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Abstract

Recently, neural network models for nat-
ural language processing tasks have been
increasingly focused on for their ability
to alleviate the burden of manual feature
engineering. In this paper, we propose a
novel neural network model for Chinese
word segmentation called Max-Margin
Tensor Neural Network (MMTNN). By
exploiting tag embeddings and tensor-
based transformation, MMTNN has the
ability to model complicated interactions
between tags and context characters. Fur-
thermore, a new tensor factorization ap-
proach is proposed to speed up the model
and avoid overfitting. Experiments on the
benchmark dataset show that our model
achieves better performances than previ-
ous neural network models and that our
model can achieve a competitive perfor-
mance with minimal feature engineering.
Despite Chinese word segmentation being
a specific case, MMTNN can be easily
generalized and applied to other sequence
labeling tasks.

1 Introduction

Unlike English and other western languages, Chi-
nese do not delimit words by white-space. There-
fore, word segmentation is a preliminary and im-
portant pre-process for Chinese language process-
ing. Most previous systems address this problem
by treating this task as a sequence labeling prob-
lem where each character is assigned a tag indi-
cating its position in the word. These systems
are effective because researchers can incorporate a
large body of handcrafted features into the models.
However, the ability of these models is restricted
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by the design of features and the number of fea-
tures could be so large that the result models are
too large for practical use and prone to overfit on
training corpus.

Recently, neural network models have been in-
creasingly focused on for their ability to mini-
mize the effort in feature engineering. Collobert et
al. (2011) developed the SENNA system that ap-
proaches or surpasses the state-of-the-art systems
on a variety of sequence labeling tasks for English.
Zheng et al. (2013) applied the architecture of
Collobert et al. (2011) to Chinese word segmenta-
tion and POS tagging and proposed a perceptron-
style algorithm to speed up the training process
with negligible loss in performance.

Workable as previous neural network models
seem, a limitation of them to be pointed out is
that the tag-tag interaction, tag-character inter-
action and character-character interaction are not
well modeled. In conventional feature-based lin-
ear (log-linear) models, these interactions are ex-
plicitly modeled as features. Take phrase “打篮
球(play basketball)” as an example, assuming we
are labeling character C0=“篮”, possible features
could be:

f1 =

{
1 C−1=“打” and C1=“球” and y0=“B”
0 else

f2 =

{
1 C0=“篮” and y0=“B” and y−1=“S”
0 else

To capture more interactions, researchers have de-
signed a large number of features based on linguis-
tic intuition and statistical information. In previ-
ous neural network models, however, hardly can
such interactional effects be fully captured rely-
ing only on the simple transition score and the sin-
gle non-linear transformation (See section 2). In
order to address this problem, we propose a new
model called Max-Margin Tensor Neural Network
(MMTNN) that explicitly models the interactions
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between tags and context characters by exploiting
tag embeddings and tensor-based transformation.
Moreover, we propose a tensor factorization ap-
proach that effectively improves the model effi-
ciency and prevents from overfitting. We evalu-
ate the performance of Chinese word segmentation
on the PKU and MSRA benchmark datasets in the
second International Chinese Word Segmentation
Bakeoff (Emerson, 2005) which are commonly
used for evaluation of Chinese word segmentation.
Experiment results show that our model outper-
forms other neural network models.

Although we focus on the question that how
far we can go without using feature engineering
in this paper, the study of deep learning for NLP
tasks is still a new area in which it is currently
challenging to surpass the state-of-the-art with-
out additional features. Following Mansur et al.
(2013), we wonder how well our model can per-
form with minimal feature engineering. There-
fore, we integrate additional simple character bi-
gram features into our model and the result shows
that our model can achieve a competitive perfor-
mance that other systems hardly achieve unless
they use more complex task-specific features.

The main contributions of our work are as fol-
lows:

• We propose a Max-Margin Tensor Neu-
ral Network for Chinese word segmentation
without feature engineering. The test re-
sults on the benchmark dataset show that our
model outperforms previous neural network
models.

