
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 197–207,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Steps to Excellence: Simple Inference with Refined Scoring of
Dependency Trees

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola
Massachusetts Institute of Technology

{yuanzh, taolei, regina, tommi}@csail.mit.edu

Amir Globerson
The Hebrew University

gamir@cs.huji.ac.il

Abstract

Much of the recent work on depen-
dency parsing has been focused on solv-
ing inherent combinatorial problems as-
sociated with rich scoring functions. In
contrast, we demonstrate that highly ex-
pressive scoring functions can be used
with substantially simpler inference pro-
cedures. Specifically, we introduce a
sampling-based parser that can easily han-
dle arbitrary global features. Inspired
by SampleRank, we learn to take guided
stochastic steps towards a high scoring
parse. We introduce two samplers for
traversing the space of trees, Gibbs and
Metropolis-Hastings with Random Walk.
The model outperforms state-of-the-art re-
sults when evaluated on 14 languages
of non-projective CoNLL datasets. Our
sampling-based approach naturally ex-
tends to joint prediction scenarios, such
as joint parsing and POS correction. The
resulting method outperforms the best re-
ported results on the CATiB dataset, ap-
proaching performance of parsing with
gold tags.1

1 Introduction

Dependency parsing is commonly cast as a max-
imization problem over a parameterized scoring
function. In this view, the use of more expres-
sive scoring functions leads to more challenging
combinatorial problems of finding the maximiz-
ing parse. Much of the recent work on parsing has
been focused on improving methods for solving
the combinatorial maximization inference prob-
lems. Indeed, state-of-the-art results have been ob-

1The source code for the work is available at
http://groups.csail.mit.edu/rbg/code/
global/acl2014.

tained by adapting powerful tools from optimiza-
tion (Martins et al., 2013; Martins et al., 2011;
Rush and Petrov, 2012). We depart from this view
and instead focus on using highly expressive scor-
ing functions with substantially simpler inference
procedures. The key ingredient in our approach is
how learning is coupled with inference. Our com-
bination outperforms the state-of-the-art parsers
and remains comparable even if we adopt their
scoring functions.

Rich scoring functions have been used for some
time. They first appeared in the context of rerank-
ing (Collins, 2000), where a simple parser is used
to generate a candidate list which is then reranked
according to the scoring function. Because the
number of alternatives is small, the scoring func-
tion could in principle involve arbitrary (global)
features of parse trees. The power of this method-
ology is nevertheless limited by the initial set of
alternatives from the simpler parser. Indeed, the
set may already omit the gold parse. We dispense
with the notion of a candidate set and seek to ex-
ploit the scoring function more directly.

In this paper, we introduce a sampling-based
parser that places few or no constraints on the
scoring function. Starting with an initial candi-
date tree, our inference procedure climbs the scor-
ing function in small (cheap) stochastic steps to-
wards a high scoring parse. The proposal distri-
bution over the moves is derived from the scoring
function itself. Because the steps are small, the
complexity of the scoring function has limited im-
pact on the computational cost of the procedure.
We explore two alternative proposal distributions.
Our first strategy is akin to Gibbs sampling and
samples a new head for each word in the sentence,
modifying one arc at a time. The second strat-
egy relies on a provably correct sampler for first-
order scores (Wilson, 1996), and uses it within a
Metropolis-Hastings algorithm for general scoring
functions. It turns out that the latter optimizes the

197

score more efficiently than the former.
Because the inference procedure is so simple,

it is important that the parameters of the scoring
function are chosen in a manner that facilitates
how we climb the scoring function in small steps.
One way to achieve this is to make sure that im-
provements in the scoring functions are correlated
with improvements in the quality of the parse.
This approach was suggested in the SampleRank
framework (Wick et al., 2011) for training struc-
tured prediction models. This method was origi-
nally developed for a sequence labeling task with
local features, and was shown to be more effec-
tive than state-of-the-art alternatives. Here we ap-
ply SampleRank to parsing, applying several mod-
ifications such as the proposal distributions men-
tioned earlier.

The benefits of sampling-based learning go be-
yond stand-alone parsing. For instance, we can
use the framework to correct preprocessing mis-
takes in features such as part-of-speech (POS)
tags. In this case, we combine the scoring func-
tion for trees with a stand-alone tagging model.
When proposing a small move, i.e., sampling a
head of the word, we can also jointly sample its
POS tag from a set of alternatives provided by
the tagger. As a result, the selected tag is influ-
enced by a broad syntactic context above and be-
yond the initial tagging model and is directly opti-
mized to improve parsing performance. Our joint
parsing-tagging model provides an alternative to
the widely-adopted pipeline setup.

We evaluate our method on benchmark multi-
lingual dependency corpora. Our method outper-
forms the Turbo parser across 14 languages on av-
erage by 0.5%. On four languages, we top the best
published results. Our method provides a more
effective mechanism for handling global features
than reranking, outperforming it by 1.3%. In terms
of joint parsing and tagging on the CATiB dataset,
we nearly bridge (88.38%) the gap between in-
dependently predicted (86.95%) and gold tags
(88.45%). This is better than the best published
results in the 2013 SPMRL shared task (Seddah et
al., 2013), including parser ensembles.

