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Preface

Welcome to the proceedings of the system demonstration session. This volume contains the papers of
the system demonstrations presented at the 51st Annual Meeting of the Association for Computational
Linguistics, held in Sofia, Bulgaria, on August 5th, 2013.

The system demonstrations program offers the presentation of early research prototypes as well as
interesting mature systems. The system demonstration chairs and the members of the program committee
received 64 submissions, of which 34 were selected for inclusion in the program (acceptance rate of 53%)
after review by two members of the program committee.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions.
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Abstract
We present WebAnno, a general pur-
pose web-based annotation tool for a wide
range of linguistic annotations. Web-
Anno offers annotation project manage-
ment, freely configurable tagsets and the
management of users in different roles.
WebAnno uses modern web technology
for visualizing and editing annotations in
a web browser. It supports arbitrarily
large documents, pluggable import/export
filters, the curation of annotations across
various users, and an interface to farming
out annotations to a crowdsourcing plat-
form. Currently WebAnno allows part-of-
speech, named entity, dependency parsing
and co-reference chain annotations. The
architecture design allows adding addi-
tional modes of visualization and editing,
when new kinds of annotations are to be
supported.

1 Introduction

The creation of training data precedes any sta-
tistical approach to natural language processing
(NLP). Linguistic annotation is a process whereby
linguistic information is added to a document,
such as part-of-speech, lemmata, named entities,
or dependency relations. In the past, platforms
for linguistic annotations were mostly developed
ad-hoc for the given annotation task at hand, used
proprietary formats for data exchange, or required
local installation effort. We present WebAnno, a
browser-based tool that is immediately usable by
any annotator with internet access. It supports an-
notation on a variety of linguistic levels (called an-
notation layers in the remainder), is interoperable
with a variety of data formats, supports annotation
project management such as user management, of-
fers an adjudication interface, and provides qual-
ity management using inter-annotator agreement.

Furthermore, an interface to crowdsourcing plat-
forms enables scaling out simple annotation tasks
to a large numbers of micro-workers. The added
value of WebAnno, as compared to previous an-
notation tools, is on the one hand its web-based
interface targeted at skilled as well as unskilled
annotators, which unlocks a potentially very large
workforce. On the other hand, it is the support for
quality control, annotator management, and adju-
dication/curation, which lowers the entrance bar-
rier for new annotation projects. We created Web-
Anno to fulfill the following requirements:

• Web-based: Distributed work, no installation
effort, increased availability.

• Interface to crowdsourcing: unlocking a very
large distributed workforce.

• Quality and user management: Integrated
different user roles support (administra-
tor, annotator, and curator), inter-annotator
agreement measurement, data curation, and
progress monitoring.

• Flexibility: Support of multiple annotation
layers, pluggable import and export formats,
and extensibility to other front ends.

• Pre-annotated and un-annotated documents:
supporting new annotations, as well as man-
ual corrections of existing, possibly auto-
matic annotations.

• Permissive open source: Usability of our tool
in future projects without restrictions, under
the Apache 2.0 license.

In the following section, we revisit related work
on annotation tools, which only partially fulfill the
aforementioned requirements. In Section 3, the ar-
chitecture as well as usage aspects of our tool are
lined out. The scope and functionality summary
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of WebAnno is presented in Section 4. Section 5
elaborates on several use cases of WebAnno, and
Section 6 concludes and gives an outlook to fur-
ther directions.

2 Related Work

GATE Teamware (Bontcheva et al., 2010) is prob-
ably the tool that closely matches our requirements
regarding quality management, annotator manage-
ment, and support of a large set of annotation lay-
ers and formats. It is mostly web-based, but the
annotation is carried out with locally downloaded
software. An interface to crowdsourcing platforms
is missing. The GATE Teamware system is heav-
ily targeted towards template-based information
extraction. It sets a focus on the integration of au-
tomatic annotation components rather than on the
interface for manual annotation. Besides, the over-
all application is rather complex for average users,
requires considerable training and does not offer
an alternative simplified interface as it would be
required for crowdsourcing.

General-purpose annotation tools like MMAX2
(Müller and Strube, 2006) or WordFreak (Morton
and LaCivita, 2003) are not web-based and do not
provide annotation project management. They are
also not sufficiently flexible regarding different an-
notation layers. The same holds for specialized
tools for single annotation layers, which we can-
not list here for the sake of brevity.

With the brat rapid annotation tool (Stenetorp
et al., 2012), for the first time a web-based open-
source annotation tool was introduced, which sup-
ports collaborative annotation for multiple anno-
tation layers simultaneously on a single copy of
the document, and is based on a client-server ar-
chitecture. However, the current version of brat
has limitations such as: (i) slowness for docu-
ments of more than 100 sentences, (ii) limits re-
garding file formats, (iii) web-based configuration
of tagsets/tags is not possible and (iv) configuring
the display of multiple layers is not yet supported.
While we use brat’s excellent visualization front
end in WebAnno, we decided to replace the server
layer to support the user and quality management,
and monitoring tools as well as to add the interface
to crowdsourcing.

3 System Architecture of WebAnno

The overall architecture of WebAnno is depicted
in Figure 1. The modularity of the architecture,

Figure 1: System architecture, organized in user,
front end, back end and persistent data storage.

which is mirrored in its open-source implementa-
tion1, makes it possible to easily extend the tool or
add alternative user interfaces for annotation lay-
ers that brat is less suited for, e.g. for constituent
structure. In Section 3.1, we illustrate how differ-
ent user roles are provided with different graphical
user interfaces, and show the expressiveness of the
annotation model. Section 3.2 elaborates on the
functionality of the back end, and describes how
data is imported and exported, as well as our im-
plementation of the persistent data storage.

3.1 Front End

All functionality of WebAnno is accessible via
a web browser. For annotation and visualiza-
tion of annotated documents, we adapted the brat
rapid annotation tool. Changes had to be made to
make brat interoperate with the Apache Wicket,
on which WebAnno is built, and to better integrate
into the WebAnno experience.

3.1.1 Project Definition

The definition and the monitoring of an annota-
tion project is conducted by a project manager (cf.
Figure 1) in a project definition form. It supports
creating a project, loading un-annotated or pre-
annotated documents in different formats2, adding
annotator and curator users, defining tagsets, and
configuring the annotation layers. Only a project
manager can administer a project. Figure 2 illus-
trates the project definition page with the tagset
editor highlighted.

1Available for download at (this paper is based on v0.3.0):
webanno.googlecode.com/

2Formats: plain text, CoNLL (Nivre et al., 2007), TCF
(Heid et al., 2010), UIMA XMI (Ferrucci and Lally, 2004)
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Figure 2: The tagset editor on the project definition page

3.1.2 Annotation
Annotation is carried out with an adapted ver-
sion of the brat editor, which communicates with
the server via Ajax (Wang et al., 2008) using the
JSON (Lin et al., 2012) format. Annotators only
see projects they are assigned to. The annotation
page presents the annotator different options to set
up the annotation environment, for customization:

• Paging: For heavily annotated documents or
very large documents, the original brat vi-
sualization is very slow, both for displaying
and annotating the document. We use a pag-
ing mechanism that limits the number of sen-
tences displayed at a time to make the perfor-
mance independent of the document size.

• Annotation layers: Annotators usually work
on one or two annotations layers, such as
part-of-speech and dependency or named en-
tity annotation. Overloading the annota-
tion page by displaying all annotation layers
makes the annotation and visualization pro-
cess slower. WebAnno provides an option to
configure visible/editable annotation layers.

• Immediate persistence: Every annotation is
sent to the back end immediately and per-
sisted there. An explicit interaction by the
user to save changes is not required.

3.1.3 Workflow
WebAnno implements a simple workflow to track
the state of a project. Every annotator works on a

separate version of the document, which is set to
the state in progress the first time a document is
opened by the annotator. The annotator can then
mark it as complete at the end of annotation at
which point it is locked for further annotation and
can be used for curation. Such a document cannot
be changed anymore by an annotator, but can be
used by a curator. A curator can mark a document
as adjudicated.

3.1.4 Curation
The curation interface allows the curator to open a
document and compare annotations made by the
annotators that already marked the document as
complete. The curator reconciles the annotation
with disagreements. The curator can either decide
on one of the presented alternatives, or freely re-
annotate. Figure 3 illustrates how the curation in-
terface detects sentences with annotation disagree-
ment (left side of Figure 3) which can be used to
navigate to the sentences for curation.

3.1.5 Monitoring
WebAnno provides a monitoring component, to
track the progress of a project. The project man-
ager can check the progress and compute agree-
ment with Kappa and Tau (Carletta, 1996) mea-
sures. The progress is visualized using a matrix of
annotators and documents displaying which docu-
ments the annotators have marked as complete and
which documents the curator adjudicated. Fig-
ure 4 shows the project progress, progress of in-
dividual annotator and completion statistics.
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Figure 3: Curation user interface (left: sentences
with disagreement; right: merging editor)

3.1.6 Crowdsourcing

Crowdsourcing is a way to quickly scale annota-
tion projects. Distributing a task that otherwise
will be performed by a controlled user group has
become much easier. Hence, if quality can be en-
sured, it is an alternative to high quality annotation
using a large number of arbitrary redundant anno-
tations (Wang et al., 2013). For WebAnno, we
have designed an approach where a source doc-
ument is split into small parts that get presented
to micro-workers in the CrowdFlower platform3.
The crowdsourcing component is a separate mod-
ule that handles the communication via Crowd-
Flower’s API, the definition of test items and job
parameters, and the aggregation of results. The
crowdsourced annotation appears as a virtual an-
notator in the tool.

Since it is not trivial to express complex anno-
tation tasks in comparably simple templates suit-
able for crowdsourcing (Biemann, 2013), we pro-
ceed by working out crowdsourcing templates and
strategies per annotation layer. We currently only
support named entity annotation with predefined
templates. However, the open and modular archi-
tecture allows to add more crowdsourced annota-
tion layers.