• We propose a new tensor factorization ap-
proach that models each tensor slice as the
product of two low-rank matrices. Not only
does this approach improve the efficiency of
our model but also it avoids the risk of over-
fitting.

• Compared with previous works that use a
large number of handcrafted features, our
model can achieve a competitive perfor-
mance with minimal feature engineering.

• Despite Chinese word segmentation being a
specific case, our approach can be easily gen-
eralized to other sequence labeling tasks.

The remaining part of this paper is organized as
follows. Section 2 describes the details of con-
ventional neural network architecture. Section 3

Figure 1: Conventional Neural Network

describes the details of our model. Experiment re-
sults are reported in Section 4. Section 5 reviews
the related work. The conclusions are given in
Section 6.

2 Conventional Neural Network

2.1 Lookup Table

The idea of distributed representation for symbolic
data is one of the most important reasons why the
neural network works. It was proposed by Hin-
ton (1986) and has been a research hot spot for
more than twenty years (Bengio et al., 2003; Col-
lobert et al., 2011; Schwenk et al., 2012; Mikolov
et al., 2013a). Formally, in the Chinese word seg-
mentation task, we have a character dictionary D
of size |D|. Unless otherwise specified, the char-
acter dictionary is extracted from the training set
and unknown characters are mapped to a special
symbol that is not used elsewhere. Each character
c ∈ D is represented as a real-valued vector (char-
acter embedding) Embed(c) ∈ Rd where d is the
dimensionality of the vector space. The charac-
ter embeddings are then stacked into a embedding
matrix M ∈ Rd×|D|. For a character c ∈ D that
has an associated index k, the corresponding char-
acter embedding Embed(c) ∈ Rd is retrieved by
the Lookup Table layer as shown in Figure 1:

Embed(c) = Mek (1)

Here ek ∈ R|D| is a binary vector which is zero in
all positions except at k-th index. The Lookup Ta-
ble layer can be seen as a simple projection layer
where the character embedding for each context
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character is achieved by table lookup operation ac-
cording to their indices. The embedding matrix
M is initialized with small random numbers and
trained by back-propagation. We will analyze in
more detail about the effect of character embed-
dings in Section 4.

2.2 Tag Scoring
The most common tagging approach is the win-
dow approach. The window approach assumes
that the tag of a character largely depends on its
neighboring characters. Given an input sentence
c[1:n], a window of size w slides over the sentence
from character c1 to cn. We set w = 5 in all
experiments. As shown in Figure 1, at position
ci, 1 ≤ i ≤ n, the context characters are fed into
the Lookup Table layer. The characters exceeding
the sentence boundaries are mapped to one of two
special symbols, namely “start” and “end” sym-
bols. The character embeddings extracted by the
Lookup Table layer are then concatenated into a
single vector a ∈ RH1 , where H1 = w · d is
the size of Layer 1. Then a is fed into the next
layer which performs linear transformation fol-
lowed by an element-wise activation function g
such as tanh, which is used in our experiments:

h = g(W1a+ b1) (2)

where W1 ∈ RH2×H1 , b1 ∈ RH2×1, h ∈ RH2 . H2

is a hyper-parameter which is the number of hid-
den units in Layer 2. Given a set of tags T of size
|T |, a similar linear transformation is performed
except that no non-linear function is followed:

f(t|c[i−2:i+2]) = W2h+ b2 (3)

where W2 ∈ R|T |×H2 , b2 ∈ R|T |×1.
f(t|c[i−2:i+2]) ∈ R|T | is the score vector for each
possible tag. In Chinese word segmentation, the
most prevalent tag set T is BMES tag set, which
uses 4 tags to carry word boundary information. It
uses B, M, E and S to denote the Beginning, the
Middle, the End of a word and a Single character
forming a word respectively. We use this tag set in
our method.