2 Related Work

Earlier works on dependency parsing focused on
inference with tractable scoring functions. For in-
stance, a scoring function that operates over each
single dependency can be optimized using the

maximum spanning tree algorithm (McDonald et
al., 2005). It was soon realized that using higher
order features could be beneficial, even at the cost
of using approximate inference and sacrificing op-
timality. The first successful approach in this arena
was reranking (Collins, 2000; Charniak and John-
son, 2005) on constituency parsing. Reranking
can be combined with an arbitrary scoring func-
tion, and thus can easily incorporate global fea-
tures over the entire parse tree. Its main disadvan-
tage is that the output parse can only be one of the
few parses passed to the reranker.

Recent work has focused on more powerful in-
ference mechanisms that consider the full search
space (Zhang and McDonald, 2012; Rush and
Petrov, 2012; Koo et al., 2010; Huang, 2008). For
instance, Nakagawa (2007) deals with tractabil-
ity issues by using sampling to approximate
marginals. Another example is the dual decompo-
sition (DD) framework (Koo et al., 2010; Martins
et al., 2011). The idea in DD is to decompose the
hard maximization problem into smaller parts that
can be efficiently maximized and enforce agree-
ment among these via Lagrange multipliers. The
method is essentially equivalent to linear program-
ming relaxation approaches (Martins et al., 2009;
Sontag et al., 2011), and also similar in spirit to
ILP approaches (Punyakanok et al., 2004).

A natural approach to approximate global in-
ference is via search. For instance, a transition-
based parsing system (Zhang and Nivre, 2011)
incrementally constructs a parsing structure us-
ing greedy beam-search. Other approaches op-
erate over full trees and generate a sequence
of candidates that successively increase the
score (Daumé III et al., 2009; Li et al., 2013;
Wick et al., 2011). Our work builds on one such
approach — SampleRank (Wick et al., 2011), a
sampling-based learning algorithm. In SampleR-
ank, the parameters are adjusted so as to guide the
sequence of candidates closer to the target struc-
ture along the search path. The method has been
successfully used in sequence labeling and ma-
chine translation (Haddow et al., 2011). In this
paper, we demonstrate how to adapt the method
for parsing with rich scoring functions.

3 Sampling-Based Dependency Parsing
with Global Features

In this section, we introduce our novel sampling-
based dependency parser which can incorporate

198

arbitrary global features. We begin with the no-
tation before addressing the decoding and learning
algorithms. Finally, we extend our model to a joint
parsing and POS correction task.

3.1 Notations
We denote sentences by x and the corresponding
dependency trees by y ∈ Y(x). Here Y(x) is the
set of valid (projective or non-projective) depen-
dency trees for sentence x. We use xj to refer
to the jth word of sentence x, and hj to the head
word of xj . A training set of size N is given as a
set of pairs D = {(x(i), y(i))}Ni=1 where y(i) is the
ground truth parse for sentence x(i).

We parameterize the scoring function s(x, y) as

s(x, y) = θ · f(x, y) (1)

where f(x, y) is the feature vector associated with
tree y for sentence x. We do not make any assump-
tions about how the feature function decomposes.
In contrast, most state-of-the-art parsers operate
under the assumption that the feature function de-
composes into a sum of simpler terms. For exam-
ple, in the second-order MST parser (McDonald
and Pereira, 2006), all the feature terms involve
arcs or consecutive siblings. Similarly, parsers
based on dual decomposition (Martins et al., 2011;
Koo et al., 2010) assume that s(x, y) decomposes
into a sum of terms where each term can be maxi-
mized over y efficiently.

3.2 Decoding
The decoding problem consists of finding a valid
dependency tree y ∈ Y(x) that maximizes the
score s(x, y) = θ · f(x, y) with parameters θ.
For scoring functions that extend beyond first-
order arc preferences, finding the maximizing non-
projective tree is known to be NP-hard (McDonald
and Pereira, 2006). We find a high scoring tree
through sampling, and (later) learn the parameters
θ so as to further guide this process.

Our sampler generates a sequence of depen-
dency structures so as to approximate independent
samples from

p(y|x, T, θ) ∝ exp (s(x, y)/T) (2)

The temperature parameter T controls how con-
centrated the samples are around the maximum
of s(x, y) (e.g., see Geman and Geman (1984)).
Sampling from target distribution p is typically as
hard as (or harder than) that maximizing s(x, y).

Inputs: θ, x, T0 (initial temperature), c (temperature
update rate), proposal distribution q.
Outputs: y∗
T ← T0

Set y0 to some random tree
y∗ ← y0

repeat
y′ ← q(·|x, yt, T, θ)
if s(x, y′) > s(x, y∗) then
y∗ ← y′

α = min
[
1, p(y′)q(yt|y′)

p(yt)q(y′|yt)

]
Sample Bernouli variable Z with P [Z = 1] = α.
if Z = 0 then
yt+1 ← yt

else
yt+1 ← y′

t← t+ 1
T ← c · T

until convergence
return y∗

Figure 1: Sampling-based algorithm for decoding
(i.e., approximately maximizing s(x, y)).