3.2 Back End

WebAnno is a Java-based web application that
may run on any modern servlet container. In mem-
ory and on the file system, annotations are stored

3www.crowdflower.com

Figure 4: Project monitoring

as UIMA CAS objects (Ferrucci and Lally, 2004).
All other data is persisted in an SQL database.

3.2.1 Data Conversion

WebAnno supports different data models that re-
flect the different communication of data between
the front end, back end, and the persistent data
storage. The brat data model serves exchanging
data between the front end and the back end.

The documents are stored in their original for-
mats. For annotations, we use the type system
from the DKPro Core collection of UIMA compo-
nents (Eckart de Castilho and Gurevych, 2009)4.
This is converted to the brat model for visualiza-
tion. Importing documents and exporting anno-
tations is implemented using UIMA reader and
writer components from DKPro Core as plug-ins.
Thus, support for new formats can easily be added.
To provide quick reaction times in the user inter-
face, WebAnno internally stores annotations in a
binary format, using the SerializedCasReader and
SerializedCasWriter components.

3.2.2 Persistent Data Storage

Project definitions including project name and de-
scriptions, tagsets and tags, and user details are
kept in a database, whereas the documents and an-
notations are stored in the file system. WebAnno
supports limited versioning of annotations, to pro-
tect against the unforeseen loss of data. Figure 5
shows the database entity relation diagram.

4code.google.com/p/dkpro-core-asl/
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Figure 5: WebAnno database scheme

4 Scope and Functionality Summary

WebAnno supports the production of linguistically
annotated corpora for different natural language
processing applications. WebAnno implements
ease of usage and simplicity for untrained users,
and provides:

• Annotation via a fast, and easy-to-use web-
based user interface.

• Project and user management.

• Progress and quality monitoring.

• Interactive curation by adjudicating disagree-
ing annotations from multiple users.

• Crowdsourcing of annotation tasks.

• Configurable annotation types and tag sets.

5 Use Cases

WebAnno currently allows to configure different
span and arc annotations. It comes pre-configured
with the following annotation layers from the
DKPro Core type system:

Span annotations

• Part-of-Speech (POS) tags: an annotation
task on tokens. Currently, POS can be added
to a token, if not already present, and can be
modified. POS annotation is a prerequisite of
dependency annotation (Figure 6).

Figure 6: Parts-of-speech & dependency relations

Figure 7: Co-reference & named entites

• Named entities: a multiple span annotation
task. Spans can cover multiple adjacent to-
kens, nest and overlap (Figure 7), but cannot
cross sentence boundaries.

Arc Annotations

• Dependency relations: This is an arc annota-
tion which connects two POS tag annotations
with a directed relation (Figure 6).

• Co-reference chains: The co-reference chain
is realized as a set of typed mention spans
linked by typed co-reference relation arcs.
The co-reference relation annotation can
cross multiple sentences and is represented in
co-reference chains (Figure 7).

The brat front end supports tokens and sub-
tokens as a span annotation. However, tokens are
currently the minimal annotation units in Web-
Anno, due to a requirement of supporting the TCF
file format (Heid et al., 2010). Part-of-speech an-
notation is limited to singles token, while named
entity and co-reference chain annotations may
span multiple tokens. Dependency relations are
implemented in such a way that the arc is drawn
from the governor to the dependent (or the other
way around, configurable), while co-reference
chains are unidirectional and a chain is formed by
referents that are transitively connected by arcs.

Based on common practice in manual annota-
tion, every user works on their own copy of the
same document so that no concurrent editing oc-
curs. We also found that displaying all annotation
layers at the same time is inconvenient for anno-
tators. This is why WebAnno supports showing
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and hiding of individual annotation layers. The
WebAnno curation component displays all anno-
tation documents from all users for a given source
document, enabling the curator to visualize all of
the annotations with differences at a time. Unlike
most of the annotation tools which rely on config-
uration files, WebAnno enables to freely configure
all parameters directly in the browser.

6 Conclusion and Outlook

WebAnno is a new web-based linguistic annota-
tion tool. The brat annotation and GUI front end
have been enhanced to support rapidly process-
ing large annotation documents, configuring the
annotation tag and tagsets in the browser, speci-
fying visible annotation layers, separating anno-
tation documents per user, just to name the most
important distinctions. Besides, WebAnno sup-
ports project definition, import/export of tag and
tagsets. Flexible support for importing and ex-
porting different data formats is handled through
UIMA components from the DKPro Core project.
The monitoring component of WebAnno helps the
administrator to control the progress of annotators.
The crowdsourcing component of WebAnno pro-
vides a unique functionality to distribute the an-
notation to a large workforce and automatically
integrate the results back into the tool via the
crowdsourcing server. The WebAnno annotation
tool supports curation of different annotation doc-
uments, displaying annotation documents created
by users in a given project with annotation dis-
agreements. In future work, WebAnno will be en-
hanced to support several other front ends to han-
dle even more annotation layers, and to provide
more crowdsourcing templates. Another planned
extension is a more seamless integration of lan-
guage processing tools for pre-annotation.
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Abstract

We implement a city-level geolocation
prediction system for Twitter users. The
system infers a user’s location based on
both tweet text and user-declared metadata
using a stacking approach. We demon-
strate that the stacking method substan-
tially outperforms benchmark methods,
achieving 49% accuracy on a benchmark
dataset. We further evaluate our method
on a recent crawl of Twitter data to in-
vestigate the impact of temporal factors
on model generalisation. Our results sug-
gest that user-declared location metadata
is more sensitive to temporal change than
the text of Twitter messages. We also de-
scribe two ways of accessing/demoing our
system.

1 Introduction

In this paper, we present and evaluate a geoloca-
tion prediction method for Twitter users.1 Given
a user’s tweet data as input, the task of user level
geolocation prediction is to infer a primary loca-
tion (i.e., “home location”: Mahmud et al. (2012))
for the user from a discrete set of pre-defined loca-
tions (Cheng et al., 2010). For instance, President
Obama’s location might be predicted to be Wash-
ington D.C., USA, based on his public tweets and
profile metadata.

Geolocation information is essential to location-
based applications, like targeted advertising and
local event detection (Sakaki et al., 2010;
MacEachren et al., 2011). However, the means
to obtain such information are limited. Although
Twitter allows users to specify a plain text de-
scription of their location in their profile, these de-
scriptions tend to be ad hoc and unreliable (Cheng

1We only use public Twitter data for experiments and ex-
emplification in this study.

et al., 2010). Recently, user geolocation predic-
tion based on a user’s tweets has become popular
(Wing and Baldridge, 2011; Roller et al., 2012),
based on the assumption that tweets implicitly
contain locating information, and with appropri-
ate statistical modeling, the true location can be
inferred. For instance, if a user frequently men-
tions NYC, JFK and yankees, it is likely that they
are from New York City, USA.

In this paper, we discuss an implementation of
a global city-level geolocation prediction system
for English Twitter users. The system utilises both
tweet text and public profile metadata for model-
ing and inference. Specifically, we train multino-
mial Bayes classifiers based on location indica-
tive words (LIWs) in tweets (Han et al., 2012),
and user-declared location and time zone meta-
data. These base classifiers are further stacked
(Wolpert, 1992) using logistic regression as the
meta-classifier. The proposed stacking model is
compared with benchmarks on a public geolo-
cation dataset. Experimental results demonstrate
that our stacking model outperforms benchmark
methods by a large margin, achieving 49% accu-
racy on the test data. We further evaluate the stack-
ing model on a more recent crawl of public tweets.
This experiment tests the effectiveness of a geolo-
cation model trained on “old” data when applied to
“new” data. The results reveal that user-declared
locations are more variable over time than tweet
text and time zone data.

2 Background and Related Work

Identifying the geolocation of objects has been
widely studied in the research literature over target
objects including webpages (Zong et al., 2005),
search queries (Backstrom et al., 2008), Flickr im-
ages (Crandall et al., 2009) and Wikipedia ed-
itors (Lieberman and Lin, 2009). Recently, a
considerable amount of work has been devoted
to extending geolocation prediction for Twitter
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users (Cheng et al., 2010; Eisenstein et al., 2010).
The geolocations are usually represented by un-
ambiguous city names or a partitioning of the
earth’s surface (e.g., grid cells specified by lati-
tude/longitude). User geolocation is generally re-
lated to a “home” location where a user regularly
resides, and user mobility is ignored. Twitter al-
lows users to declare their home locations in plain
text in their profile, however, this data has been
found to be unstructured and ad hoc in preliminary
research (Cheng et al., 2010; Hecht et al., 2011).

While popular for desktop machine geoloca-
tion, methods that map IP addresses to physical
locations (Buyukokkten et al., 1999) cannot be
applied to Twitter-based user geolocation, as IPs
are only known to the service provider and are
non-trivial to retrieve in a mobile Internet environ-
ment. Although social network information has
been proven effective in inferring user locations
(Backstrom et al., 2010; Sadilek et al., 2012; Rout
et al., 2013), we focus exclusively on message
and metadata information in this paper, as they are
more readily accessible.

Text data tends to contain salient geospatial ex-
pressions that are particular to specific regions.
Attempts to leverage this data directly have been
based on analysis of gazetted expressions (Leid-
ner and Lieberman, 2011) or the identification of
geographical entities (Quercini et al., 2010; Qin et
al., 2003). However these methods are limited in
their ability to capture informal geospatial expres-
sions (e.g. Brissie for Brisbane) and more non-
geospatial terms which are associated with partic-
ular locations (e.g. ferry for Seattle or Sydney).