2.3 Model Training and Inference
Despite sharing commonalities mentioned above,
previous work models the segmentation task dif-
ferently and therefore uses different training and
inference procedure. Mansur et al. (2013) mod-
eled Chinese word segmentation as a series of

classification task at each position of the sentence
in which the tag score is transformed into proba-
bility using softmax function:

p(ti|c[i−2:i+2]) =
exp(f(ti|c[i−2:i+2]))∑
t′ exp(f(t′|c[i−2:i+2]))

The model is then trained in MLE-style which
maximizes the log-likelihood of the tagged data.
Obviously, it is a local model which cannot cap-
ture the dependency between tags and does not
support to infer the tag sequence globally.

To model the tag dependency, previous neural
network models (Collobert et al., 2011; Zheng
et al., 2013) introduce a transition score Aij for
jumping from tag i ∈ T to tag j ∈ T . For a
input sentence c[1:n] with a tag sequence t[1:n], a
sentence-level score is then given by the sum of
transition and network scores:

s(c[1:n], t[1:n], θ) =
n∑
i=1

(Ati−1ti+fθ(ti|c[i−2:i+2]))

(4)
where fθ(ti|c[i−2:i+2]) indicates the score output
for tag ti at the i-th character by the network with
parameters θ = (M,A,W1, b1,W2, b2). Given
the sentence-level score, Zheng et al. (2013)
proposed a perceptron-style training algorithm in-
spired by the work of Collins (2002). Compared
with Mansur et al. (2013), their model is a global
one where the training and inference is performed
at sentence-level.

Workable as these methods seem, one of the
limitations of them is that the tag-tag interaction
and the neural network are modeled seperately.
The simple tag-tag transition neglects the impact
of context characters and thus limits the ability
to capture flexible interactions between tags and
context characters. Moreover, the simple non-
linear transformation in equation (2) is also poor
to model the complex interactional effects in Chi-
nese word segmentation.

3 Max-Margin Tensor Neural Network

3.1 Tag Embedding
To better model the tag-tag interaction given the
context characters, distributed representation for
tags instead of traditional discrete symbolic repre-
sentation is used in our model. Similar to character
embeddings, given a fixed-sized tag set T , the tag
embeddings for tags are stored in a tag embedding
matrix L ∈ Rd×|T |, where d is the dimensionality
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Figure 2: Max-Margin Tensor Neural Network

of the vector space (same with character embed-
dings). Then the tag embedding Embed(t) ∈ Rd

for tag t ∈ T with index k can be retrieved by the
lookup operation:

Embed(t) = Lek (5)

where ek ∈ R|T |×1 is a binary vector which is
zero in all positions except at k-th index. The tag
embeddings start from a random initialization and
can be automatically trained by back-propagation.
Figure 2 shows the new Lookup Table layer with
tag embeddings. Assuming we are at the i-th char-
acter of a sentence, besides the character embed-
dings, the tag embeddings of the previous tags are
also considered1. For a fast tag inference, only
the previous tag ti−1 is used in our model even
though a longer history of tags can be considered.
The concatenation operation in Layer 1 then con-
catenates the character embeddings and tag em-
bedding together into a long vector a. In this way,
the tag representation can be directly incorporated
in the neural network so that the tag-tag interac-
tion and tag-character interaction can be explicitly
modeled in deeper layers (See Section 3.2). More-
over, the transition score in equation (4) is not
necessary in our model, because, by incorporating
tag embedding into the neural network, the effect
of tag-tag interaction and tag-character interaction
are covered uniformly in one same model. Now

1We also tried the architecture in which the tag embedding
of current tag is also considered, but this did not bring much
improvement and runs slower

Figure 3: The tensor-based transformation in
Layer 2. a is the input from Layer 1. V is the
tensor parameter. Each dashed box represents one
of the H2-many tensor slices, which defines the
bilinear form on vector a.

equation (4) can be rewritten as follows:

s(c[1:n], t[1:n], θ) =
n∑
i=1

fθ(ti|c[i−2:i+2], ti−1)

(6)
where fθ(ti|c[i−2:i+2], ti−1) is the score output for
tag ti at the i-th character by the network with pa-
rameters θ. Like Collobert et al. (2011) and Zheng
et al. (2013), our model is also trained at sentence-
level and carries out inference globally.

