn

Abstract

Product feature mining is a key subtask
in fine-grained opinion mining. Previ-
ous works often use syntax constituents in
this task. However, syntax-based methods
can only use discrete contextual informa-
tion, which may suffer from data sparsity.
This paper proposes a novel product fea-
ture mining method which leverages lexi-
cal and contextual semantic clues. Lexical
semantic clue verifies whether a candidate
term is related to the target product, and
contextual semantic clue serves as a soft
pattern miner to find candidates, which ex-
ploits semantics of each word in context
so as to alleviate the data sparsity prob-
lem. We build a semantic similarity graph
to encode lexical semantic clue, and em-
ploy a convolutional neural model to cap-
ture contextual semantic clue. Then Label
Propagation is applied to combine both se-
mantic clues. Experimental results show
that our semantics-based method signif-
icantly outperforms conventional syntax-
based approaches, which not only mines
product features more accurately, but also
extracts more infrequent product features.

1 Introduction

In recent years, opinion mining has helped cus-
tomers a lot to make informed purchase decisions.
However, with the rapid growth of e-commerce,
customers are no longer satisfied with the over-
all opinion ratings provided by traditional senti-
ment analysis systems. The detailed functions or
attributes of products, which are called product
features, receive more attention. Nevertheless, a
product may have thousands of features, which
makes it impractical for a customer to investigate
them all. Therefore, mining product features au-
tomatically from online reviews is shown to be a

key step for opinion summarization (Hu and Liu,
2004; Qiu et al., 2009) and fine-grained sentiment
analysis (Jiang et al., 2011; Li et al., 2012).

Previous works often mine product features via
syntactic constituent matching (Popescu and Et-
zioni, 2005; Qiu et al., 2009; Zhang et al., 2010).
The basic idea is that reviewers tend to comment
on product features in similar syntactic structures.
Therefore, it is natural to mine product features by
using syntactic patterns. For example, in Figure 1,
the upper box shows a dependency tree produced
by Stanford Parser (de Marneffe et al., 2006), and
the lower box shows a common syntactic pattern
from (Zhang et al., 2010), where <feature/NN>
is a wildcard to be fit in reviews and NN denotes
the required POS tag of the wildcard. Usually, the
product name mp3 is specified, and when screen
matches the wildcard, it is likely to be a product
feature of mp3.

Figure 1: An example of syntax-based prod-
uct feature mining procedure. The word screen
matches the wildcard <feature/NN>. Therefore,
screen is likely to be a product feature of mp3.

Generally, such syntactic patterns extract prod-
uct features well but they still have some limita-
tions. For example, the product-have-feature pat-
tern may fail to find the fm tuner in a very similar
case in Example 1(a), where the product is men-
tioned by using player instead of mp3. Similarly,
it may also fail on Example 1(b), just with have re-
placed by support. In essence, syntactic pattern is

336

a kind of one-hot representation for encoding the
contexts, which can only use partial and discrete
features, such as some key words (e.g., have) or
shallow information (e.g., POS tags). Therefore,
such a representation often suffers from the data
sparsity problem (Turian et al., 2010).

One possible solution for this problem is us-
ing a more general pattern such as NP-VB-feature,
where NP represents a noun or noun phrase and
VB stands for any verb. However, this pattern be-
comes too general that it may find many irrelevant
cases such as the one in Example 1(c), which is not
talking about the product. Consequently, it is very
difficult for a pattern designer to balance between
precision and generalization.

Example 1:
(a) This player has an

::
fm

:::::
tuner.

(b) This mp3 supports
::::
wma

:::
file.

(c) This review has helped
:::::
people a lot.

(d) This mp3 has some
:::::
flaws.

To solve the problems stated above, it is ar-
gued that deeper semantics of contexts shall be ex-
ploited. For example, we can try to automatically
discover that the verb have indicates a part-whole
relation (Zhang et al., 2010) and support indicates
a product-function relation, so that both sth. have
and sth. support suggest that terms following them
are product features, where sth. can be replaced
by any terms that refer to the target product (e.g.,
mp3, player, etc.). This is called contextual se-
mantic clue. Nevertheless, only using contexts is
not sufficient enough. As in Example 1(d), we can
see that the word flaws follows mp3 have, but it
is not a product feature. Thus, a noise term may
be extracted even with high contextual support.
Therefore, we shall also verify whether a candi-
date is really related to the target product. We call
it lexical semantic clue.