Beyond identifying geographical references us-
ing off-the-shelf tools, more sophisticated meth-
ods have been introduced in the social media
realm. Cheng et al. (2010) built a simple gen-
erative model based on tweet words, and fur-
ther added words which are local to particular re-
gions and applied smoothing to under-represented
locations. Kinsella et al. (2011) applied differ-
ent similarity measures to the task, and investi-
gated the relative difficulty of geolocation predic-
tion at city, state, and country levels. Wing and
Baldridge (2011) introduced a grid-based repre-
sentation for geolocation modeling and inference
based on fixed latitude and longitude values, and
aggregated all tweets in a single cell. Their ap-
proach was then based on lexical similarity us-
ing KL-divergence. One drawback to the uniform-

sized cell representation is that it introduces class
imbalance: urban areas tend to contain far more
tweets than rural areas. Based on this observa-
tion, Roller et al. (2012) introduced an adaptive
grid representation in which cells contain approx-
imately the same number of users, based on a KD-
tree partition. Given that most tweets are from
urban areas, Han et al. (2012) consider a city-
based class division, and explore different feature
selection methods to extract “location indicative
words”, which they show to improve prediction
accuracy. Additionally, time zone information has
been incorporated in a coarse-to-fine hierarchical
model by first determining the time zone, and then
disambiguating locations within it (Mahmud et al.,
2012). Topic models have also been applied to the
task, in capturing regional linguistic differences
(Eisenstein et al., 2010; Yin et al., 2011; Hong et
al., 2012).

When designing a practical geolocation sys-
tem, simple models such as naive Bayes and near-
est prototype methods (e.g., based on KL diver-
gence) have clear advantages in terms of train-
ing and classification throughput, given the size of
the class set (often numbering in the thousands of
classes) and sheer volume of training data (poten-
tially in the terabytes of data). This is particularly
important for online systems and downstream ap-
plications that require timely predictions. As such,
we build off the text-based naive Bayes-based ge-
olocation system of Han et al. (2012), which our
experiments have shown to have a good balance of
tractability and accuracy. By selecting a reduced
set of “location indicative words”, prediction can
be further accelerated.

3 Methodology

In this study, we adopt the same city-based rep-
resentation and multinomial naive Bayes learner
as Han et al. (2012). The city-based representa-
tion consists of 3,709 cities throughout the world,
and is obtained by aggregating smaller cities with
the largest nearby city. Han et al. (2012) found
that using feature selection to identify “location
indicative words” led to improvements in geoloca-
tion performance. We use the same feature selec-
tion technique that they did. Specifically, feature
selection is based on information gain ratio (IGR)
(Quinlan, 1993) over the city-based label set for
each word.

In the original research of Han et al. (2012),
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only the text of Twitter messages was used,
and training was based exclusively on geotagged
tweets, despite these accounting for only around
1% of the total public data on Twitter. In this
research, we include additional non-geotagged
tweets (e.g., posted from a non-GPS enabled de-
vice) for those users who have geotagged tweets
(allowing us to determine a home location for the
user).

In addition to including non-geotagged data in
modeling and inference, we further take advan-
tage of the text-based metadata embedded in a
user’s public profile (and included in the JSON ob-
ject for each tweet). This metadata is potentially
complementary to the tweet message and of bene-
fit for geolocation prediction, especially the user-
declared location and time zone, which we con-
sider here. Note that these are in free text rather
than a structured data format, and that while there
are certainly instances of formal place name de-
scriptions (e.g., Edinburgh, UK), they are often
informal (e.g., mel for Melbourne). As such, we
adopt a statistical approach to model each selected
metadata field, by capturing the text in the form
of character 4-grams, and training a multinomial
naive Bayes classifier for each field.

To combine together the tweet text and meta-
data fields, we use stacking (Wolpert, 1992). The
training of stacking consists of two steps. First,
a multinomial naive Bayes base classifier (L0) is
learned for each data type using 10-fold cross
validation. This is carried out for the tweet
text (TEXT), user-declared location (MB-LOC) and
user-declared time zone (MB-TZ). Next, a meta-
classifier (L1 classifier) is trained over the base
classifiers, using a logistic regression learner (Fan
et al., 2008).

4 Evaluation and Discussion

In this section, we compare our proposed stack-
ing approach with existing benchmarks on a public
dataset, and investigate the impact of time using a
recently collected dataset.

4.1 Evaluation Measures
In line with other work on user geolocation pre-
diction, we use three evaluation measures:

• Acc : The percentage of correct city-level
predictions.

• Acc@161 : The percentage of predicted lo-
cations which are within a 161km (100 mile)

Methods Acc Acc@161 Median
KL .117 .277 793
MB .126 .262 913
KL-NG .260 .487 181
MB-NG .280 .492 170
MB-LOC .405 .525 92
MB-TZ .064 .171 1330
STACKING .490 .665 9

Table 1: Results over WORLD

radius of the home location (Cheng et al.,
2010), to capture near-misses (e.g., Edin-
burgh UK being predicted as Glasgow, UK).

• Median : The median distance from the pre-
dicted city to the home location (Eisenstein et
al., 2010).

4.2 Comparison with Benchmarks

We base our evaluation on the publicly-available
WORLD dataset of Han et al. (2012). The dataset
contains 1.4M users whose tweets are primarily
identified as English based on the output of the
langid.py language identification tool (Lui and
Baldwin, 2012), and who have posted at least 10
geotagged tweets. The city-level home location
for a geotagged user is determined as follows.
First, each of a user’s geotagged tweets is mapped
to its nearest city (based on the same set of 3,709
cities used for the city-based location representa-
tion). Then, the most frequent city for a user is
selected as the home location.

To benchmark our method, we reimplement
two recently-published state-of-the-art methods:
(1) the KL-divergence nearest prototype method
of Roller et al. (2012) based on KD-tree parti-
tioned grid cells, which we denote as KL; and
(2) the multinomial naive Bayes city-level geolo-
cation model of Han et al. (2012), which we de-
note as MB. Because of the different class repre-
sentations, Acc numbers are not comparable be-
tween the benchmarks. To remedy this, we find
the closest city to the centroid of each grid cell in
the KD-tree representation, and map the classifi-
cation onto this city. We present results including
non-geotagged data for users with geotagged mes-
sages for the two methods, as KL-NG and MB-
NG, respectively. We also present results based
on the user-declared location (MB-LOC) and time
zone (MB-TZ), and finally the stacking method
(STACKING) which combines MB-NG, MB-LOC

and MB-TZ. The results are shown in Table 1.

9



The approximate doubling of Acc for KL-
NG and MB-NG over KL and MB, respectively,
demonstrates the high utility of non-geotagged
data in tweet text-based geolocation prediction.
Of the two original models, we can see that MB

is comparable to KL, in line with the findings of
Han et al. (2012). The MB-LOC results are by far
the highest of all the base classifiers. Contrary to
the suggestion of Cheng et al. (2010) that user-
declared locations are too unreliable to use for user
geolocation, we find evidence indicating that they
are indeed a valuable source of information for this
task. The best overall results are achieved for the
stacking approach (STACKING), assigning almost
half of the test users to the correct city-level lo-
cation, and improving more than four-fold on the
previous-best accuracy (i.e., MB). These results
also suggest that there is strong complementarity
between user metadata and tweet text.

4.3 Evaluation on Time-Heterogeneous Data

In addition to the original held-out test data
(WORLDtest) from WORLD, we also developed a
new geotagged evaluation dataset using the Twit-
ter Streaming API.2 This new LIVEtest dataset is
intended to evaluate the impact of time on predic-
tive accuracy. The training and test data in WORLD
are time-homogeneous as they are randomly sam-
pled from data collected in a relatively narrow time
window. In contrast, LIVEtest is much newer, col-
lected more than 1 year later than WORLD. Given
that Twitter users and topics change over time, an
essential question is whether the statistical model
learned from the “old” training data is still effec-
tive over the “new” test data?

The LIVEtest data was collected over 48 hours
from 2013/03/03 to 2013/03/05. By selecting
users with at least 10 geotagged tweets and a de-
clared language of English, 55k users were ob-
tained. For each user, their recent status updates
were aggregated, and non-English users were fil-
tered out based on the language predictions of
langid.py. For some users with geotagged
tweets from many cities, the most frequent city
might not be an appropriate representation of their
home location for evaluation. To improve the eval-
uation data quality, we therefore exclude users
who have less than 50% of their geotagged tweets
originating from a single city. After filtering, 32k

2https://dev.twitter.com/docs/api/1.1/
get/statuses/sample

LIVEtest Acc Acc@161 Median
MB-NG .268 (−.012) .510 (−.018) 151 ( −19)
MB-LOC .326 (−.079) .465 (−.060) 306 (+214)
MB-TZ .065 (+.001) .160 (−.011) 1529 (+199)
STACKING .406 (−.084) .614 (−.051) 40 ( +31)

Table 2: Results over LIVEtest, and the absolute
fluctuation over the results for WORLDtest

users were obtained, forming the final LIVEtest

dataset. In the final LIVEtest, the smallest class
has only one test user, and the largest class has
569 users. The mean users per city is 27.76.

The results over LIVEtest, and the difference
in absolute score over WORLDtest, are shown in
Table 2. The stacked model accuracy numbers
drop 5–8% on LIVEtest, and the median error
distance increases moderately by 31km. Over-
all, the numbers suggest inference on WORLDtest,
which is time-homogenous with the training data
(taken from WORLD), is an easier classification
than LIVEtest, which is time-heterogeneous with
the training data. Training on “old” data and test-
ing on “new” data is certainly possible, however.
Looking over the results of the base classifiers, we
can see that the biggest hit is for MB-LOC clas-
sifier. In contrast, the accuracy for MB-NG and
MB-TZ is relatively stable (other than the sharp in-
crease in the median error distance for MB-TZ).

5 Architecture and Access

In this section, we describe the architecture of the
proposed geolocation system, as well as two ways
of accessing the live system.3 The core structure
of the system consists of two parts: (1) the inter-
face; (2) the back-end geolocation service.

We offer two interfaces to access the system: a
Twitter bot and a web interface. The Twitter bot
account is: @MELBLTFSD. A daemon process de-
tects any user mentions of the bot in tweets via
keyword matching through the Twitter search API.
The screen name of the tweet author is extracted
and sent to the back-end geolocation service, and
the predicted user geolocation is sent to the Twitter
user in a direct message, as shown in Figure 1.