We follow here a Metropolis-Hastings sampling
algorithm (e.g., see Andrieu et al. (2003)) and
explore different alternative proposal distributions
q(y′|x, y, θ, T). The distribution q governs the
small steps that are taken in generating a sequence
of structures. The target distribution p folds into
the procedure by defining the probability that we
will accept the proposed move. The general struc-
ture of our sampling algorithm is given in Figure 1.

3.2.1 Gibbs Sampling
Perhaps the most natural choice of the proposal
distribution q is a conditional distribution from p.
This is feasible if we restrict the proposed moves
to only small changes in the current tree. In our
case, we choose a word j randomly, and then sam-
ple its head hj according to p with the constraint
that we obtain a valid tree (when projective trees
are sought, this constraint is also incorporated).
For this choice of q, the probability of accepting
the new tree (α in Figure 1) is identically one.
Thus new moves are always accepted.

3.2.2 Exact First-Order Sampling
One shortcoming of the Gibbs sampler is that it
only changes one variable (arc) at a time. This
usually leads to slow mixing, requiring more sam-
ples to get close to the parse with maximum
score. Ideally, we would change multiple heads
in the parse tree simultaneously, and sample those
choices from the corresponding conditional distri-
bution of p. While in general this is increasingly
difficult with more heads, it is indeed tractable if

199

Inputs: x, yt, θ, K (number of heads to change).
Outputs: y′
for i = 1 to |x| do
inTree[i]← false
ChangeNode[i]← false

Set ChangeNode to true for K random nodes.
head[0]← −1
for i = 1 to |x| do
u← i
while not inTree[u] do

if ChangeNode[u] then
head[u]← randomHead(u, θ)

else
head[u]← yt(u)

u← head[u]
if LoopExist(head) then

EraseLoop(head)
u← i
while not inTree[u] do
inTree[u]← true
u← head[u]

return Construct tree y′ from the head array.

Figure 2: A proposal distribution q(y′|yt) based
on the random walk sampler of Wilson (1996).
The function randomHead samples a new head for
node u according to the first-order weights given
by θ.

the model corresponds to a first-order parser. One
such sampling algorithm is the random walk sam-
pler of Wilson (1996). It can be used to obtain
i.i.d. samples from distributions of the form:

p(y) ∝
∏

i→j∈y

wij , (3)

where y corresponds to a tree with a spcified root
and wij is the exponential of the first-order score.
y is always a valid parse tree if we allow multiple
children of the root and do not impose projective
constraint. The algorithm in Wilson (1996) iter-
ates over all the nodes, and for each node performs
a random walk according to the weights wij until
the walk creates a loop or hits a tree. In the first
case the algorithm erases the loop and continues
the walk. If the walk hits the current tree, the walk
path is added to form a new tree with more nodes.
This is repeated until all the nodes are included in
the tree. It can be shown that this procedure gen-
erates i.i.d. trees from p(y).

Since our features do not by design correspond
to a first-order parser, we cannot use the Wilson
algorithm as it is. Instead we use it as the proposal
function and sample a subset of the dependen-
cies from the first-order distribution of our model,
while fixing the others. In each step we uniformly
sample K nodes to update and sample their new

1!

2!

not→Monday→ not ssssssssssss" →""" wasloop erased!

Black→Monday→was

ROOT! It! was! not! Black! Monday!

2!

1!

3!

ROOT! It! was! not! Black! Monday!

(b) walk path:!

(c) walk path:!

(a) original tree!

ROOT! It! was! not! Black! Monday!

Figure 3: An illustration of random walk sam-
pler. The index on each edge indicates its order on
each walk path. The heads of the red words are
sampled while others are fixed. The blue edges
represent the current walk path and the black ones
are already in the tree. Note that the walk direc-
tion is opposite to the dependency direction. (a)
shows the original tree before sampling; (b) and
(c) show the walk path and how the tree is gener-
ated in two steps. The loop not→ Monday→ not
in (b) is erased.

heads using the Wilson algorithm (in the experi-
ments we use K = 4). Note that blocked Gibbs
sampling would be exponential in K, and is thus
very slow already at K = 4. The procedure is de-
scribed in Figure 2 with a graphic illustration in
Figure 3.

3.3 Training
In this section, we describe how to learn the
adjustable parameters θ in the scoring function.
The parameters are learned in an on-line fash-
ion by successively imposing soft constraints be-
tween pairs of dependency structures. We intro-
duce both margin constraints and constraints per-
taining to successive samples generated along the
search path. We demonstrate later that both types
of constraints are essential.

We begin with the standard margin constraints.
An ideal scoring function would always rank the
gold parse higher than any alternative. Moreover,
alternatives that are far from the gold parse should
score even lower. As a result, we require that

s(x(i), y(i))− s(x(i), y) ≥ ∆(y(i), y) ∀y (4)

where ∆(y(i), y) is the number of head mistakes
in y relative to the gold parse y(i). We adopt here
a shorthand Err(y) = ∆(y(i), y), where the de-

200

pendence on y(i) is implied from context. Note
that Equation 4 contains exponentially many con-
straints and cannot be enforced jointly for general
scoring functions. However, our sampling proce-
dure generates a small number of structures along
the search path. We enforce only constraints cor-
responding to those samples.