This paper proposes a novel bootstrapping ap-
proach for product feature mining, which lever-
ages both semantic clues discussed above. Firstly,
some reliable product feature seeds are automat-
ically extracted. Then, based on the assumption
that terms that are more semantically similar to
the seeds are more likely to be product features,
a graph which measures semantic similarities be-
tween terms is built to capture lexical semantic
clue. At the same time, a semi-supervised con-
volutional neural model (Collobert et al., 2011) is
employed to encode contextual semantic clue. Fi-
nally, the two kinds of semantic clues are com-

bined by a Label Propagation algorithm.
In the proposed method, words are represented

by continuous vectors, which capture latent se-
mantic factors of the words (Turian et al., 2010).
The vectors can be unsupervisedly trained on large
scale corpora, and words with similar semantics
will have similar vectors. This enables our method
to be less sensitive to lexicon change, so that the
data sparsity problem can be alleviated . The con-
tributions of this paper include:
• It uses semantics of words to encode contextual

clues, which exploits deeper level information
than syntactic constituents. As a result, it mines
product features more accurately than syntax-
based methods.
• It exploits semantic similarity between words

to capture lexical clues, which is shown to be
more effective than co-occurrence relation be-
tween words and syntactic patterns. In addition,
experiments show that the semantic similarity
has the advantage of mining infrequent product
features, which is crucial for this task. For ex-
ample, one may say “This hotel has low water
pressure”, where low water pressure is seldom
mentioned, but fatal to someone’s taste.
• We compare the proposed semantics-based ap-

proach with three state-of-the-art syntax-based
methods. Experiments show that our method
achieves significantly better results.

The rest of this paper is organized as follows. Sec-
tion 2 introduces related work. Section 3 describes
the proposed method in details. Section 4 gives the
experimental results. Lastly, we conclude this pa-
per in Section 5.

2 Related Work

In product feature mining task, Hu and Liu (2004)
proposed a pioneer research. However, the asso-
ciation rules they used may potentially introduce
many noise terms. Based on the observation that
product features are often commented on by simi-
lar syntactic structures, it is natural to use patterns
to capture common syntactic constituents around
product features.

Popescu and Etzioni (2005) designed some syn-
tactic patterns to search for product feature candi-
dates and then used Pointwise Mutual Information
(PMI) to remove noise terms. Qiu et al. (2009)
proposed eight heuristic syntactic rules to jointly
extract product features and sentiment lexicons,
where a bootstrapping algorithm named Double

337

Propagation was applied to expand a given seed
set. Zhang et al. (2010) improved Qiu’s work
by adding more feasible syntactic patterns, and the
HITS algorithm (Kleinberg, 1999) was employed
to rank candidates. Moghaddam and Ester (2010)
extracted product features by automatical opinion
pattern mining. Zhuang et al. (2006) used various
syntactic templates from an annotated movie cor-
pus and applied them to supervised movie feature
extraction. Wu et al. (2009) proposed a phrase
level dependency parsing for mining aspects and
features of products.

As discussed in the first section, syntactic pat-
terns often suffer from data sparsity. Further-
more, most pattern-based methods rely on term
frequency, which have the limitation of finding
infrequent but important product features. A re-
cent research (Xu et al., 2013) extracted infrequent
product features by a semi-supervised classifier,
which used word-syntactic pattern co-occurrence
statistics as features for the classifier. However,
this kind of feature is still sparse for infrequent
candidates. Our method adopts a semantic word
representation model, which can train dense fea-
tures unsupervisedly on a very large corpus. Thus,
the data sparsity problem can be alleviated.

3 The Proposed Method

We propose a semantics-based bootstrapping
method for product feature mining. Firstly, some
product feature seeds are automatically extracted.
Then, a semantic similarity graph is created to
capture lexical semantic clue, and a Convolutional
Neural Network (CNN) (Collobert et al., 2011) is
trained in each bootstrapping iteration to encode
contextual semantic clue. Finally we use Label
Propagation to find some reliable new seeds for
the training of the next bootstrapping iteration.

3.1 Automatic Seed Generation

The seed set consists of positive labeled examples
(i.e. product features) and negative labeled exam-
ples (i.e. noise terms). Intuitively, popular product
features are frequently mentioned in reviews, so
they can be extracted by simply mining frequently
occurring nouns (Hu and Liu, 2004). However,
this strategy will also find many noise terms (e.g.,
commonly used nouns like thing, one, etc.). To
produce high quality seeds, we employ a Domain
Relevance Measure (DRM) (Jiang and Tan, 2010),
which combines term frequency with a domain-

specific measuring metric called Likelihood Ratio
Test (LRT) (Dunning, 1993). Let λ(t) denotes the
LRT score of a product feature candidate t,

λ(t) =
pk1(1− p)n1−k1pk2(1− p)n2−k2

pk11 (1− p1)n1−k1pk22 (1− p2)n2−k2
(1)

where k1 and k2 are the frequencies of t in the
review corpus R and a background corpus1 B, n1

and n2 are the total number of terms in R and B,
p = (k1 + k2)/(n1 + n2), p1 = k1/n1 and p2 =
k2/n2. Then a modified DRM2 is proposed,

DRM(t) =
tf(t)

max[tf(·)] ×
1

log df(t)

× | log λ(t)| −min| log λ(·)|
max| log λ(·)| −min| log λ(·)|

(2)

where tf(t) is the frequency of t inR and df(t) is
the frequency of t in B.