Web access is via http://hum.csse.unimelb.
edu.au:9000/geo.html. Users can input a Twit-
ter user screen name through the web interface,
whereby a call is made to the back-end geoloca-
tion service to geolocate that user. The geoloca-

3The source code is available from https://github.
com/tq010or/acl2013
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Figure 2: Web interface for user geolocation. The numbered green markers represent geotagged tweets.
These coordinates are utilised to validate our predictions, and are not used in the geolocation process.
The red marker is the predicted city-based user geolocation.

Figure 1: Twitter bot interface. When the Twit-
ter bot is mentioned in a tweet, that user is sent a
direct message with the predicted geolocation.

tion results are rendered on a map (along with any
geotagged tweets for the user) as in Figure 2.4

The back-end geolocation service crawls recent
tweets for a given user in real time,5 and word
and n-gram features are extracted from both the
text and the user metadata. These features are sent
to the L0 classifiers (TEXT, MB-LOC and MB-TZ),
and the L0 results are further fed into the L1 clas-
sifier for the final prediction.

6 Summary and Future Work

In this paper, we presented a city-level geoloca-
tion prediction system for Twitter users. Over a
public dataset, our stacking method — exploiting
both tweet text and user metadata — substantially

4Currently, only Google Chrome is supported. https:
//www.google.com/intl/en/chrome/

5Up to 200 tweets are crawled, the upper bound of mes-
sages returned per single request based on Twitter API v1.1.

outperformed benchmark methods. We further
evaluated model generalisation on a newer, time-
heterogeneous dataset. The overall results de-
creased by 5–8% in accuracy, compared with num-
bers on time-homogeneous data, primarily due to
the poor generalisation of the MB-LOC classifier.

In future work, we plan to further investigate
the cause of the MB-LOC classifier accuracy de-
crease on the new dataset. In addition, we’d like
to study differences in prediction accuracy across
cities. For cities with reliable predictions, the sys-
tem can be adapted as a preprocessing module for
downstream applications, e.g., local event detec-
tion based on users with reliable predictions.
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Abstract

Given the increasing interest and devel-
opment of computational and quantitative
methods in historical linguistics, it is im-
portant that scholars have a basis for doc-
umenting, testing, evaluating, and shar-
ing complex workflows. We present a
novel open-source toolkit for quantitative
tasks in historical linguistics that offers
these features. This toolkit also serves
as an interface between existing software
packages and frequently used data for-
mats, and it provides implementations of
new and existing algorithms within a ho-
mogeneous framework. We illustrate the
toolkit’s functionality with an exemplary
workflow that starts with raw language
data and ends with automatically calcu-
lated phonetic alignments, cognates and
borrowings. We then illustrate evaluation
metrics on gold standard datasets that are
provided with the toolkit.

1 Introduction

Since the turn of the 21st century, there has been an
increasing amount of research that applies compu-
tational and quantitative approaches to historical-
comparative linguistic processes. Among these
are: phonetic alignment algorithms (Kondrak,
2000; Prokić et al., 2009), statistical tests for ge-
nealogical relatedness (Kessler, 2001), methods
for phylogenetic reconstruction (Holman et al.,
2011; Bouckaert et al., 2012), and automatic de-
tection of cognates (Turchin et al., 2010; Steiner et
al., 2011), borrowings (Nelson-Sathi et al., 2011),
and proto-forms (Bouchard-Côté et al., 2013).
In contrast to traditional approaches to language

comparison, quantitative methods are often em-
phasized as advantageous with regard to objectiv-
ity, transparency and replicability of results. It

is striking then that given the multitude of new
approaches, very few are publicly available as
executable code. Thus in order to replicate a
study, researchers have to rebuild workflows from
published descriptions and reimplement their ap-
proaches and algorithms. These challenges make
the replication of results difficult, or even impos-
sible, and they hinder not only the evaluation and
comparison of existing algorithms, but also the de-
velopment of new approaches that build on them.

Another problem is that quantitative approaches
that have been released as software are largely in-
compatible with each other and they show great
differences in regard to their input and out for-
mats, application range and flexibility.1 Given the
breadth of research questions involved in deter-
mining language relatedness, this is not surprising.
Furthermore, the linguistic datasets upon which
many analyses and tools are based are only – if at
all – available in disparate formats that need man-
ual or semi-automatic re-editing before they can
be used as input elsewhere. Scholars who want
to analyze a dataset with different approaches of-
ten have to (time-consumingly) convert it into var-
ious input formats and they have to familiarize
themselves with many different kinds of software.
As a result, errors may occur during data conver-
sion processes and the output from different tools
must also be converted into a comparable format.
For the comparison of different output formats or

1There is the STARLING database program for lexicosta-
tistical and glottochronological analyses (Starostin, 2000).
TheRug/L04 software aligns sound sequences and calculates
phonetic distances using the Levensthein distance (Kleiweg,
2009; Levenshtein, 1966). The ASJP-Software also com-
putes the Levenshtein distance (Holman et al., 2011), but its
results are based on previously executed phonetic analyses.
The ALINE software carries out pairwise alignment analy-
ses (Kondrak, 2000). There are also software packages from
evolutionary biology, which are adapted for linguistic pur-
poses, such as MrBayes (Ronquist and Huelsenbeck, 2003),
PHYLIP (Felsenstein, 2005), and SplitsTree (Huson, 1998).

13



for the evaluation of competing quantitative ap-
proaches, gold standard datasets are desirable.
Towards a solution to these problems, we have

developed a toolkit that (a) serves as an interface
between existing software packages and data for-
mats frequently used in quantitative approaches,
(b) provides high-quality implementations of new
and existing approaches within a homogeneous
framework, and (c) offers a solid basis for test-
ing, documenting, evaluating, and sharing com-
plex workflows in quantitative historical linguis-
tics. We call this open source toolkit LingPy.

2 Lingpy

LingPy is written in Python3 and is freely avail-
able online.2 The Lingpy website contains an API,
documentation, tutorials, example scripts, work-
flows, and datasets that can be used for training,
testing, and comparing results from different algo-
rithms. We use Python because it is flexible and
object-oriented, it is easy to write C extensions
for scientific computing, and it is approachable
to non-programmers (Knight et al., 2007). Apart
from a large number of different functions for com-
mon automatic tasks, LingPy offers specific mod-
ules for implementing general workflows that are
used in historical linguistics and which partially
mimic the basic aspects of the traditional compar-
ative method (Trask, 2000, 64-67). Figure 1 il-
lustrates the interaction between different modules
along with the data they produce. In the following
subsections, these modules will be introduced in
the order of a typical workflow to illustrate the ba-
sic capabilities of the LingPy toolkit in more detail.

2.1 Input Formats
The basic input format read by LingPy is a tab-
delimited text file in which the first line (the
header) indicates the values of the columns and all
words are listed in the following rows. The for-
mat is very flexible. No specific order of columns
or rows is required. Any additional data can be
specified by the user, as long as it is in a separate
column. Each row represents a word that has to be
characterized by a minimum of four values that are
given in separate columns: (1) ID, an integer that
is used to uniquely identify the word during calcu-
lations, (2) CONCEPT, a gloss which indicates the
meaning of the word and which is used to align the
words semantically, (3) WORD, the orthographic
2http://lingpy.org
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Cognate
sets Alignments

Cognate
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Phonetic
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Output 
formats
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Patchy 
cognate 

sets
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Figure 1: Basic Workflow in LingPy

representation of the word,3 and (4) TAXON, the
name of the language (or dialect) inwhich theword
occurs. Basic output formats are essentially the
same, the difference being that the results of cal-
culations are added as separate columns. Table 1
illustrates the basic structure of the input format
for a dataset covering 325 concepts translated into
18 Dogon language varieties taken from the Do-
gon comparative lexical spreadsheet (Heath et al.,
2013).4

2.2 Parsing and Unicode Handling

Given a dataset in the basic LingPy input for-
mat, the first step towards sound-based normal-
ization for automatically identifying cognates and
sound changes with quantitative methods is to
parse words into tokens. Orthographic tokeniza-
tion is a non-trivial task, but it is needed to at-

3By this we mean a textual representation of the word,
whether in a document or language-specific orthography or
in some form of broad or narrow transcription, etc.

4This tokenized dataset and analyses that are discussed in this
work are available for download from the LingPy website.
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ID CONCEPT WORD TAXON
... ... ... ...
1239 file (tool) kí:rà Toro_Tegu
1240 file (tool) dì:sî: Ben_Tey
1241 file (tool) kírâl Bankan_Tey
1242 file (tool) dì:jú Jamsay
... ... ... ...
1249 file (tool) bìmbú Tommo_So
1250 file (tool) bìmbú Dogul_Dom
1251 file (tool) dì:zù Yanda_Dom
1252 file (tool) bí:mbyé Mombo
... ... ... ...

Table 1: Basic Input Format of LingPy

tain interoperability across different orthographies
or transcription systems and to enable the com-
parative analysis of languages. LingPy includes
a parser that takes as input a dataset and an op-
tional orthography profile, i.e. a description of
the Unicode code points, characters, graphemes
and orthographic rules that are needed to ade-
quately model a writing system for a language va-
riety as described in a particular document (Moran,
2012, 331). The LingPy parser first normalizes all
strings into UnicodeNormalization FormD,which
decomposes all character sequences and reorders
them into one canonical order. This step is nec-
essary because sequences of Unicode characters
may differ in their visual and logical orders. Next,
if no orthography profile is specified, the parser
will use a regular expression match \X for Uni-
code grapheme clusters, i.e. combining character
sequences typified by a base character followed by
one or more Combing Diacritical Marks. How-
ever, another layer of tokenization is usually re-
quired to match linguistic graphemes, or what Uni-
code calls ‘tailored grapheme clusters’. Table 2 il-
lustrates the different technological and linguistic
levels involved in orthographic parsing.5

code points t s h o ˜   ̰     ́ s h i
“characters” t s h ṍ̰ s h i
graphemes tsh ṍ̰ sh i

Table 2: Tokens for the string <tshṍ�shi>

So, given the dataset illustrated in Table 1 and
an orthography profile that defines the phone-
mic units in the Dogon comparative lexicon, the
5Note that even when a linguist transcribes a word with the
International Phonetic Alphabet (IPA; a transcription system
with one-to-one symbol-to-sound correspondences), explicit
definitions for phonemes are needed because some IPA dia-
critics are encoded as Unicode Spacing Modifier Letters, i.e.
characters that are not specified as how they combine with a
base character, such as aspiration.