The second type of constraints are enforced be-
tween successive samples along the search path.
To illustrate the idea, consider a parse y that dif-
fers from y(i) in only one arc, and a parse y′ that
differs from y(i) in ten arcs. We cannot necessarily
assume that s(x, y) is greater than s(x, y′) without
additional encouragement. Thus, we can comple-
ment the constraints in Equation 4 with additional
pairwise constraints (Wick et al., 2011):

s(x(i), y)− s(x(i), y′) ≥ Err(y′)− Err(y) (5)

where similarly to Equation 4, the difference in
scores scales with the differences in errors with re-
spect to the target y(i). We only enforce the above
constraints for y, y′ that are consecutive samples
in the course of the sampling process. These con-
straints serve to guide the sampling process de-
rived from the scoring function towards the gold
parse.

We learn the parameters θ in an on-line fashion
to satisfy the above constraints. This is done via
the MIRA algorithm (Crammer and Singer, 2003).
Specifically, if the current parameters are θt, and
we enforce constraint Equation 5 for a particular
pair y, y′, then we will find θt+1 that minimizes

min ||θ − θt||2 + Cξ
s.t. θ · (f(x, y)− f(x, y′)) ≥ Err(y′)− Err(y)− ξ

(6)

The updates can be calculated in closed form. Fig-
ure 4 summarizes the learning algorithm. We re-
peatedly generate parses based on the current pa-
rameters θt for each sentence x(i), and use succes-
sive samples to enforce constraints in Equation 4
and Equation 5 one at a time.

3.4 Joint Parsing and POS Correction

It is easy to extend our sampling-based parsing
framework to joint prediction of parsing and other
labels. Specifically, when sampling the new heads,
we can also sample the values of other variables at
the same time. For instance, we can sample the
POS tag, the dependency relation or morphology
information. In this work, we investigate a joint

Inputs: D = {(x(i), y(i))}N
i=1.

Outputs: Learned parameters θ.
θ0 ← 0
for e = 1 to #epochs do

for i = 1 toN do
y′ ← q(·|x(i), y

ti
i , θt)

y+ = arg min
y∈

{
y

ti
i

,y′
} Err(y)

y− = arg max
y∈

{
y

ti
i

,y′
} Err(y)

y
ti+1
i ← acceptOrReject(y′, yti

i , θt)
ti ← ti + 1
∇f = f(x(i), y+)− f(x(i), y−)

∆Err = Err(y+)− Err(y−)
if ∆Err 6= 0 and θt · ∇f < ∆Err then

θt+1 ← updateMIRA(∇f,∆Err, θt)
t← t+ 1

∇fg = f(x(i), y(i))− f(x(i), y
ti
i)

if θt · ∇fg < Err(y
ti
i) then

θt+1 ← updateMIRA(∇fg, Err(y
ti
i), θt)

t← t+ 1
return Average of θ0, . . . , θt parameters.

Figure 4: SampleRank algorithm for learning. The
rejection strategy is as in Figure 1. yti

i is the tith
tree sample of x(i). The first MIRA update (see
Equation 6) enforces a ranking constraint between
two sampled parses. The second MIRA update en-
forces constraints between a sampled parse and the
gold parse. In practice several samples are drawn
for each sentence in each epoch.

POS correction scenario in which only the pre-
dicted POS tags are provided in the testing phase,
while both gold and predicted tags are available
for the training set.

We extend our model such that it jointly learns
how to predict a parse tree and also correct the pre-
dicted POS tags for a better parsing performance.
We generate the POS candidate list for each word
based on the confusion matrix on the training set.
Let c(tg, tp) be the count when the gold tag is tg
and the predicted one is tp. For each word w, we
first prune out its POS candidates by using the vo-
cabulary from the training set. We don’t prune
anything if w is unseen. Assuming that the pre-
dicted tag forw is tp, we further remove those tags
t if their counts are smaller than some threshold
c(t, tp) < α · c(tp, tp)2.

After generating the candidate lists for each
word, the rest of the extension is rather straight-
forward. For each sampling, let H be the set of
candidate heads and T be the set of candidate POS
tags. The Gibbs sampler will generate a new sam-
ple from the space H × T . The other parts of the
algorithm remain the same.

2In our work we choose α = 0.003, which gives a 98.9%
oracle POS tagging accuracy on the CATiB development set.

201

arc!

head bigram!

!h h m m+1

arbitrary sibling!

…!
h m s

h m

consecutive sibling!

h m s

grandparent!

g h m

grand-sibling!

g h m s

tri-siblings!

h m s t

grand-grandparent!

g h mgg

outer-sibling-grandchild!

h m sgc h s gcm

inner-sibling-grandchild!

Figure 5: First- to third-order features.

4 Features

First- to Third-Order Features The feature
templates of first- to third-order features are
mainly drawn from previous work on graph-
based parsing (McDonald and Pereira, 2006),
transition-based parsing (Nivre et al., 2006) and
dual decomposition-based parsing (Martins et al.,
2011). As shown in Figure 5, the arc is the basic
structure for first-order features. We also define
features based on consecutive sibling, grandpar-
ent, arbitrary sibling, head bigram, grand-sibling
and tri-siblings, which are also used in the Turbo
parser (Martins et al., 2013). In addition to these
first- to third-order structures, we also consider
grand-grandparent and sibling-grandchild struc-
tures. There are two types of sibling-grandchild
structures: (1) inner-sibling when the sibling is
between the head and the modifier and (2) outer-
sibling for the other cases.