All nouns in R are ranked by DRM(t) in de-
scent order, where top N nouns are taken as the
positive example set V +

s . On the other hand, Xu
et al. (2013) show that a set of general nouns sel-
dom appear to be product features. Therefore, we
employ their General Noun Corpus to create the
negative example set V −s , where N most frequent
terms are selected. Besides, it is guaranteed that
V +
s ∩ V −s = ∅, i.e., conflicting terms are taken as

negative examples.

3.2 Capturing Lexical Semantic Clue in a
Semantic Similarity Graph

To capture lexical semantic clue, each word is first
converted into word embedding, which is a con-
tinuous vector with each dimension’s value corre-
sponds to a semantic or grammatical interpretation
(Turian et al., 2010). Learning large-scale word
embeddings is very time-consuming (Collobert et
al., 2011), we thus employ a faster method named
Skip-gram model (Mikolov et al., 2013).

3.2.1 Learning Word Embedding for
Semantic Representation

Given a sequence of training words W =
{w1, w2, ..., wm}, the goal of the Skip-gram
model is to learn a continuous vector space EB =
{e1, e2, ..., em}, where ei is the word embedding
of wi. The training objective is to maximize the

1Google-n-Gram (http://books.google.com/ngrams) is
used as the background corpus.

2The df(t) part of the original DRM is slightly modified
because we want a tf × idf -like scheme (Liu et al., 2012).

338

average log probability of using word wt to pre-
dict a surrounding word wt+j ,

ÊB = argmax
et∈EB

1
m

m∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt; et)

(3)
where c is the size of the training window. Basi-
cally, p(wt+j |wt; et) is defined as,

p(wt+j |wt; et) =
exp(e′Tt+jet)∑m
w=1 exp(e′

T
wet)

(4)

where e′i is an additional training vector associ-
ated with ei. This basic formulation is impracti-
cal because it is proportional to m. A hierarchical
softmax approximation can be applied to reduce
the computational cost to log2(m), see (Morin and
Bengio, 2005) for details.

To alleviate the data sparsity problem, EB is
first trained on a very large corpus3 (denoted by
C), and then fine-tuned on the target review cor-
pusR. Particularly, for phrasal product features, a
statistic-based method in (Zhu et al., 2009) is used
to detect noun phrases in R. Then, an Unfold-
ing Recursive Autoencoder (Socher et al., 2011) is
trained on C to obtain embedding vectors for noun
phrases. In this way, semantics of infrequent terms
in R can be well captured. Finally, the phrase-
based Skip-gram model in (Mikolov et al., 2013)
is applied onR.

3.2.2 Building the Semantic Similarity Graph
Lexical semantic clue is captured by measuring se-
mantic similarity between terms. The underlying
motivation is that if we have known some product
feature seeds, then terms that are more semanti-
cally similar to these seeds are more likely to be
product features. For example, if screen is known
to be a product feature of mp3, and lcd is of high
semantic similarity with screen, we can infer that
lcd is also a product feature. Analogously, terms
that are semantically similar to negative labeled
seeds are not product features.

Word embedding naturally meets the demand
above: words that are more semantically similar
to each other are located closer in the embedding
space (Collobert et al., 2011). Therefore, we can
use cosine distance between two embedding vec-
tors as the semantic distance measuring metric.
Thus, our method does not rely on term frequency

3Wikipedia(http://www.wikipedia.org) is used in practice.

to rank candidates. This could potentially improve
the ability of mining infrequent product features.

Formally, we create a semantic similarity graph
G = (V,E,W), where V = {Vs ∪ Vc} is the
vertex set, which contains the labeled seed set Vs
and the unlabeled candidate set Vc; E is the edge
set which connects every vertex pair (u, v), where
u, v ∈ V ; W = {wuv : cos(EBu, EBv)} is a
function which associates a weight to each edge.

3.3 Encoding Contextual Semantic Clue
Using Convolutional Neural Network

The CNN is trained on each occurrence of seeds
that is found in review texts. Then for a candidate
term t, the CNN classifies all of its occurrences.
Since seed terms tend to have high frequency in
review texts, only a few seeds will be enough to
provide plenty of occurrences for the training.