LingPy parser produces the IPA tokenized output
shown in Table 3.

ID ... WORD TOKENS ...
... ... ... ... ...
1239 ... kí:rà # k í: r à # ...
1240 ... dì:sî: # d ì: s î: # ...
1241 ... kírâl # k í r â l # ...
1242 ... dì:jú # d ì: ʤ ú # ...
... ... ... ... ...
1249 ... bìmbú # b ì m b ú # ...
1250 ... bìmbú # b ì m b ú # ...
1251 ... dì:zù # d ì: z ù # ...
1252 ... bí:mbyé # b í: m b j é # ...
... ... ... ... ...

Table 3: Orthographic Parsing in LingPy

2.3 Phonetic Alignments
Although less common in traditional historical lin-
guistics, phonetic alignment plays a crucial role
in automatic approaches, with alignment analyses
being currently used in many different subfields,
such as dialectology (Prokić et al., 2009), phyloge-
netic reconstruction (Holman et al., 2011) and cog-
nate detection (List, 2012a). Furthermore, align-
ment analyses are very useful for data visualiza-
tion, since they directly show which sound seg-
ments correspond in cognate words.
LingPy offers implementations for many dif-

ferent approaches to pairwise and multiple pho-
netic alignment. Among these, there are stan-
dard approaches that are directly taken from evo-
lutionary biology and can be applied to linguistic
data with only slight modifications, such as the
Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) and the Smith-Waterman algo-
rithm (Smith and Waterman, 1981). Furthermore,
there are novel approaches that use more com-
plex sequence models in order to meet linguistic-
specific requirements, such as the Sound-Class-
based phonetic Alignment (SCA) method (List,
2012b). Figure 2 shows a plot of the multi-
ple alignment of the counterparts of the concept
“stool” in eight Dogon languages. The color
scheme for the sound segments follows the sound
class distinction of Dolgopolsky (1964).

2.4 Automatic Cognate Detection
The identification of cognates plays an impor-
tant role in both traditional and quantitative ap-
proaches in historical linguistics. Most quantita-
tive approaches dealing with phylogenetic recon-
struction are based on previously identified cog-
nate sets distributed over the languages being in-
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Taxon Alignment
Ben_Tey t ú ŋ g ú r - ú m
Bankan_Tey t ú ŋ g ú r - ú -
Jamsay t ú ŋ - ú rⁿ - ú -
Perge_Tegu t ú ŋ - ú rⁿ - ú m
Gourou t ú m - ú r - ú -
Yorno_So t ɔ́ ŋ - ɔ́ - - - -
Tommo_So t ú ŋ g ú r - ú -
Tebul_Ure t ú ŋ g ú r g ɔ́ -

XXX XXX XXX XXX XXX XXX XXX XXX XXX

Figure 2: Multiple Phonetic Alignment in LingPy

vestigated (Bouckaert et al., 2012; Bouchard-Côté
et al., 2013). Since the traditional approach to cog-
nate detection within the framework of the com-
parative method is very time-consuming and diffi-
cult to evaluate for the non-expert, automatic ap-
proaches to cognate detection can play an impor-
tant role in objectifying phylogenetic reconstruc-
tions.
Currently, LingPy offers four alternative ap-

proaches to cognate detection in multilingual
wordlists. Themethod by Turchin et al. (2010) em-
ploys sound classes as proposed by Dolgopolsky
(1964) and assigns words that match in their first
two consonant classes to the same cognate set. The
NED method calculates the normalized edit dis-
tance between words and groups them into cognate
sets using a flat cluster algorithm.6 The SCA and
the LexStat methods (List, 2012a) use the same
strategy for clustering, but the distances for the
SCA method are calculated with help of the SCA
alignment method (List, 2012b), and the distances
for the LexStat method are derived from previ-
ously identified regular sound correspondences.
Table 4 shows a small section of the results from
the LexStat analysis of the Dogon data. As shown,
LingPy follows the STARLING approach in dis-
playing cognate judgments by assigning cognate
words the same cognate ID (COGID). In Table
4, the words judged to be cognate are shaded in
the same color. The full results are posted on the
LingPy website.

2.5 Automatic Borrowing Detection
Automatic approaches for borrowing detection
are still in their infancy in historical linguistics.
LingPy provides a full reimplementation (along
with specifically linguistic modifications) of the
minimal lateral network (MLN) approach (Nelson-
Sathi et al., 2011). This approach searches for cog-
nate sets which are not compatible with a given ref-
6The normalized edit distance is calculated by dividing the
edit distance (Levenshtein, 1966) by the length of the smaller
sequence, see Holman et al. (2011) for details.

ID CONCEPT WORD TAXON COGID
... ... ... ... ...
1239 file (tool) kí:rà Toro_Tegu 68
1240 file (tool) dì:sî: Ben_Tey 69
1241 file (tool) kírâl Bankan_Tey 68
1242 file (tool) dì:jú Jamsay 69
... ... ... ... ...
1249 file (tool) bìmbú Tommo_So 70
1250 file (tool) bìmbú Dogul_Dom 70
1251 file (tool) dì:zù Yanda_Dom 69
1252 file (tool) bí:mbyé Mombo 70
... ... ... ... ...

Table 4: Cognate Detection in LingPy

erence tree topology. Incompatible (patchy) cog-
nate sets often point to either borrowings or wrong
cognate assessments in the data. The results can
be visualized by connecting all taxa of the refer-
ence tree for which patchy cognate sets can be in-
ferred with lateral links. In Figure 3, the method
has been applied again to the Dogon dataset. Cog-
nate judgments for this analysis were carried out
with help of LingPy’s LexStat method. The tree
topology was calculated using MrBayes.

2.6 Output Formats
The output formats supported by LingPy can be di-
vided into three different classes. The first class
consists of text-based formats that can be used
for manual correction and inspection by import-
ing the data into spreadsheet programs, or sim-
ply editing and reviewing the results in a text
editor. The second class consists of specific
formats for third-party toolkits, such as PHY-
LIP, SplitsTree, MrBayes, or STARLING. LingPy
currently offers support for PHYLIP’s distance
calculations (DST-format), for tree-representation
(Newick-format), for complex representations of
character data (Nexus-format), and for the im-
port into STARLING databases (CSV with STAR-
LING markup). The third class consists of new
approaches to the visualization of phonetic align-
ments, cognate sets, and phylogenetic networks.
In fact, all plots in this paper were created with
LingPy’s output formats.

3 Evaluation

In order to improve the performance of quantita-
tive approaches, it is of crucial importance to test
and evaluate them. Evaluation is usually done by
comparing how well a given approach performs
on a reference dataset, i.e. a gold standard, where
the results of the analysis are known in advance.
LingPy comes with a module for the evaluation of
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Figure 3: Borrowing Detection in LingPy

basic tasks in historical linguistics, such as pho-
netic alignment and cognate detection. This mod-
ule offers both common evaluation measures that
are used to assess the accuracy of the respective
methods and gold standard datasets encoded in the
LingPy input format.
In Figure 4, the performance of the four above-

mentioned approaches to automatic cognate de-
tection are compared with the gold standard cog-
nate judgments of a dataset covering 207 con-
cepts translated into 20 Indo-European languages
taken from the Indo-European Lexical Cognacy
(IELex) database (Bouckaert et al., 2012).7 The
pair scores, implemented in LingPy after the de-
scription in Bouchard-Côté et al. (2013), were used
as an evaluation measure. For all approaches we
chose the respective thresholds that tend to yield
the best results on all of the gold standards. As
shown in Figure, both the SCA and LexStat meth-
ods show a higher accuracy than the Turchin and
NED methods, with LexStat slightly outperform-
ing SCA. However, the generally bad performance

7Gold standard here means that the cognate judgments were
carried out manually by the compilers of the IELex database.

of all approaches on this dataset shows that there is
a clear need for improving automatic cognate de-
tection approaches, especially in cases of remote
relationship, such as Indo-European.
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Figure 4: Evaluating Cognate Detection Methods

4 Conclusion

Quantitative approaches in historical linguistics
are still in their infancy, far away from being able
to compete with the intuition of trained historical
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linguists. The toolkit we presented is a first at-
tempt to close the gap between quantitative and
traditional methods by providing a homogeneous
framework that serves as an interface between ex-
isting packages and at the same time provides high-
quality implementations of new approaches.
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Abstract

This paper presents AnnoMarket, an open
cloud-based platform which enables re-
searchers to deploy, share, and use lan-
guage processing components and re-
sources, following the data-as-a-service
and software-as-a-service paradigms. The
focus is on multilingual text analysis re-
sources and services, based on an open-
source infrastructure and compliant with
relevant NLP standards. We demonstrate
how the AnnoMarket platform can be used
to develop NLP applications with little
or no programming, to index the results
for enhanced browsing and search, and
to evaluate performance. Utilising Anno-
Market is straightforward, since cloud in-
frastructural issues are dealt with by the
platform, completely transparently to the
user: load balancing, efficient data upload
and storage, deployment on the virtual ma-
chines, security, and fault tolerance.

1 Introduction

Following the Software-as-a-Service (SaaS)
paradigm from cloud computing (Dikaiakos et al.,
2009), a number of text processing services have
been developed, e.g. OpenCalais1 and Alchemy
API2. These provide information extraction ser-
vices, accessible programmatically and charged
per number of documents processed.