Global Features We used feature shown promis-
ing in prior reranking work Charniak and Johnson
(2005), Collins (2000) and Huang (2008).

• Right Branch This feature enables the model
to prefer right or left-branching trees. It counts
the number of words on the path from the root
node to the right-most non-punctuation word,
normalized by the length of the sentence.

• Coordination In a coordinate structure, the two
adjacent conjuncts usually agree with each other
on POS tags and their span lengths. For in-
stance, in cats and dogs, the conjuncts are both
short noun phrases. Therefore, we add differ-
ent features to capture POS tag and span length
consistency in a coordinate structure.

• PP Attachment We add features of lexical tu-

eat! with! knife! and! fork!

Figure 6: An example of PP attachment with coor-
dination. The arguments should be knife and fork,
not and.

ples involving the head, the argument and the
preposition of prepositional phrases. Generally,
this feature can be defined based on an instance
of grandparent structure. However, we also han-
dle the case of coordination. In this case, the ar-
guments should be the conjuncts rather than the
coordinator. Figure 6 shows an example.

• Span Length This feature captures the distribu-
tion of the binned span length of each POS tag.
It also includes flags of whether the span reaches
the end of the sentence and whether the span is
followed by the punctuation.

• Neighbors The POS tags of the neighboring
words to the left and right of each span, together
with the binned span length and the POS tag at
the span root.

• Valency We consider valency features for each
POS tag. Specifically, we add two types of va-
lency information: (1) the binned number of
non-punctuation modifiers and (2) the concate-
nated POS string of all those modifiers.

• Non-projective Arcs A flag indicating if a de-
pendency is projective or not (i.e. if it spans a
word that does not descend from its head) (Mar-
tins et al., 2011). This flag is also combined with
the POS tags or the lexical words of the head and
the modifier.

POS Tag Features In the joint POS correction
scenario, we also add additional features specifi-
cally for POS prediction. The feature templates
are inspired by previous feature-rich POS tagging
work (Toutanova et al., 2003). However, we are
free to add higher order features because we do
not rely on dynamic programming decoding. In
our work we use feature templates up to 5-gram.
Table 1 summarizes all POS tag feature templates.

5 Experimental Setup

Datasets We evaluate our model on standard
benchmark corpora — CoNLL 2006 and CoNLL
2008 (Buchholz and Marsi, 2006; Surdeanu et al.,
2008) — which include dependency treebanks for
14 different languages. Most of these data sets

202

1-gram 〈ti〉, 〈ti, wi−2〉, 〈ti, wi−1〉, 〈ti, wi〉, 〈ti, wi+1〉,
〈ti, wi+2〉

2-gram 〈ti−1, ti〉, 〈ti−2, ti〉, 〈ti−1, ti, wi−1〉,
〈ti−1, ti, wi〉

3-gram 〈ti−1, ti, ti+1〉, 〈ti−2, ti, ti+1, 〉, 〈ti−1, ti, ti+2〉,
〈ti−2, ti, ti+2〉

4-gram 〈ti−2, ti−1, ti, ti+1〉, 〈ti−2, ti−1, ti, ti+2〉,
〈ti−2, ti, ti+1, ti+2〉

5-gram 〈ti−2, ti−1, ti, ti+1, ti+2〉

Table 1: POS tag feature templates. ti and wi de-
notes the POS tag and the word at the current posi-
tion. ti−x and ti+x denote the left and right context
tags, and similarly for words.

contain non-projective dependency trees. We use
all sentences in CoNLL datasets during training
and testing. We also use the Columbia Arabic
Treebank (CATiB) (Marton et al., 2013). CATiB
mostly includes projective trees. The trees are an-
notated with both gold and predicted versions of
POS tags and morphology information. Follow-
ing Marton et al. (2013), for this dataset we use
12 core POS tags, word lemmas, determiner fea-
tures, rationality features and functional genders
and numbers.

Some CATiB sentences exceed 200 tokens. For
efficiency, we limit the sentence length to 70 to-
kens in training and development sets. However,
we do not impose this constraint during testing.
We handle long sentences during testing by apply-
ing a simple split-merge strategy. We split the sen-
tence based on the ending punctuation, predict the
parse tree for each segment and group the roots of
resulting trees into a single node.

Evaluation Measures Following standard prac-
tice, we use Unlabeled Attachment Score (UAS)
as the evaluation metric in all our experiments.
We report UAS excluding punctuation on CoNLL
datasets, following Martins et al. (2013). For the
CATiB dataset, we report UAS including punctu-
ation in order to be consistent with the published
results in the 2013 SPMRL shared task (Seddah et
al., 2013).

Baselines We compare our model with the Turbo
parser and the MST parser. For the Turbo parser,
we directly compare with the recent published re-
sults in (Martins et al., 2013). For the MST parser,
we train a second-order non-projective model us-
ing the most recent version of the code3.

We also compare our model against a discrim-
inative reranker. The reranker operates over the

3
http://sourceforge.net/projects/mstparser/

top-50 list obtained from the MST parser4. We
use a 10-fold cross-validation to generate candi-
date lists for training. We then train the reranker
by running 10 epochs of cost-augmented MIRA.
The reranker uses the same features as our model,
along with the tree scores obtained from the MST
parser (which is a standard practice in reranking).