3.3.1 The architecture of the Convolutional
Neural Network

The architecture of the Convolutional Neural Net-
work is shown in Figure 2. For a product feature
candidate t in sentence s, every consecutive sub-
sequence qi of s that containing t with a window
of length l is fed to the CNN. For example, as
in Figure 2, if t = {screen}, and l = 3, there
are three inputs: q1 = [the, ipod, screen], q2 =
[ipod, screen, is], q3 = [screen, is, impressive].
Partially, t is replaced by a token “*PF*” to re-
move its lexicon influence4.

Figure 2: The architecture of the Convolutional
Neural Network.

To get the output score, qi is first converted into
a concatenated vector xi = [e1; e2; ...; el], where
ej is the word embedding of the j-th word. In
this way, the CNN serves as a soft pattern miner:

4Otherwise, the CNN will quickly get overfitting on t, be-
cause very few seed lexicons are used for the training.

339

since words that have similar semantics have sim-
ilar low-dimension embedding vectors, the CNN
is less sensitive to lexicon change. The network is
computed by,

y
(1)
i = tanh(W (1)xi + b(1)) (5)

y(2) = max(y(1)
i) (6)

y(3) = W (3)y(2) + b(3) (7)

where y(i) is the output score of the i-th layer, and
b(i) is the bias of the i-th layer; W (1) ∈ Rh×(nl)

and W (3) ∈ R2×h are parameter matrixes, where
n is the dimension of word embedding, and h is
the size of nodes in the hidden layer.

In conventional neural models, the candidate
term t is placed in the center of the window. How-
ever, from Example 2, when l = 5, we can see that
the best windows should be the bracketed texts
(Because, intuitively, the windows should contain
mp3, which is a strong evidence for finding the
product feature), where t = {screen} is at the
boundary. Therefore, we use Equ. 6 to formulate
a max-convolutional layer, which is aimed to en-
able the CNN to find more evidences in contexts
than conventional neural models.

Example 2:
(a) The [screen of this mp3 is] great.
(b) This [mp3 has a great screen].

3.3.2 Training
Let θ = {EB,W (·), b(·)} denotes all the trainable
parameters. The softmax function is used to con-
vert the output score of the CNN to a probability,

p(t|X; θ) =
exp(y(3))∑|C|
j=1 exp(y

(3)
j)

(8)

whereX is the input set for term t, andC = {0, 1}
is the label set representing product feature and
non-product feature, respectively.

To train the CNN, we first use Vs to collect each
occurrence of the seeds in R to form a training
set Ts. Then, the training criterion is to minimize
cross-entropy over Ts,

θ̂ = argmin
θ

|Ts|∑
i=1

− log δip(ti|Xi; θ) (9)

where δi is the binomial target label distribution
for one entry. Backpropagation algorithm with

mini-batch stochastic gradient descent is used to
solve this optimization problem. In addition, some
useful tricks can be applied during the training.
The weight matrixes W (·) are initialized by nor-
malized initialization (Glorot and Bengio, 2010).
W (1) is pre-trained by an autoencoder (Hinton,
1989) to capture semantic compositionality. To
speed up the learning, a momentum method is ap-
plied (Sutskever et al., 2013).

3.4 Combining Lexical and Contextual
Semantic Clues by Label Propagation

We propose a Label Propagation algorithm to
combine both semantic clues in a unified process.
Each term t ∈ V is assumed to have a label dis-
tribution Lt = (p+

t , p
−
t), where p+

t denotes the
probability of the candidate being a product fea-
ture, and on the contrary, p−t = 1− p+

t . The clas-
sified results of the CNN which encode contextual
semantic clue serve as the prior knowledge,

It =

(1, 0), if t ∈ V +

s

(0, 1), if t ∈ V −s
(r+t , r

−
t), if t ∈ Vc

(10)

where (r+t , r
−
t) is estimated by,

r+t =
count+(t)

count+(t) + count−(t)
(11)

where count+(t) is the number of occurrences of
term t that are classified as positive by the CNN,
and count−(t) represents the negative count.

Label Propagation is applied to propagate the
prior knowledge distribution I to the product fea-
ture distribution L via semantic similarity graph
G, so that a product feature candidate is deter-
mined by exploring its semantic relations to all of
the seeds and other candidates globally. We pro-
pose an adapted version on the random walking
view of the Adsorption algorithm (Baluja et al.,
2008) by updating the following formula until L
converges,

Li+1 = (1− α)MTLi + αDI (12)

where M is the semantic transition matrix built
from G; D = Diag[log tf(t)] is a diagonal ma-
trix of log frequencies, which is designed to as-
sign higher “confidence” scores to more frequent
seeds; and α is a balancing parameter. Particu-
larly, when α = 0, we can set the prior knowledge
I without Vc to L0 so that only lexical semantic
clue is used; otherwise if α = 1, only contextual
semantic clue is used.