3.2 Tensor Neural Network

A tensor is a geometric object that describes rela-
tions between vectors, scalars, and other tensors.
It can be represented as a multi-dimensional array
of numerical values. An advantage of the tensor
is that it can explicitly model multiple interactions
in data. As a result, tensor-based model have been
widely used in a variety of tasks (Salakhutdinov et
al., 2007; Krizhevsky et al., 2010; Socher et al.,
2013b).

In Chinese word segmentation, a proper model-
ing of the tag-tag interaction, tag-character inter-
action and character-character interaction is very
important. In linear models, these kinds of inter-
actions are usually modeled as features. In con-
ventional neural network models, however, the in-
put embeddings only implicitly interact through
the non-linear function which can hardly model
the complexity of the interactions. Given the ad-
vantage of tensors, we apply a tensor-based trans-
formation to the input vector. Formally, we use a
3-way tensor V [1:H2] ∈ RH2×H1×H1 to directly
model the interactions, where H2 is the size of
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Layer 2 and H1 = (w + 1) · d is the size of con-
catenated vector a in Layer 1 as shown in Figure
2. Figure 3 gives an example of the tensor-based
transformation2. The output of a tensor product is
a vector z ∈ RH2 where each dimension zi is the
result of the bilinear form defined by each tensor
slice V [i] ∈ RH1×H1 :

z = aTV [1:H2]a; zi = aTV [i]a =
∑
j,k

V
[i]
jk ajak

(7)
Since vector a is the concatenation of character
embeddings and the tag embedding, equation (7)
can be written in the following form:

zi =
∑
p,q

∑
j,k

V
[i]
(p,q,j,k)E

[p]
j E

[q]
k

where E[p]
j is the j-th element of the p-th embed-

ding in Lookup Table layer and V [i]
(p,q,j,k) is the cor-

responding coefficient for E[p]
j and E

[q]
k in V [i].

As we can see, in each tensor slice i, the em-
beddings are explicitly related in a bilinear form
which captures the interactions between charac-
ters and tags. The multiplicative operations be-
tween tag embeddings and character embeddings
can somehow be seen as “feature combination”,
which are hand-designed in feature-based models.
Our model learns the information automatically
and encodes them in tensor parameters and em-
beddings. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of tag-
character interaction and character-character inter-
action.

Combining the tensor product with linear trans-
formation, the tensor-based transformation in
Layer 2 is defined as:

h = g(aTV [1:H2]a+W1a+ b1) (8)

where W1 ∈ RH2×H1 , b1 ∈ RH2×1, h ∈ RH2 .
In fact, equation (2) used in previous work is a
special case of equation (8) when V is set to 0.

3.3 Tensor Factorization
Despite tensor-based transformation being effec-
tive for capturing the interactions, introducing
tensor-based transformation into neural network
models to solve sequence labeling task is time pro-
hibitive since the tensor product operation drasti-
cally slows down the model. Without consider-
ing matrix optimization algorithms, the complex-
ity of the non-linear transformation in equation (2)

2The bias term is omitted in Figure 3 for simplicity

Figure 4: Tensor product with tensor factorization

is O(H1H2) while the tensor operation complex-
ity in equation (8) is O(H2

1H2). The tensor-based
transformation is H1 times slower. Moreover, the
additional tensor could bring millions of param-
eters to the model which makes the model suf-
fer from the risk of overfitting. To remedy this,
we propose a tensor factorization approach that
factorizes each tensor slice as the product of two
low-rank matrices. Formally, each tensor slice
V [i] ∈ RH1×H1 is factorized into two low rank
matrix P [i] ∈ RH1×r and Q[i] ∈ Rr×H1 :