However, they suffer from two key technical
drawbacks. Firstly, document-by-document pro-
cessing over HTTP is inefficient on large datasets
and is also limited to within-document text pro-
cessing algorithms. Secondly, the text process-
ing algorithms are pre-packaged: it is not pos-
sible for researchers to extend the functional-

1http://www.opencalais.com
2http://www.alchemyapi.com

ity (e.g. adapt such a service to recognise new
kinds of entities). Additionally, these text pro-
cessing SaaS sites come with daily rate limits,
in terms of number of API calls or documents
that can be processed. Consequently, using these
services for research is not just limited in terms
of text processing functionality offered, but also
quickly becomes very expensive on large-scale
datasets. A moderately-sized collection of tweets,
for example, comprises small but numerous docu-
ments, which can lead to unfeasibly high process-
ing costs.

Platform-as-a-Service (PaaS) (Dikaiakos et al.,
2009) are a type of cloud computing service which
insulates developers from the low-level issues of
utilising cloud infrastructures effectively, while
providing facilities for efficient development, test-
ing, and deployment of software over the Inter-
net, following the SaaS model. In the context
of traditional NLP research and development, and
pre-dating cloud computing, similar needs were
addressed through NLP infrastructures, such as
GATE (Cunningham et al., 2013) and UIMA (Fer-
rucci and Lally, 2004). These infrastructures ac-
celerated significantly the pace of NLP research,
through reusable algorithms (e.g. rule-based pat-
tern matching engines, machine learning algo-
rithms), free tools for low-level NLP tasks, and
support for multiple input and output document
formats (e.g. XML, PDF, DOC, RDF, JSON).

This demonstration introduces the AnnoMar-
ket3 open, cloud-based platform, which has
been developed following the PaaS paradigm.
It enables researchers to deploy, share, and
use language processing components and re-
sources, following the Data-as-a-Service (DaaS)
and Software-as-a-Service (SaaS) paradigms. It
gives researchers access to an open, standard-
compliant NLP infrastructure and enables them

3At the time of writing, a beta version of AnnoMarket is
available at http://annomarket.com
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to carry out large-scale NLP experiments by har-
nessing the vast, on-demand compute power of
the Amazon cloud. It supports not only NLP al-
gorithm development and execution, but also on-
demand collaborative corpus annotation and per-
formance evaluation. Important infrastructural is-
sues are dealt with by the platform, completely
transparently for the researcher: load balancing,
efficient data upload and storage, deployment on
the virtual machines, security, and fault tolerance.

AnnoMarket differs from previous work (e.g.
(Zhou et al., 2010; Ramakrishnan et al., 2010))
in that it requires no programming in order to
run a GATE-compliant NLP application on a large
dataset. In that sense, it combines the ease of
use of an NLP SaaS with the openness and com-
prehensive facilities of the GATE NLP infras-
tructure. AnnoMarket offers a growing number
of pre-packaged services, in multiple languages.
Additionally, as a specialised NLP PaaS, it also
supports a bring-your-own-pipeline option, which
can be built easily by reusing pre-existing GATE-
compatible NLP components and adding some
new ones. Moreover, in addition to offering entity
extraction services like OpenCalais, our NLP PaaS
also supports manual corpus annotation, semantic
indexing and search, and performance evaluation.

The contributions of this paper are as follows:

1. A demonstration of running AnnoMarket
multilingual NLP services on large datasets,
without programming. The new service
deployment facilities will also be shown,
including how services can optionally be
shared with others.

2. A demonstration on shared research corpora
via the AnnoMarket platform, following the
data-as-a-service model (the sharer is respon-
sible for ensuring no copyright violations).

3. A demonstration of the large-scale search and
browsing interface, which uses the results of
the NLP SaaS to offer enhanced, semantic-
based functionality.

2 The AnnoMarket NLP PaaS

This section first discusses the methodology
underpinning the AnnoMarket platform, then
presents its architecture and key components.

2.1 Development and Deployment
Methodology

The development of text analysis algorithms and
pipelines typically follows a certain methodolog-
ical pattern, or lifecycle. A central problem is
to define the NLP task, such that human anno-
tators can perform it with a high level of agree-
ment and to create high quality training and evalu-
ation datasets. It is common to use double or triple
annotation, where several people perform the an-
notation task independently and we then measure
their level of agreement (Inter-Annotator Agree-
ment, or IAA) to quantify and control the quality
of this data (Hovy, 2010).

The AnnoMarket platform was therefore de-
signed to offer full methodological support for all
stages of the text analysis development lifecycle:

1. Create an initial prototype of the NLP
pipeline, testing on a small document collec-
tion, using the desktop-based GATE user in-
terface (Cunningham et al., 2002);

2. If required, collect a gold-standard corpus for
evaluation and/or training, using the GATE
Teamware collaborative corpus annotation
service (Bontcheva et al., 2013), running in
AnnoMarket;

3. Evaluate the performance of the automatic
pipeline on the gold standard (either locally
in the GATE development environment or on
the cloud). Return to step 1 for further devel-
opment and evaluation cycles, as needed.

4. Upload the large datasets and deploy the NLP
pipeline on the AnnoMarket PaaS;

5. Run the large-scale NLP experiment and
download the results as XML or a standard
linguistic annotation format (Ide and Ro-
mary, 2004). AnnoMarket also offers scal-
able semantic indexing and search over the
linguistic annotations and document content.

6. Analyse any errors, and if required, iterate
again over the earlier steps.

AnnoMarket is fully compatible with the GATE
open-source architecture (Cunningham et al.,
2002), in order to benefit from GATE’s numerous
reusable and multilingual text processing compo-
nents, and also from its infrastructural support for
linguistic standards and diverse input formats.

2.2 Architecture

The architecture of the AnnoMarket PaaS com-
prises of four layers (see Figure 1), combining
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Figure 1: The AnnoMarket Architecture

components with related capabilities. Addition-
ally, we have identified three aspects, which span
across multiple layers.

The Data Layer is described in Section 2.3, the
Platform Layer – in Section 2.4, and the Annota-
tion Services – in Section 2.5.

The fourth, web user interface layer, contains a
number of UI components that allow researchers
to use the AnnoMarket platform in various ways,
e.g. to run an already deployed text annotation ser-
vice on a large dataset, to deploy and share a new
service on the platform, or to upload (and option-
ally share) a document collection (i.e. a corpus).
There is also support for finding relevant services,
deployed on the AnnoMarket platform. Lastly,
due to the platform running on the Amazon cloud
infrastructure, there are account management in-
terfaces, including billing information, payments,
and usage reports.

The first vertical aspect is cloud deployment on
Amazon. This covers support for automatic up and
down-scaling of the allocated Amazon resources,
detection of and recovery from Amazon infras-
tructure failures and network failures, and data
backup.

Usage monitoring and billing is the second
key vertical aspect, since fine-grained pay-as-
you-go ability is essential. Even in the case of
freely-available annotations services, Amazon us-
age charges are incurred and thus such function-
ality is needed. Various usage metrics are mon-
itored and metered so that proper billing can be
guaranteed, including: storage space required by
language resources and data sets; CPU utilisation
of the annotation services; number and size of doc-
uments processed.

Security aspects also have impact on all the lay-

ers of the AnnoMarket platform:
• Data Layer – data encryption and access con-

trol;
• Platform Layer – data encryption, authentica-

tion and access control;
• Service layer – authentication and transport

level encryption;
• User Interface layer – authentication and

transport level encryption.
In addition, we have implemented a REST pro-

gramming API for AnnoMarket, so that data up-
load and download and running of annotation ser-
vices can all be done automatically, outside of
the web interface. This allows tighter integration
within other applications, as well as support for
synchronous (i.e. document-by-document) calling
of the annotation services.

2.3 The Data Layer
The Data Layer stores various kinds of content,
e.g. crawled web content, users’ own corpora (pri-
vate or shared with others), results from running
the annotation services, etc.

Input documents can be in all major formats
(e.g., XML, HTML, JSON, PDF, DOC), based
on GATE’s comprehensive format support. In all
cases, when a document is being processed by An-
noMarket, the format is analysed and converted
into a single unified, graph-based model of an-
notation: the one of the GATE NLP framework
(Cunningham et al., 2002). Then this internal an-
notation format is also used by the collaborative
corpus annotation web tool, and for annotation in-
dexing and search. Annotations produced can be
exported as in-line or stand-off XML, including
XCES (Ide and Romary, 2004).

In implementation terms, Amazon S3 is used to
store content on the platform. S3 provides a REST
service for content access, as well as direct HTTP
access, which provides an easy way for AnnoMar-
ket users to upload and download content.

While stored on the cloud, data is protected by
Amazon’s security procedures. All transfers be-
tween the cloud storage, the annotation services,
and the user’s computer are done via an encrypted
channel, using SSL.

2.4 The Platform Layer
The AnnoMarket platform provides an environ-
ment where text processing applications can be de-
ployed as annotation services on the cloud. It al-
lows processing pipelines that were produced on a
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Figure 2: Web-based Job Editor

developer’s stand-alone computer to be deployed
seamlessly on distributed hardware resources (the
compute cloud) with the aim of processing large
amounts of data in a timely fashion. This process
needs to be resilient in the face of failures at the
level of the cloud infrastructure, the network com-
munication, errors in the processing pipeline and
in the input data.

The platform layer determines the optimal num-
ber of virtual machines for running a given NLP
application, given the size of the document collec-
tion to be processed and taking into account the
overhead in starting up new virtual machines on
demand. The implementation is designed to be ro-
bust in the face of hardware failures and process-
ing errors. For technical details on the way this
was implemented on Amazon EC2 see (Tablan et
al., 2013).

The GATE plugin-based architecture (Cunning-
ham et al., 2002) is the basis for the platform en-
vironment. Users can upload any pipelines com-
pliant with the GATE Processing Resource (PR)
model and these are automatically deployed as an-
notation services on the AnnoMarket platform.