Experimental Details Following Koo and Collins
(2010), we always first train a first-order pruner.
For each word xi, we prune away the incoming
dependencies 〈hi, xi〉 with probability less than
0.005 times the probability of the most likely head,
and limit the number of candidate heads up to 30.
This gives a 99% pruning recall on the CATiB
development set. The first-order model is also
trained using the algorithm in Figure 4. Af-
ter pruning, we tune the regularization parameter
C = {0.1, 0.01, 0.001} on development sets for
different languages. Because the CoNLL datasets
do not have a standard development set, we ran-
domly select a held out of 200 sentences from the
training set. We also pick the training epochs from
{50, 100, 150} which gives the best performance
on the development set for each language. After
tuning, the model is trained on the full training set
with the selected parameters.

We apply the Random Walk-based sampling
method (see Section 3.2.2) for the standard de-
pendency parsing task. However, for the joint
parsing and POS correction on the CATiB dataset
we do not use the Random Walk method because
the first-order features in normal parsing are no
longer first-order when POS tags are also vari-
ables. Therefore, the first-order distribution is not
well-defined and we only employ Gibbs sampling
for simplicity. On the CATiB dataset, we restrict
the sample trees to always be projective as de-
scribed in Section 3.2.1. However, we do not im-
pose this constraint for the CoNLL datasets.

6 Results

Comparison with State-of-the-art Parsers Ta-
ble 2 summarizes the performance of our model
and of the baselines. We first compare our model
to the Turbo parser using the Turbo parser fea-
ture set. This is meant to test how our learning
and inference methods compare to a dual decom-
position approach. The first column in Table 2

4The MST parser is trained in projective mode for rerank-
ing because generating top-k list from second-order non-
projective model is intractable.

203

Our Model (UAS) Turbo (UAS) MST 2nd-Ord.
(UAS) Best Published UAS Top-50

Reranker
Top-500
RerankerTurbo Feat. Full Feat.

Arabic 79.86 80.21 79.64 78.75 81.12 (Ma11) 79.03 78.91
Bulgarian 92.97 93.30 93.10 91.56 94.02 (Zh13) 92.81 -
Chinese 92.06 92.63 89.98 91.77 91.89 (Ma10) 92.25 -
Czech 90.62 91.04 90.32 87.30 90.32 (Ma13) 88.14 -
Danish 91.45 91.80 91.48 90.50 92.00 (Zh13) 90.88 90.91
Dutch 85.83 86.47 86.19 84.11 86.19 (Ma13) 81.01 -
English 92.79 92.94 93.22 91.54 93.22 (Ma13) 92.41 -
German 91.79 92.07 92.41 90.14 92.41 (Ma13) 91.19 -
Japanese 93.23 93.42 93.52 92.92 93.72 (Ma11) 93.40 -
Portuguese 91.82 92.41 92.69 91.08 93.03 (Ko10) 91.47 -
Slovene 86.19 86.82 86.01 83.25 86.95 (Ma11) 84.81 85.37
Spanish 88.24 88.21 85.59 84.33 87.96 (Zh13) 86.85 87.21
Swedish 90.48 90.71 91.14 89.05 91.62 (Zh13) 90.53 -
Turkish 76.82 77.21 76.90 74.39 77.55 (Ko10) 76.35 76.23
Average 88.87 89.23 88.72 86.86 89.33 87.92 -

Table 2: Results of our model, the Turbo parser, and the MST parser. “Best Published UAS” includes the
most accurate parsers among Nivre et al. (2006), McDonald et al. (2006), Martins et al. (2010), Martins
et al. (2011), Martins et al. (2013), Koo et al. (2010), Rush and Petrov (2012), Zhang and McDonald
(2012) and Zhang et al. (2013). Martins et al. (2013) is the current Turbo parser. The last two columns
shows UAS of the discriminative reranker.

shows the result for our model with an average of
88.87%, and the third column shows the results
for the Turbo parser with an average of 88.72%.
This suggests that our learning and inference pro-
cedures are as effective as the dual decomposition
method in the Turbo parser.

Next, we add global features that are not used by
the Turbo parser. The performance of our model
is shown in the second column with an average of
89.23%. It outperforms the Turbo parser by 0.5%
and achieves the best reported performance on
four languages. Moreover, our model also outper-
forms the 88.80% average UAS reported in Mar-
tins et al. (2011), which is the top performing sin-
gle parsing system (to the best of our knowledge).

Comparison with Reranking As column 6 of Ta-
ble 2 shows, our model outperforms the reranker
by 1.3%5. One possible explanation of this perfor-
mance gap between the reranker and our model is
the small number of candidates considered by the
reranker. To test this hypothesis, we performed
experiments with top-500 list for a subset of lan-
guages.6 As column 7 shows, this increase in the
list size does not change the relative performance
of the reranker and our model.

Joint Parsing and POS Correction Table 3
shows the results of joint parsing and POS cor-
rection on the CATiB dataset, for our model and

5Note that the comparison is conservative because we
can also add MST scores as features in our model as in
reranker. With these features our model achieves an average
UAS 89.28%.