V [i] = P [i]Q[i], 1 ≤ i ≤ H2 (9)

where r � H1 is the number of factors. Substi-
tuting equation (9) into equation (8), we get the
factorized tensor function:

h = g(aTP [1:H2]Q[1:H2]a+W1a+ b1) (10)

Figure 4 illustrates the operation in each slice of
the factorized tensor. First, vector a is projected
into two r-dimension vectors f1 and f2. Then the
output zi for each tensor slice i is the dot-product
of f1 and f2. The complexity of the tensor op-
eration is now O(rH1H2). As long as r is small
enough, the factorized tensor operation would be
much faster than the un-factorized one and the
number of free parameters would also be much
smaller, which prevent the model from overfitting.

3.4 Max-Margin Training
We use the Max-Margin criterion to train our
model. Intuitively, the Max-Margin criterion pro-
vides an alternative to probabilistic, likelihood-
based estimation methods by concentrating di-
rectly on the robustness of the decision boundary
of a model (Taskar et al., 2005). We use Y (xi)
to denote the set of all possible tag sequences for
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a given sentence xi and the correct tag sequence
for xi is yi. The parameters of our model are
θ = {W1, b1,W2, b2,M,L, P [1:H2], Q[1:H2]}. We
first define a structured margin loss 4(yi, ŷ) for
predicting a tag sequence ŷ for a given correct tag
sequence yi:

4(yi, ŷ) =
n∑
j

κ1{yi,j 6= ŷj} (11)

where n is the length of sentence xi and κ is a dis-
count parameter. The loss is proportional to the
number of characters with an incorrect tag in the
proposed tag sequence, which increases the more
incorrect the proposed tag sequence is. For a given
training instance (xi, yi), we search for the tag se-
quence with the highest score:

y∗ = arg max
ŷ∈Y (x)

s(xi, ŷ, θ) (12)

where the tag sequence is found and scored by the
Tensor Neural Network via the function s in equa-
tion (6). The object of Max-Margin training is that
the highest scoring tag sequence is the correct one:
y∗ = yi and its score will be larger up to a margin
to other possible tag sequences ŷ ∈ Y (xi):

s(x, yi, θ) ≥ s(x, ŷ, θ) +4(yi, ŷ)

This leads to the regularized objective function for
m training examples:

J(θ) =
1
m

m∑
i=1

li(θ) +
λ

2
||θ||2

li(θ) = max
ŷ∈Y (xi)

(s(xi, ŷ, θ) +4(yi, ŷ))

−s(xi, yi, θ)) (13)

By minimizing this object, the score of the correct
tag sequence yi is increased and score of the high-
est scoring incorrect tag sequence ŷ is decreased.

The objective function is not differentiable due
to the hinge loss. We use a generalization of gra-
dient descent called subgradient method (Ratliff et
al., 2007) which computes a gradient-like direc-
tion. The subgradient of equation (13) is:

∂J

∂θ
=

1
m

∑
i

(
∂s(xi, ŷmax, θ)

∂θ
−∂s(xi, yi, θ)

∂θ
)+λθ

where ŷmax is the tag sequence with the highest
score in equation (13). Following Socher et al.
(2013a), we use the diagonal variant of AdaGrad

PKU MSRA
Identical words 5.5× 104 8.8× 104

Total words 1.1× 106 2.4× 106

Identical characters 5× 103 5× 103

Total characters 1.8× 106 4.1× 106

Table 1: Details of the PKU and MSRA datasets

Window size w = 5
Character(tag) embedding size d = 25
Hidden unit number H2 = 50
Number of factors r = 10
Initial learning rate α = 0.2
Margin loss discount κ = 0.2
Regularization λ = 10−4

Table 2: Hyperparameters of our model

(Duchi et al., 2011) with minibatchs to minimize
the objective. The parameter update for the i-th
parameter θt,i at time step t is as follows:

θt,i = θt−1,i − α√∑t
τ=1 g

2
τ,i

gt,i (14)

where α is the initial learning rate and gτ ∈ R|θi|

is the subgradient at time step τ for parameter θi.