340

3.5 The Bootstrapping Framework
We summarize the bootstrapping framework of the
proposed method in Algorithm 1. During boot-
strapping, the CNN is enhanced by Label Propaga-
tion which finds more labeled examples for train-
ing, and then the performance of Label Propaga-
tion is also improved because the CNN outputs a
more accurate prior distribution. After running for
several iterations, the algorithm gets enough seeds,
and a final Label Propagation is conducted to pro-
duce the results.

Algorithm 1: Bootstrapping using semantic clues
Input: The review corpusR, a large corpus C
Output: The mined product feature list P
Initialization: Train word embedding set EB first on
C, and then onR
Step 1: Generate product feature seeds Vs (Section 3.1)

Step 2: Build semantic similarity graph G (Section 3.2)

while iter < MAX ITER do
Step 3: Use Vs to collect occurrence set Ts fromR
for training

Step 4: Train a CNNN on Ts (Section 3.3)
Apply mini-batch SGD on Equ. 9;

Step 5: Run Label Propagation (Section 3.4)
Classify candidates usingN to setup I;
L0 ← I;
repeat

Li+1 ← (1− α)MTLi + αDI;
until ||Li+1 − Li||2 < ε;

Step 6: Expand product feature seeds
Move top T terms from Vc to Vs;

iter++
end
Step 7: Run Label Propagation for a final result Lf

Rank terms by L+
f to get P , where L+

f > L−f ;

4 Experiments

4.1 Datasets and Evaluation Metrics
Datasets: We select two real world datasets to
evaluate the proposed method. The first one
is a benchmark dataset in Wang et al. (2011),
which contains English review sets on two do-
mains (MP3 and Hotel)5. The second dataset is
proposed by Chinese Opinion Analysis Evalua-
tion 2008 (COAE 2008)6, where two review sets
(Camera and Car) are selected. Xu et al. (2013)
had manually annotated product features on these
four domains, so we directly employ their annota-
tion as the gold standard. The detailed information
can be found in their original paper.

5http://timan.cs.uiuc.edu/downloads.html
6http://ir-china.org.cn/coae2008.html

Evaluation Metrics: We evaluate the proposed
method in terms of precision(P), recall(R) and F-
measure(F). The English results are evaluated by
exact string match. And for Chinese results, we
use an overlap matching metric, because deter-
mining the exact boundaries is hard even for hu-
man (Wiebe et al., 2005).

4.2 Experimental Settings

For English corpora, the pre-processing are the
same as that in (Qiu et al., 2009), and for Chinese
corpora, the Stanford Word Segmenter (Chang
et al., 2008) is used to perform word segmenta-
tion. We select three state-of-the-art syntax-based
methods to be compared with our method:

DP uses a bootstrapping algorithm named as
Double Propagation (Qiu et al., 2009), which is
a conventional syntax-based method.

DP-HITS is an enhanced version of DP pro-
posed by Zhang et al. (2010), which ranks product
feature candidates by

s(t) = log tf(t) ∗ importance(t) (13)

where importance(t) is estimated by the HITS al-
gorithm (Kleinberg, 1999).

SGW is the Sentiment Graph Walking algo-
rithm proposed in (Xu et al., 2013), which first
extracts syntactic patterns and then uses random
walking to rank candidates. Afterwards, word-
syntactic pattern co-occurrence statistic is used
as feature for a semi-supervised classifier TSVM
(Joachims, 1999) to further refine the results. This
two-stage method is denoted as SGW-TSVM.

LEX only uses lexical semantic clue. Label
Propagation is applied alone in a self-training
manner. The dimension of word embedding n =
100, the convergence threshold ε = 10−7, and the
number of expanded seeds T = 40. The size of
the seed set N is 40. To output product features,
it ranks candidates in descent order by using the
positive score L+

f (t).
CONT only uses contextual semantic clue,

which only contains the CNN. The window size
l is 5. The CNN is trained with a mini-batch size
of 50. The hidden layer size h = 250. Finally,
importance(t) in Equ. 13 is replaced with r+t in
Equ. 11 to rank candidates.

LEX&CONT leverages both semantic clues.

341

Method MP3 Hotel Camera Car Avg.
P R F P R F P R F P R F F

DP 0.66 0.57 0.61 0.66 0.60 0.63 0.71 0.70 0.70 0.72 0.65 0.68 0.66
DP-HITS 0.65 0.62 0.63 0.64 0.66 0.65 0.71 0.78 0.74 0.69 0.68 0.68 0.68

SGW 0.62 0.68 0.65 0.63 0.71 0.67 0.69 0.80 0.74 0.66 0.71 0.68 0.69
LEX 0.64 0.74 0.69 0.65 0.75 0.70 0.69 0.84 0.76 0.68 0.78 0.73 0.72

CONT 0.68 0.65 0.66 0.69 0.68 0.68 0.74 0.77 0.75 0.74 0.70 0.72 0.71
SGW-TSVM 0.73 0.71 0.72 0.75 0.73 0.74 0.78 0.81 0.79 0.76 0.73 0.74 0.75
LEX&CONT 0.74 0.75 0.74 0.75 0.77 0.76 0.80 0.84 0.82 0.79 0.79 0.79 0.78

Table 1: Experimental results of product feature mining. The precision or recall of CONT is the average
performance over five runs with different random initialization of parameters of the CNN. Avg. stands
for the average score.