2.5 Annotation Services

As discussed above, the platform layer in An-
noMarket addresses most of the technical and
methodological requirements towards the NLP
PaaS, making the deployment, execution, and
sharing of annotation services (i.e. pipelines and
algorithms) a straightforward task. From a re-
searcher’s perspective, executing an annotation
service on a dataset involves a few simple steps:
• Upload the document collection to be pro-

cessed or point the system to a shared dataset
on the platform;

• Upload a GATE-based processing pipeline to
be used (or choose an already deployed anno-
tation service);
• Set any required parameter values;
• Press the ‘Start’ button.
While the job is running, a regularly updated

execution log is made available in the user’s dash-
board. Upon job completion, an email notification
is also sent. Most of the implementation details are
hidden away from the user, who interacts with the
system through a web-based job editor, depicted
in Figure 2, or through a REST API.

The number of already deployed annotation ser-
vices on the platform is growing continuously.
Figure 3 shows a subset of them, as well as the
metadata tags associated with these services, so
that users can quickly restrict which types of ser-
vices they are after and then be shown only the
relevant subset. At the time of writing, there are
services of the following kinds:
• Part-of-Speech-Taggers for English, German,

Dutch, and Hungarian.
• Chunking: the GATE NP and VP chunkers

and the OpenNLP ones;
• Parsing: currently the Stanford Parser 4, but

more are under integration;
• Stemming in 15 languages, via the Snowball

stemmer;
• Named Entity Recognition: in English, Ger-

man, French, Arabic, Dutch, Romanian, and
Bulgarian;
• Biomedical taggers: the PennBio5 and the

AbGene (Tanabe and Wilbur, 2002) taggers;
• Twitter-specific NLP: language detection, to-

kenisation, normalisation, POS tagging, and

4http://nlp.stanford.edu/software/lex-parser.shtml
5http://www.seas.upenn.edu/˜strctlrn/BioTagger/BioTagger.html
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Figure 3: Pre-deployed Text Annotation Services

Figure 4: Creating a New Annotation Service

NER.

The deployment of new annotation services is
done via a web interface (see Figure 4), where an
administrator needs to configure some basic de-
tails related to the utilisation of the platform layer
and provide a self-contained GATE-compatible
application. Platform users can only publish their
own annotation services by contacting an adminis-
trator, who can validate the provided pipeline be-
fore making it publicly available to the other users.
This step is intended to protect the users commu-
nity from malicious or poor quality pipelines.

3 Search and Browsing of Annotated
Corpora

The AnnoMarket platform also includes a service
for indexing and searching over a collection of se-
mantically annotated documents. The output of an
annotation service (see Figure 2) can be fed di-
rectly into a search index, which is created as the
service is run on the documents. This provides fa-
cilities for searching over different views of doc-
ument text, for example one can search the docu-
ment’s words, the part-of-speech of those words,
or their morphological roots. As well as searching
the document text, we also support searches over
the documents’ semantic annotations, e.g. named
entity types or semantic roles.

Figure 5 shows a semantic search over 80,000
news web pages from the BBC. They have
first been pre-processed with the POS tagging,
morphological analysis, and NER services on
the platform and the output indexed automat-
ically. The search query is for documents,
where entities of type Person are followed by
any morphological form of the verb say, i.e.
{Person} root:say.

4 Conclusion

This paper described a cloud-based open platform
for text mining, which aims to assist the develop-
ment and deployment of robust, large-scale text
processing applications. By supporting the shar-
ing of annotation pipelines, AnnoMarket also pro-
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Figure 5: Example Semantic Search Results

motes reuse and repeatability of experiments.
As the number of annotation services offered by

the platform has grown, we identified a need for
service search, so that users can locate useful NLP
services more effectively. We are currently devel-
oping a new UI, which offers search and brows-
ing functionality, alongside various criteria, such
as functionality (e.g. POS tagger, named entity
recogniser), user ratings, natural language sup-
ported). In the medium- to long-term we have
also planned to support UIMA-based pipelines,
via GATE’s UIMA compatibility layer.

A beta version is currently open to researchers
for experimentation. Within the next six months
we plan to to solicit more shared annotation
pipelines to be deployed on the platform by other
researchers.

Acknowledgments

This work was supported by the European Union
under grant agreement No. 296322 AnnoMarket,6

and a UK EPSRC grant No. EP/I004327/1.

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus. Roberts, Valentin. Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. GATE Teamware: A
Web-based, Collaborative Text Annotation Frame-
work. Language Resources and Evaluation.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate: an
architecture for development of robust hlt applica-
tions. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, 7–12
July 2002, ACL ’02, pages 168–175, Strouds-
burg, PA, USA. Association for Computational
Linguistics.

Hamish Cunningham, Valentin Tablan, Angus Roberts,
and Kalina Bontcheva. 2013. Getting more out of
biomedical documents with gate’s full lifecycle open

6See http://www.annomarket.eu/.

source text analytics. PLoS Computational Biology,
9(2):e1002854, 02.

Marios D Dikaiakos, Dimitrios Katsaros, Pankaj
Mehra, George Pallis, and Athena Vakali. 2009.
Cloud computing: Distributed internet computing
for IT and scientific research. IEEE Internet Com-
puting, 13(5):10–13.

David Ferrucci and Adam Lally. 2004. UIMA: An
Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment.
Natural Language Engineering, 10(3-4):327–348.

Eduard Hovy. 2010. Annotation. In Tutorial Abstracts
of ACL.

Nancy Ide and Laurent Romary. 2004. Standards for
language resources. Natural Language Engineer-
ing, 10:211–225.

C. Ramakrishnan, W. A. Baumgartner, J. A. Blake,
G. A. P. C. Burns, K. Bretonnel Cohen, H. Drabkin,
J. Eppig, E. Hovy, C. N. Hsu, L. E. Hunter, T. Ingulf-
sen, H. R. Onda, S. Pokkunuri, E. Riloff, C. Roeder,
and K. Verspoor. 2010. Building the scientific
knowledge mine (SciKnowMine): a community-
driven framework for text mining tools in direct ser-
vice to biocuration. In New Challenges for NLP
Frameworks (NLPFrameworks 2010), LREC 2010,
pages 9–14, Valletta, Malta, May. ELRA.

Valentin Tablan, Ian Roberts, Hamish Cunningham,
and Kalina Bontcheva. 2013. GATECloud.net: a
Platform for Large-Scale, Open-Source Text Pro-
cessing on the Cloud. Philosophical Transactions
of the Royal Society A: Mathematical, Physical &
Engineering Sciences, 371(1983):20120071.

Lorraine Tanabe and W. John Wilbur. 2002. Tag-
ging Gene and Protein Names in Full Text Articles.
In Proceedings of the ACL-02 workshop on Natural
Language Processing in the biomedical domain, 7–
12 July 2002, volume 3, pages 9–13, Philadelphia,
PA. Association for Computational Linguistics.

Bin Zhou, Yan Jia, Chunyang Liu, and Xu Zhang.
2010. A distributed text mining system for online
web textual data analysis. In Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (Cy-
berC), 2010 International Conference on, pages 1–
4, Los Alamitos, CA, USA, October. IEEE Com-
puter Society.

24



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 25–30,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Detecting Event-Related Links and Sentiments from Social Media Texts

Alexandra Balahur and Hristo Tanev
European Commission Joint Research Centre

Via E. Fermi 2749, T.P. 267
21027 Ispra (VA), Italy

{alexandra.balahur, hristo.tanev}@jrc.ec.europa.eu

Abstract

Nowadays, the importance of Social Me-
dia is constantly growing, as people often
use such platforms to share mainstream
media news and comment on the events
that they relate to. As such, people no
loger remain mere spectators to the events
that happen in the world, but become part
of them, commenting on their develop-
ments and the entities involved, sharing
their opinions and distributing related con-
tent. This paper describes a system that
links the main events detected from clus-
ters of newspaper articles to tweets related
to them, detects complementary informa-
tion sources from the links they contain
and subsequently applies sentiment analy-
sis to classify them into positive, negative
and neutral. In this manner, readers can
follow the main events happening in the
world, both from the perspective of main-
stream as well as social media and the pub-
lic’s perception on them.

This system will be part of the EMM me-
dia monitoring framework working live
and it will be demonstrated using Google
Earth.

1 Introduction

In the context of the Web 2.0, the importance
of Social Media has been constantly growing in
the past years. People use Twitter, Facebook,
LinkedIn, Pinterest, blogs and Web forums to give
and get advice, share information on products,
opinions and real-time information about ongoing
and future events. In particular Twitter, with its

half a billion active members, was used during dis-
asters, protests, elections, and other events to share
updates, opinions, comments and post links to on-
line resources (e.g. news, videos, pictures, blog
posts, etc.). As such, Twitter can be used as a com-
plementary source of information, from which we
can retrieve additional facts, but also learn about
the attitude of the people towards certain events.
On the one hand, news from the traditional me-
dia focus on the factual side of events, important
for the society or at least large groups of people.
On the other hand, social media reflects subjec-
tive interpretations of facts, with different levels of
relevance (societal or only individual). Therefore,
the events reported in online news can be consid-
ered a point of intersection for both types of me-
dia, which are able to offer complementary views
on these events.

In this context, we describe a system that we
developed as an additonal component to the EMM
(Europe Media Monitor)1 news monitoring frame-
work, linking mainstream news to related texts
from social media and detecting the opinion (sen-
timent) users express on these topics.

In the EMM news monitoring system, the dif-
ferent news sites are monitored and new articles
are scraped from them, with a refresh rate of 10
minutes. Subsequently, news items are clustered
and the most important ones are displayed (top
10). These are called “stories”. Our system subse-
quently links these stories to messages from Twit-
ter (tweets) and extracts the related URLs they
contain. Finally, it analyzes the sentiments ex-
pressed in the tweets by using a hybrid knowledge-
based and statistical sentiment detection module.
The overview of the system is depicted in Figure

1http://emm.jrc.it/NewsBrief/clusteredition/en/latest.html
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1.