6We ran this experiment on 5 languages with small
datasets due to the scalability issues associated with rerank-
ing top-500 list.

state-of-the-art systems. As the upper part of the
table shows, the parser with corrected tags reaches
88.38% compared to the accuracy of 88.46% on
the gold tags. This is a substantial increase from
the parser that uses predicted tags (86.95%).

To put these numbers into perspective, the bot-
tom part of Table 3 shows the accuracy of the best
systems from the 2013 SPMRL shared task on
Arabic parsing using predicted information (Sed-
dah et al., 2013). Our system not only out-
performs the best single system (Björkelund et
al., 2013) by 1.4%, but it also tops the ensem-
ble system that combines three powerful parsers:
the Mate parser (Bohnet, 2010), the Easy-First
parser (Goldberg and Elhadad, 2010) and the
Turbo parser (Martins et al., 2013)

Impact of Sampling Methods We compare two
sampling methods introduced in Section 3.2 with
respect to their decoding efficiency. Specifically,
we measure the score of the retrieved trees in test-
ing as a function of the decoding speed, measured
by the number of tokens per second. We change
the temperature update rate c in order to decode
with different speed. In Figure 7 we show the cor-
responding curves for two languages: Arabic and
Chinese. We select these two languages as they
correspond to two extremes in sentence length:
Arabic has the longest sentences on average, while
Chinese has the shortest ones. For both languages,
the tree score improves over time. Given sufficient
time, both sampling methods achieve the same
score. However, the Random Walk-based sam-
pler performs better when the quality is traded for
speed. This result is to be expected given that each

204

Dev. Set (≤ 70) Testing Set
POS Acc. UAS POS Acc. UAS

Gold - 90.27 - 88.46
Predicted 96.87 88.81 96.82 86.95
POS Correction 97.72 90.08 97.49 88.38
CADIM 96.87 87.4- 96.82 85.78
IMS-Single - - - 86.96
IMS-Ensemble - - - 88.32

Table 3: Results for parsing and corrective tagging
on the CATiB dataset. The upper part shows UAS
of our model with gold/predicted information or
POS correction. Bottom part shows UAS of the
best systems in the SPMRL shared task. IMS-
Single (Björkelund et al., 2013) is the best single
parsing system, while IMS-Ensemble (Björkelund
et al., 2013) is the best ensemble parsing system.
We also show results for CADIM (Marton et al.,
2013), the second best system, because we use
their predicted features.

0 20 40 60 80 1002.648

2.65

2.652

2.654

2.656

2.658 x 104

Toks/sec

Sc
or

e

Gibbs
Random Walk

(a) Arabic

0 100 200 300 400 500 600 700 8001.897

1.898

1.899

1.9

x 104

Toks/sec

Sc
or

e

Gibbs
Random Walk

(b) Chinese

Figure 7: Total score of the predicted test trees as
a function of the decoding speed, measured in the
number of tokens per second.

iteration of this sampler makes multiple changes
to the tree, in contrast to a single-edge change of
Gibbs sampler.

The Effect of Constraints in Learning Our train-
ing method updates parameters to satisfy the pair-
wise constraints between (1) subsequent samples
on the sampling path and (2) selected samples and
the ground truth. Figure 8 shows that applying
both types of constraints is consistently better than
using either of them alone. Moreover, these re-
sults demonstrate that comparison between subse-
quent samples is more important than comparison
against the gold tree.

Decoding Speed Our sampling-based parser is an

Danish Japanese Portuguese Swedish89

90

91

92

93

94

U
AS

(%
)

Both
Neighbor
Gold

Figure 8: UAS on four languages when train-
ing with different constraints. “Neighbor” corre-
sponds to pairwise constraints between subsequent
samples, “Gold” represents constraints between a
single sample and the ground truth, “Both” means
applying both types of constraints.

anytime algorithm, and therefore its running time
can be traded for performance. Figure 7 illustrates
this trade-off. In the experiments reported above,
we chose a conservative cooling rate and contin-
ued to sample until the score no longer changed.
The parser still managed to process all the datasets
in a reasonable time. For example, the time that it
took to decode all the test sentences in Chinese and
Arabic were 3min and 15min, respectively. Our
current implementation is in Java and can be fur-
ther optimized for speed.

7 Conclusions

This paper demonstrates the power of combining a
simple inference procedure with a highly expres-
sive scoring function. Our model achieves the best
results on the standard dependency parsing bench-
mark, outperforming parsing methods with elabo-
rate inference procedures. In addition, this frame-
work provides simple and effective means for joint
parsing and corrective tagging.

Acknowledgments

This research is developed in collaboration with
the Arabic Language Technologies (ALT) group
at Qatar Computing Research Institute (QCRI)
within the IYAS project. The authors acknowledge
the support of the MURI program (W911NF-10-
1-0533, the DARPA BOLT program and the US-
Israel Binational Science Foundation (BSF, Grant
No 2012330). We thank the MIT NLP group and
the ACL reviewers for their comments.

205

References
Christophe Andrieu, Nando De Freitas, Arnaud

Doucet, and Michael I Jordan. 2003. An introduc-
tion to mcmc for machine learning. Machine learn-
ing, 50(1-2):5–43.