4.3 The Semantics-based Methods vs.
State-of-the-art Syntax-based Methods

The experimental results are shown in Table 1,
from which we have the following observations:

(i) Our method achieves the best performance
among all of the compared methods. We
also equally split the dataset into five sub-
sets, and perform one-tailed t-test (p ≤ 0.05),
which shows that the proposed semantics-
based method (LEX&CONT) significantly out-
performs the three syntax-based strong com-
petitors (DP, DP-HITS and SGW-TSVM).

(ii) LEX&CONT which leverages both lexical and
contextual semantic clues outperforms ap-
proaches that only use one kind of semantic
clue (LEX and CONT), showing that the com-
bination of the semantic clues is helpful.

(iii) Our methods which use only one kind of
semantic clue (LEX and CONT) outperform
syntax-based methods (DP, DP-HITS and
SGW). Comparing DP-HITS with LEX and
CONT, the difference between them is that
DP-HITS uses a syntax-pattern-based algo-
rithm to estimate importance(t) in Equ. 13,
while our methods use lexical or contextual se-
mantic clue instead. We believe the reason that
LEX or CONT is better is that syntactic pat-
terns only use discrete and local information.
In contrast, CONT exploits latent semantics of
each word in context, and LEX takes advantage
of word embedding, which is induced from
global word co-occurrence statistic. Further-
more, comparing SGW and LEX, both methods
are base on random surfer model, but LEX gets
better results than SGW. Therefore, the word-
word semantic similarity relation used in LEX
is more reliable than the word-syntactic pattern
relation used in SGW.

(iv) LEX&CONT achieves the highest recall
among all of the evaluated methods. Since
DP and DP-HITS rely on frequency for rank-
ing product features, infrequent candidates are
ranked low in their extracted list. As for SGW-
TSVM, the features they used for the TSVM
suffer from the data sparsity problem for in-
frequent terms. In contrast, LEX&CONT is
frequency-independent to the review corpus.
Further discussions on this observation are
given in the next section.

4.4 The Results on Extracting Infrequent
Product Features

We conservatively regard 30% product features
with the highest frequencies in R as frequent fea-
tures, so the remaining terms in the gold standard
are infrequent features. In product feature mining
task, frequent features are relatively easy to find.
Table 2 shows the recall of all the four approaches
for mining frequent product features. We can see
that the performance are very close among differ-
ent methods. Therefore, the recall mainly depends
on mining the infrequent features.

Method MP3 Hotel Camera Car
DP 0.89 0.92 0.86 0.84

DP-HITS 0.89 0.91 0.86 0.85
SGW-TSVM 0.87 0.92 0.88 0.87
LEX&CONT 0.89 0.91 0.89 0.87

Table 2: The recall of frequent product features.

Figure 3 gives the recall of infrequent prod-
uct features, where LEX&CONT achieves the best
performance. So our method is less influenced
by term frequency. Furthermore, LEX gets better
recall than CONT and all syntax-based methods,
which indicates that lexical semantic clue does aid
to mine more infrequent features as expected.

342

1 2 3 4 5 6 7 8 9

.5

.6

.7

.8

.9

1.0

LEX&CONT

CONT

LEX

(a) MP3

1 2 3 4 5 6 7 8 9

.5

.6

.7

.8

.9

1.0

LEX&CONT

CONT

LEX

(b) Hotel

1 2 3 4 5 6 7 8 9

.5

.6

.7

.8

.9

1.0

LEX&CONT

CONT

LEX

(c) Camera

1 2 3 4 5 6 7 8 9

.5

.6

.7

.8

.9

1.0

LEX&CONT

CONT

LEX

(d) Car

Figure 4: Accuracy (y-axis) of product feature seed expansion at each bootstrapping iteration (x-axis).
The error bar shows the standard deviation over five runs.

Method MP3 Hotel Camera Car
P R F P R F P R F P R F

FW-5 0.62 0.63 0.62 0.64 0.64 0.64 0.68 0.73 0.70 0.67 0.66 0.66
FW-9 0.64 0.65 0.64 0.66 0.68 0.67 0.70 0.76 0.73 0.71 0.70 0.70
CONT 0.68 0.65 0.66 0.69 0.68 0.68 0.74 0.77 0.75 0.74 0.70 0.72

Table 3: The results of convolutional method vs. the results of non-convolutional methods.