4 Experiment

4.1 Data and Model Selection
We use the PKU and MSRA data provided by the
second International Chinese Word Segmentation
Bakeoff (Emerson, 2005) to test our model. They
are commonly used by previous state-of-the-art
models and neural network models. Details of the
data are listed in Table 1. For evaluation, we use
the standard bake-off scoring program to calculate
precision, recall, F1-score and out-of-vocabulary
(OOV) word recall.

For model selection, we use the first 90% sen-
tences in the training data for training and the rest
10% sentences as development data. The mini-
batch size is set to 20. Generally, the number of
hidden units has a limited impact on the perfor-
mance as long as it is large enough. We found
that 50 is a good trade-off between speed and
model performance. The dimensionality of char-
acter (tag) embedding is set to 25 which achieved
the best performance and faster than 50- or 100-
dimensional ones. We also validated on the num-
ber of factors for tensor factorization. The per-
formance is not boosted and the training time in-
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P R F OOV
CRF 87.8 85.7 86.7 57.1
NN 92.4 92.2 92.3 60.0
NN+Tag Embed 93.0 92.7 92.9 61.0
MMTNN 93.7 93.4 93.5 64.2

Table 3: Test results with different configurations.
NN stands for the conventional neural network.
NN+Tag Embed stands for the neural network
with tag embeddings.

creases drastically when the number of factors is
larger than 10. We hypothesize that larger factor
size results in too many parameters to train and
hence perform worse. The final hyperparameters
of our model are set as in Table 2.

4.2 Experiment Results
We first perform a close test3 on the PKU dataset
to show the effect of different model configura-
tions. We also compare our model with the CRF
model (Lafferty et al., 2001), which is a widely
used log-linear model for Chinese word segmen-
tation. The input feature to the CRF model is sim-
ply the context characters (unigram feature) with-
out any additional feature engineering. We use
an open source toolkit CRF++4 to train the CRF
model. All the neural networks are trained us-
ing the Max-Margin approach described in Sec-
tion 3.4. Table 3 summarizes the test results.
As we can see, by using Tag embedding, the F-
score is improved by +0.6% and OOV recall is
improved by +1.0%, which shows that tag embed-
dings succeed in modeling the tag-tag interaction
and tag-character interaction. Model performance
is further boosted after using tensor-based trans-
formation. The F-score is improved by +0.6%
while OOV recall is improved by +3.2%, which
denotes that tensor-based transformation captures
more interactional information than simple non-
linear transformation.

Another important result in Table 3 is that our
neural network models perform much better than
CRF-based model when only unigram features are
used. Compared with CRF, there are two differ-
ences in neural network models. First, the discrete
feature vector is replaced with dense character em-
beddings. Second, the non-linear transformation

3No other material or knowledge except the training data
is allowed

4http://crfpp.googlecode.com/svn/
trunk/doc/index.html?source=navbar

一一一(one) 李李李(Li) 。。。(period)
二(two) 赵(Zhao) ，(comma)
三(three) 蒋(Jiang) ：(colon)
四(four) 孔(Kong) ？(question mark)
五(five) 冯(Feng) “(quotation mark)
六(six) 吴(Wu) 、(Chinese comma)

Table 4: Examples of character embeddings

is used to discover higher level representation. In
fact, CRF can be regarded as a special neural net-
work without non-linear function (Wang and Man-
ning, 2013). Wang and Manning (2013) conduct
an empirical study on the effect of non-linearity
and the results suggest that non-linear models are
highly effective only when distributed representa-
tion is used. To explain why distributed represen-
tation captures more information than discrete fea-
tures, we show in Table 4 the effect of character
embeddings which are obtained from the lookup
table of MMTNN after training. The first row lists
three characters we are interested in. In each col-
umn, we list the top 5 characters that are near-
est (measured by Euclidean distance) to the cor-
responding character in the first row according to
their embeddings. As we can see, characters in
the first column are all Chinese number characters
and characters in the second column and the third
column are all Chinese family names and Chinese
punctuations respectively. Therefore, compared
with discrete feature representations, distributed
representation can capture the syntactic and se-
mantic similarity between characters. As a re-
sult, the model can still perform well even if some
words do not appear in the training cases.