Anders Björkelund, Ozlem Cetinoglu, Richárd Farkas,
Thomas Mueller, and Wolfgang Seeker. 2013.
(re)ranking meets morphosyntax: State-of-the-art
results from the SPMRL 2013 shared task. In Pro-
ceedings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, pages 135–
145, Seattle, Washington, USA, October. Associa-
tion for Computational Linguistics.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In COLING,
pages 89–97.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, pages 149–164.
Association for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
pages 173–180. Association for Computational Lin-
guistics.

Michael Collins. 2000. Discriminative reranking for
natural language parsing. In Proceedings of the
Seventeenth International Conference on Machine
Learning, ICML ’00, pages 175–182.

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
The Journal of Machine Learning Research, 3:951–
991.

Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction. Machine
learning, 75(3):297–325.

Stuart Geman and Donald Geman. 1984. Stochas-
tic relaxation, gibbs distributions, and the bayesian
restoration of images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, (6):721–741.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 742–750. Association for Computa-
tional Linguistics.

Barry Haddow, Abhishek Arun, and Philipp Koehn.
2011. Samplerank training for phrase-based ma-
chine translation. In Proceedings of the Sixth Work-
shop on Statistical Machine Translation, pages 261–
271. Association for Computational Linguistics.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In ACL, pages 586–
594.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1–11. Association for
Computational Linguistics.

Terry Koo, Alexander M Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1288–1298. Association for Compu-
tational Linguistics.

Quannan Li, Jingdong Wang, Zhuowen Tu, and
David P Wipf. 2013. Fixed-point model for struc-
tured labeling. In Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML-13),
pages 214–221.

André FT Martins, Noah A Smith, and Eric P Xing.
2009. Concise integer linear programming formula-
tions for dependency parsing. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 1-Volume 1, pages 342–350. Association for
Computational Linguistics.

André FT Martins, Noah A Smith, Eric P Xing, Pe-
dro MQ Aguiar, and Mário AT Figueiredo. 2010.
Turbo parsers: Dependency parsing by approxi-
mate variational inference. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 34–44. Association for
Computational Linguistics.

André FT Martins, Noah A Smith, Pedro MQ Aguiar,
and Mário AT Figueiredo. 2011. Dual decompo-
sition with many overlapping components. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 238–249. As-
sociation for Computational Linguistics.

André FT Martins, Miguel B Almeida, and Noah A
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proceedings of the
51th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Yuval Marton, Nizar Habash, Owen Rambow, and
Sarah Alkhulani. 2013. Spmrl13 shared task sys-
tem: The cadim arabic dependency parser. In Pro-
ceedings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, pages 76–
80.

Ryan T McDonald and Fernando CN Pereira. 2006.
Online learning of approximate dependency parsing
algorithms. In EACL.

206

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic.
2005. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
pages 523–530.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning, pages 216–220. Association for
Computational Linguistics.

Tetsuji Nakagawa. 2007. Multilingual dependency
parsing using global features. In EMNLP-CoNLL,
pages 952–956.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiit,
and Svetoslav Marinov. 2006. Labeled pseudo-
projective dependency parsing with support vector
machines. In Proceedings of the Tenth Confer-
ence on Computational Natural Language Learning,
pages 221–225. Association for Computational Lin-
guistics.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav
Zimak. 2004. Semantic role labeling via integer
linear programming inference. In Proceedings of
the 20th international conference on Computational
Linguistics, page 1346. Association for Computa-
tional Linguistics.

Alexander M Rush and Slav Petrov. 2012. Vine prun-
ing for efficient multi-pass dependency parsing. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 498–507. Association for Computational Lin-
guistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D Choi, Richárd Farkas, Jennifer
Foster, Iakes Goenaga, Koldo Gojenola Gallete-
beitia, Yoav Goldberg, et al. 2013. Overview of the
spmrl 2013 shared task: A cross-framework evalua-
tion of parsing morphologically rich languages. In
Proceedings of the Fourth Workshop on Statistical
Parsing of Morphologically-Rich Languages, pages
146–182.

D. Sontag, A. Globerson, and T. Jaakkola. 2011. In-
troduction to dual decomposition for inference. In
Optimization for Machine Learning, pages 219–254.
MIT Press.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
conll-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proceedings of
the Twelfth Conference on Computational Natural
Language Learning, pages 159–177. Association for
Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Michael L. Wick, Khashayar Rohanimanesh, Kedar
Bellare, Aron Culotta, and Andrew McCallum.
2011. Samplerank: Training factor graphs with
atomic gradients. In Lise Getoor and Tobias Schef-
fer, editors, Proceedings of the 28th International
Conference on Machine Learning, ICML 2011,
pages 777–784.

David Bruce Wilson. 1996. Generating random span-
ning trees more quickly than the cover time. In
Proceedings of the twenty-eighth annual ACM sym-
posium on Theory of computing, pages 296–303.
ACM.

Hao Zhang and Ryan McDonald. 2012. Generalized
higher-order dependency parsing with cube prun-
ing. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 320–331. Association for Computational Lin-
guistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2, pages
188–193. Association for Computational Linguis-
tics.

Hao Zhang, Liang Huang Kai Zhao, and Ryan McDon-
ald. 2013. Online learning for inexact hypergraph
search. In Proceedings of EMNLP.

207