MP3 Hotel Camera Car

R
ec

al
l

.4

.5

.6

.7

.8

.9
DP
DP-HITS
SGW-TSVM
CONT
LEX
LEX&CONT

Figure 3: The recall of infrequent features. The
error bar shows the standard deviation over five
different runs.

4.5 Lexical Semantic Clue vs. Contextual
Semantic Clue

This section studies the effects of lexical seman-
tic clue and contextual semantic clue during seed
expansion (Step 6 in Algorithm 1), which is con-
trolled by α. When α = 1, we get the CONT; and
if α is set 0, we get the LEX. To take into account
the correctly expanded terms for both positive and
negative seeds, we use Accuracy as the evaluation
metric,

Accuracy =
#TP + #TN

Extracted Seeds

where TP denotes the true positive seeds, and TN
denotes the true negative seeds.

Figure 4 shows the performance of seed ex-
pansion during bootstrapping, in which the accu-
racy is computed on 40 seeds (20 being positive

and 20 being negative) expanded in each itera-
tion. We can see that the accuracies of CONT and
LEX&CONT retain at a high level, which shows
that they can find reliable new product feature
seeds. However, the performance of LEX oscil-
lates sharply and it is very low for some points,
which indicates that using lexical semantic clue
alone is infeasible. On another hand, comparing
CONT with LEX in Table 1, we can see that LEX
performs generally better than CONT. Although
LEX is not so accurate as CONT during seed ex-
pansion, its final performance surpasses CONT.
Consequently, we can draw conclusion that CONT
is more suitable for the seed expansion, and LEX
is more robust for the final result production.

To combine advantages of the two kinds of se-
mantic clues, we set α = 0.7 in Step 5 of Algo-
rithm 1, so that contextual semantic clue plays a
key role to find new seeds accurately. For Step 7,
we set α = 0.3. Thus, lexical semantic clue is
emphasized for producing the final results.

4.6 The Effect of Convolutional Layer

Two non-convolutional variations of the proposed
method are used to be compared with the convo-
lutional method in CONT. FW-5 uses a traditional
neural network with a fixed window size of 5 to
replace the CNN in CONT, and the candidate term
to be classified is placed in the center of the win-
dow. Similarly, FW-9 uses a fixed window size
of 9. Note that CONT uses a 5-term dynamic
window containing the candidate term, so the ex-
ploited number of words in the context is equiva-
lent to FW-9.

343

Table 3 shows the experimental results. We can
see that the performance of FW-5 is much worse
than CONT. The reason is that FW-5 only exploits
half of the context as that of CONT, which is not
sufficient enough. Meanwhile, although FW-9 ex-
ploits equivalent range of context as that of CONT,
it gets lower precisions. It is because FW-9 has
approximately two times parameters in the param-
eter matrix W (1) than that in Equ. 5 of CONT,
which makes it more difficult to be trained with
the same amount of data. Also, lengths of many
sentences in the review corpora are shorter than 9.
Therefore, the convolutional approach in CONT is
the most effective way among these settings.

4.7 Parameter Study
We investigate two key parameters of the proposed
method: the initial number of seeds N , and the
size of the window l used by the CNN.

Figure 5 shows the performance under differ-
ent N , where the F-Measure saturates when N
equates to 40 and beyond. Hence, very few seeds
are needed for starting our algorithm.

N

10 20 30 40 50 60

F
-M

e
a

s
u

re

.65

.70

.75

.80

.85

MP3

Hotel

Camera

Car

Figure 5: F-Measure vs. N for the final results.

Figure 6 shows F-Measure under different win-
dow size l. We can see that the performance is
improved little when l is larger than 5. Therefore,
l = 5 is a proper window size for these datasets.

l

2 3 4 5 6 7

F
-M

e
a

s
u

re

.5

.6

.7

.8

.9

MP3

Hotel

Camera

Car

Figure 6: F-Measure vs. l for the final results.

5 Conclusion and Future Work

This paper proposes a product feature mining
method by leveraging contextual and lexical se-
mantic clues. A semantic similarity graph is built
to capture lexical semantic clue, and a convo-
lutional neural network is used to encode con-
textual semantic clue. Then, a Label Propaga-
tion algorithm is applied to combine both seman-
tic clues. Experimental results prove the effec-
tiveness of the proposed method, which not only
mines product features more accurately than con-
ventional syntax-based method, but also extracts
more infrequent product features.

In future work, we plan to extend the proposed
method to jointly mine product features along with
customers’ opinions on them. The learnt seman-
tic representations of words may also be utilized
to predict fine-grained sentiment distributions over
product features.