We further compare our model with previous
neural network models on both PKU and MSRA
datasets. Since Zheng et al. (2013) did not
report the results on the these datasets, we re-
implemented their model and tested it on the test
data. The results are listed in the first three rows
of Table 5, which shows that our model achieved
higher F-score than the previous neural network
models.

4.3 Unsupervised Pre-training

Previous work found that the performance can
be improved by pre-training the character em-
beddings on large unlabeled data and using the
obtained embeddings to initialize the charac-
ter lookup table instead of random initialization

299



Models PKU MSRA
P R F OOV P R F OOV

(Mansur et al., 2013) 87.1 87.9 87.5 48.9 92.3 92.2 92.2 53.7
(Zheng et al., 2013) 92.8 92.0 92.4 63.3 92.9 93.6 93.3 55.7
MMTNN 93.7 93.4 93.5 64.2 94.6 94.2 94.4 61.4
(Mansur et al., 2013) + Pre-training 91.2 92.7 92.0 68.8 93.1 93.1 93.1 59.7
(Zheng et al., 2013) + Pre-training 93.5 92.2 92.8 69.0 94.2 93.7 93.9 64.1
MMTNN + Pre-training 94.4 93.6 94.0 69.0 95.2 94.6 94.9 64.8

Table 5: Comparison with previous neural network models

(Mansur et al., 2013; Zheng et al., 2013). Mikolov
et al. (2013b) show that pre-trained embeddings
can capture interesting semantic and syntactic in-
formation such as king−man+woman ≈ queen
on English data. There are several ways to learn
the embeddings on unlabeled data. Mansur et al.
(2013) used the model proposed by Bengio et al.
(2003) which learns the embeddings based on neu-
ral language model. Zheng et al. (2013) followed
the model proposed by Collobert et al. (2008).
They constructed a neural network that outputs
high scores for windows that occur in the cor-
pus and low scores for windows where one char-
acter is replaced by a random one. Mikolov et
al. (2013a) proposed a faster skip-gram model
word2vec5 which tries to maximize classification
of a word based on another word in the same sen-
tence. In this paper, we use word2vec because pre-
liminary experiments did not show differences be-
tween performances of these models but word2vec
is much faster to train. We pre-train the embed-
dings on the Chinese Giga-word corpus (Graff and
Chen, 2005). As shown in Table 5 (last three
rows), both the F-score and OOV recall of our
model boost by using pre-training. Our model still
outperforms other models after pre-training.

4.4 Minimal Feature Engineering

Although we focus on the question that how far we
can go without using feature engineering in this
paper, the study of deep learning for NLP tasks
is still a new area in which it is currently chal-
lenging to surpass the state-of-the-art without ad-
ditional features. To incorporate features into the
neural network, Mansur et al. (2013) proposed
the feature-based neural network where each con-
text feature is represented as feature embeddings.
The idea of feature embeddings is similar to that
of character embeddings described in section 2.1.

5https://code.google.com/p/word2vec/

Model PKU MSRA
Best05(Chen et al., 2005) 95.0 96.0
Best05(Tseng et al., 2005) 95.0 96.4
(Zhang et al., 2006) 95.1 97.1
(Zhang and Clark, 2007) 94.5 97.2
(Sun et al., 2009) 95.2 97.3
(Sun et al., 2012) 95.4 97.4
(Zhang et al., 2013) 96.1 97.4
MMTNN 94.0 94.9
MMTNN + bigram 95.2 97.2

Table 6: Comparison with state-of-the-art systems

Formally, we assume the extracted features form a
feature dictionary Df . Then each feature f ∈ Df

is represented by a d-dimensional vector which is
called feature embedding. Following their idea,
we try to find out how well our model can perform
with minimal feature engineering.