Acknowledgement

This work was sponsored by the National
Basic Research Program of China (No.
2012CB316300), the National Natural Sci-
ence Foundation of China (No. 61272332 and
No. 61202329), the National High Technol-
ogy Development 863 Program of China (No.
2012AA011102), and CCF-Tencent Open Re-
search Fund. This work was also supported in
part by Noahs Ark Lab of Huawei Tech. Ltm.

References
Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi

Jing, Jay Yagnik, Shankar Kumar, Deepak
Ravichandran, and Mohamed Aly. 2008. Video
suggestion and discovery for youtube: Taking ran-
dom walks through the view graph. In Proceedings
of the 17th International Conference on World Wide
Web, WWW ’08, pages 895–904, New York, NY,
USA. ACM.

Pi-Chuan Chang, Michel Galley, and Christopher D.
Manning. 2008. Optimizing chinese word segmen-
tation for machine translation performance. In Pro-
ceedings of the Third Workshop on Statistical Ma-
chine Translation, StatMT ’08, pages 224–232.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537,
November.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed

344

dependency parses from phrase structure parses. In
Proceedings of the IEEE / ACL’06 Workshop on
Spoken Language Technology.

Ted Dunning. 1993. Accurate methods for the statis-
tics of surprise and coincidence. Comput. Linguist.,
19(1):61–74, March.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics.

Geoffrey E. Hinton. 1989. Connectionist learning pro-
cedures. Artificial Intelligence, 40(1C3):185 – 234.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Xing Jiang and Ah-Hwee Tan. 2010. Crctol: A
semantic-based domain ontology learning system.
Journal of the American Society for Information Sci-
ence and Technology, 61(1):150–168.

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent twitter sen-
timent classification. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Vol-
ume 1, HLT ’11, pages 151–160, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Thorsten Joachims. 1999. Transductive inference for
text classification using support vector machines. In
Proceedings of the 16th International Conference on
Machine Learning, pages 200–209.

Jon M. Kleinberg. 1999. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632,
September.

Fangtao Li, Sinno Jialin Pan, Ou Jin, Qiang Yang, and
Xiaoyan Zhu. 2012. Cross-domain co-extraction of
sentiment and topic lexicons. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics: Long Papers - Volume 1, ACL
’12, pages 410–419, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Kang Liu, Liheng Xu, and Jun Zhao. 2012. Opin-
ion target extraction using word-based translation
model. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 1346–1356, Jeju Island, Korea,
July. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Samaneh Moghaddam and Martin Ester. 2010. Opin-
ion digger: An unsupervised opinion miner from
unstructured product reviews. In Proceedings of
the 19th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’10, pages
1825–1828, New York, NY, USA. ACM.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the international workshop on arti-
ficial intelligence and statistics, AISTATS05, pages
246–252.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, HLT ’05, pages 339–346.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2009. Expanding domain sentiment lexicon through
double propagation. In Proceedings of the 21st in-
ternational jont conference on Artifical intelligence,
IJCAI’09, pages 1199–1204.

Richard Socher, Eric H Huang, Jeffrey Pennington,
Andrew Y Ng, and Christopher D Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In NIPS’2011, vol-
ume 24, pages 801–809.

Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. 2013. Distributed representations of
words and phrases and their compositionality. In
Proceedings of the 30 th International Conference
on Machine Learning.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, ACL ’10, pages 384–394,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Hongning Wang, Yue Lu, and ChengXiang Zhai. 2011.
Latent aspect rating analysis without aspect key-
word supervision. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’11, pages 618–
626, New York, NY, USA. ACM.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalu-
ation, 39(2-3):165–210.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion min-
ing. In Proceedings of the 2009 Conference on Em-
pirical Methods in Natural Language Processing:
Volume 3 - Volume 3, EMNLP ’09, pages 1533–
1541, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

345

Liheng Xu, Kang Liu, Siwei Lai, Yubo Chen, and Jun
Zhao. 2013. Mining opinion words and opinion tar-
gets in a two-stage framework. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1764–1773, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Lei Zhang, Bing Liu, Suk Hwan Lim, and Eamonn
O’Brien-Strain. 2010. Extracting and ranking prod-
uct features in opinion documents. In Proceedings
of the 23rd International Conference on Compu-
tational Linguistics: Posters, COLING ’10, pages
1462–1470, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Jingbo Zhu, Huizhen Wang, Benjamin K. Tsou, and
Muhua Zhu. 2009. Multi-aspect opinion polling
from textual reviews. In Proceedings of the 18th
ACM Conference on Information and Knowledge
Management, CIKM ’09, pages 1799–1802, New
York, NY, USA. ACM.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006.
Movie review mining and summarization. In Pro-
ceedings of the 15th ACM International Conference
on Information and Knowledge Management, CIKM
’06, pages 43–50, New York, NY, USA. ACM.

346