A very common feature in Chinese word seg-
mentation is the character bigram feature. For-
mally, at the i-th character of a sentence c[1:n], the
bigram features are ckck+1(i − 3 < k < i + 2).
In our model, the bigram features are extracted in
the window context and then the corresponding
bigram embeddings are concatenated with char-
acter embeddings in Layer 1 and fed into Layer
2. In Mansur et al. (2013), the bigram embed-
dings are pre-trained on unlabeled data with char-
acter embeddings, which significantly improves
the model performance. Given the long time for
pre-training bigram embeddings, we only pre-train
the character embeddings and the bigram embed-
dings are initialized as the average of character
embeddings of ck and ck+1. Further improve-
ment could be obtained if the bigram embeddings
are also pre-trained. Table 6 lists the segmenta-
tion performances of our model as well as pre-
vious state-of-the-art systems. When bigram fea-
tures are added, the F-score of our model improves
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from 94.0% to 95.2% on PKU dataset and from
94.9% to 97.2% on MSRA dataset. It is a com-
petitive result given that our model only use sim-
ple bigram features while other models use more
complex features. For example, Sun et al. (2012)
uses additional word-based features. Zhang et al.
(2013) uses eight types of features such as Mu-
tual Information and Accessor Variety and they
extract dynamic statistical features from both an
in-domain corpus and an out-of-domain corpus us-
ing co-training. Since feature engineering is not
the main focus of this paper, we did not experi-
ment with more features.

5 Related Work

Chinese word segmentation has been studied with
considerable efforts in the NLP community. The
most popular approach treats word segmentation
as a sequence labeling problem which was first
proposed in Xue (2003). Most previous systems
address this task by using linear statistical mod-
els with carefully designed features such as bi-
gram features, punctuation information (Li and
Sun, 2009) and statistical information (Sun and
Xu, 2011). Recently, researchers have tended to
explore new approaches for word segmentation
which circumvent the feature engineering by au-
tomatically learning features with neural network
models (Mansur et al., 2013; Zheng et al., 2013).
Our study is consistent with this line of research,
however, our model explicitly models the interac-
tions between tags and context characters and ac-
cordingly captures more semantic information.

Tensor-based transformation was also used in
other neural network models for its ability to cap-
ture multiple interactions in data. For example,
Socher et al. (2013b) exploited tensor-based func-
tion in the task of Sentiment Analysis to cap-
ture more semantic information from constituents.
However, given the small size of their tensor ma-
trix, they do not have the problem of high time
cost and overfitting problem as we faced in mod-
eling a sequence labeling task like Chinese word
segmentation. That’s why we propose to decrease
computational cost and avoid overfitting with ten-
sor factorization.

Various tensor factorization (decomposition)
methods have been proposed recently for tensor-
based dimension reduction (Cohen et al., 2013;
Van de Cruys et al., 2013; Chang et al., 2013).
For example, Chang et al. (2013) proposed the

Multi-Relational Latent Semantic Analysis. Sim-
ilar to LSA, a low rank approximation of the ten-
sor is derived using a tensor decomposition ap-
proch. Similar ideas were also used for collab-
orative filtering (Salakhutdinov et al., 2007) and
object recognition (Ranzato et al., 2010). Our ten-
sor factorization is related to these work but uses
a different tensor factorization approach. By in-
troducing tensor factorization into the neural net-
work model for sequence labeling tasks, the model
training and inference are speeded up and overfit-
ting is prevented.

6 Conclusion

In this paper, we propose a new model called Max-
Margin Tensor Neural Network that explicitly
models the interactions between tags and context
characters. Moreover, we propose a tensor fac-
torization approach that effectively improves the
model efficiency and avoids the risk of overfitting.
Experiments on the benchmark datasets show that
our model achieve better results than previous neu-
ral network models and that our model can achieve
a competitive result with minimal feature engi-
neering. In the future, we plan to further extend
our model and apply it to other structure predic-
tion problems.
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