Figure 1: Overview of the news clusters-Twitter
linking and sentiment analysis system.

The system will be demonstrated using the
Google Earth interface (Figure 2), presenting the
characteristics of the event described in the story
(type, date, location, the first words in the arti-
cle that is the centroid of the news cluster for that
story). In addition, we present new information
that we extract from Twitter - links (URLs) that
we find from the tweets we retrieved linked to the
story and positive, negative and neutral sentiment,
respectively, as a proportion of the total number of
tweets retrieved.

Figure 2: Demo interface for the event-Twitter
linking and sentiment analysis.

2 Related Work and Contribution

The work presented herein is mostly related to the
linking of events with social media texts and sen-
timent analysis from Twitter.

Although Twitter was used as an information
source in the context of different crisis events, rel-
atively little work focused on linking and extract-

ing content about events which are known a priori,
e.g., Becker et al. [2011].

In this context, the main challenge is to deter-
mine relevant keywords to search for event-related
tweets and rank them according to their relevance.
Related approaches (e.g., Verma et al. [2011]) re-
port on the use of semantic features (e.g., objec-
tivity, impersonality, formality, etc.) for detecting
tweets with content relevant to situational aware-
ness during mass emergencies. Other approaches
elaborate on machine learning-based techniques
for Named Entity Recognition (NER) from tweets,
which are subsequently employed as search query
terms ( Ritter et al. [2011], Liu et al. [2011]).

Related research on sentiment analysis from
Twitter was done by Alec Go and Huang [2009],
Pak and Paroubek [2010] and Agarwal et al.
[2011]. Alec Go and Huang [2009] and Pak and
Paroubek [2010] exploit the presence of emoticons
that represent positive or negative feelings to build
a training set of tweets with sentiment labels, using
which they build models based on n-gram features
and part-of-speech tags. Agarwal et al. [2011] em-
ploy emoticons dictionaries and replace certain el-
ements such as URLs and topics with predefinded
labels. They employ syntactic features and spe-
cialized tree kernels and obtain around 75% to
80% accuracy for the sentiment classification.

The main contributions of our system reside in
the linking of mainstream news to the complemen-
tary content found in social media (tweets and,
through them, to the links to additional informa-
tion sources like blogs, flickr, youtube, etc.) and
the analysis of sentiment on these important news.
For events such as “The Arab Spring”, protests, fi-
nancial news (e.g. the fluctuations of the Euro, the
bailout of different European countries, the rise in
unemployment rate, etc.), it was seen that the sen-
timent expressed in social media has a high impact
on the subsequent development of the story2 (Saif
et al. [2012], Bollen et al. [2011]). The impact of
sentiment expressed in social media is also visi-
ble for topics which apparently have an apriori va-
lence (e.g. disasters, crisis, etc.). Nevertheless, in
these cases, people communicate using the social
media platforms not only to express their negative
feelings, but also their will to help, their situation,
their messages of encouragement, their grateful-
ness for the help and so on.

2http://cs229.stanford.edu/proj2011/ChenLazer-
SentimentAnalysisOfTwitterFeedsForThePrediction
OfStockMarketMovement.pdf
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Secondly, the methods employed in our system
are simple, work fast and efficient and can be eas-
ily adapted to other languages.

Finally, the methods presented take into account
the specificity of social media languages, applying
methods to normalize the language and adapting
the features considered for the supervised learning
process.

3 Linking News Clusters to Twitter

The first step in our system involves linking the
news stories detected by EMM to related tweets.
The linking system employs the Twitter Search
API3. For each news story, our application detects
relevant URLs by finding tweets that are lexically
similar to the news story, represented by a cluster
of news, and are mentioned frequently in Twitter.
In Figure 3, we provide an example of the top six
stories on the afternoon of April 2nd, 2013.

Figure 3: Top six clusters of news in the afternoon
of April 2nd, 2013.

In order to detect lexically similar tweets, we
use vector similarity: We build a term vector for
both the news story and the tweet and then we
consider as a similarity measure the projection
of the tweet vector on the story vector. We do
not calculate cosine similarity, since this would
give an advantage to short tweets. We experi-
mentally set a similarity threshold above which
the tweets with URL are accepted. To define
the similarity threshold and the coefficients in the
URL ranking formula, we used a development set
of about 100 randomly selected English-language
news clusters, downloaded during a week. The

3https://dev.twitter.com/docs/api/1/get/search

threshold and the coefficients were derived empir-
ically. We consider experimenting with SVM and
other machine-learning approaches to define these
parameters in a more consistent way.

Once the tweets that relate to the news story are
retrieved, we evaluate each URL taking into ac-
count the following parameters:

• Number of mentions, which we will desig-
nate as Mentions.

• Number of retweets, designated Retweet.

• Number of mentions in conversations, desig-
nated InConv.

• Number of times the URL was favortited,
designated Favorited.

• Number of tweets which replied to tweets,
mentioning the URL, designated ReplyTo.

The score of the URL is calculated using the
following empirically derived formula. The coef-
ficients were defined based on the empirical anal-
ysis described above.

score(URL) = ((Mentions−1)+Retweets.1, 3

+Favorited ∗ 4).(InConv + 2 ∗ReplyTo+ 1)

In this formula we give slight preference to the
retweets with respect to the mentions. We made
this choice, since retweets happen inside Twitter
and reflect the dynamics of the information spread
inside this social media. On the other hand, multi-
ple mentions of news-related tweets (which are not
retweeted) are due to clicking the “Share in Twit-
ter” button, which nowadays is present on most
of the news sites. In this way, news from visited
web sites appear more often in Twitter. This phe-
nomena is to be further explored. It should also be
noted that our formula boosts significantly URLs,
which are mentioned inside a conversation thread
and even more the ones, to which there were “re-
ply to” tweets. Conversations tend to be cen-
tered around topics which are of interest to Twit-
ter users and in this way they are a good indica-
tor of how interesting an URL is. Replying to a
tweet requires more time and attention than just
pressing the “Retweet” button, therefore conversa-
tions show more interest to an URL, with respect
to retweeting. Examples of tweets extracted that
complement information from mainstream media
are presented in Figure 4.
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Figure 4: Examples of tweets extracted on the
North Korea crisis (anonimized).

4 Sentiment Analysis on Tweets Related
to Events Reported in News

After extracting the tweets related to the main
news clusters detected by the media monitoring
system, we pass them onto the sentiment analy-
sis system, where they are classified according to
their polarity (into positive, negative and neutral).

In order to classify the tweet’s sentiment, we
employ a hybrid approach based on supervised
learning with a Support Vector Machines Sequen-
tial Minimal Optimization (SVM SMO - Platt
[1998]) linear kernel, on unigram and bigram fea-
tures, but exploiting as features sentiment dictio-
naries, emoticon lists, slang lists and other social
media-specific features. We do not employ any
specific language analysis software. The aim is to
be able to apply, in a straightforward manner, the
same approach to as many languages as possible.
The approach can be extended to other languages
by using similar dictionaries that have been cre-
ated in our team.

The sentiment analysis process contains two
stages: preprocessing and sentiment classification.

4.1 Tweet Preprocessing

The language employed in Social Media sites is
different from the one found in mainstream me-
dia and the form of the words employed is some-
times not the one we may find in a dictionary. Fur-
ther on, users of Social Media platforms employ a
special “slang” (i.e. informal language, with spe-
cial expressions, such as “lol”, “omg”), emoticons,
and often emphasize words by repeating some of
their letters. Additionally, the language employed
in Twitter has specific characteristics, such as the
markup of tweets that were reposted by other users
with “RT”, the markup of topics using the “#”
(hash sign) and of the users using the “@” sign.

All these aspects must be considered at the time
of processing tweets. As such, before applying su-
pervised learning to classify the sentiment of the
tweets, we preprocess them, to normalize the lan-
guage they contain. The preprocessing stage con-
tains the following steps:

• Repeated punctuation sign normalization.
In the first step of the preprocessing, we de-
tect repetitions of punctuation signs (“.”, “!”
and “?”). Multiple consecutive punctuation
signs are replaced with the labels “multi-
stop”, for the fullstops, “multiexclamation”
in the case of exclamation sign and “multi-
question” for the question mark and spaces
before and after.

• Emoticon replacement. In the second step
of the preprocessing, we employ the anno-
tated list of emoticons from SentiStrength4

and match the content of the tweets against
this list. The emoticons found are replaced
with their polarity (“positive” or “negative”)
and the “neutral” ones are deleted.

• Lower casing and tokenization. Subse-
quently, the tweets are lower cased and split
into tokens, based on spaces and punctuation
signs.

• Slang replacement. The next step involves
the normalization of the language employed.
In order to be able to include the semantics
of the expressions frequently used in Social
Media, we employed the list of slang from a
specialized site 5.

• Word normalization. At this stage, the to-
kens are compared to entries in Roget’s The-
saurus. If no match is found, repeated
letters are sequentially reduced to two or
one until a match is found in the dictio-
nary (e.g. “perrrrrrrrrrrrrrrrrrfeeect” becomes
“perrfeect”, “perfeect”, “perrfect” and subse-
quently “perfect”). The words used in this
form are maked as “stressed”.

• Affect word matching. Further on, the tokens
in the tweet are matched against three dif-
ferent sentiment lexicons: General Inquirer,
LIWC and MicroWNOp, which were pre-
viously split into four different categories

4http://sentistrength.wlv.ac.uk/
5http://www.chatslang.com/terms/social media
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(“positive”, “high positive”, “negative” and
“high negative”). Matched words are re-
placed with their sentiment label - i.e. “pos-
itive”, “negative”, “hpositive” and “hnega-
tive”.

• Modifier word matching. Similar to the
previous step, we employ a list of expres-
sions that negate, intensify or diminish the
intensity of the sentiment expressed to detect
such words in the tweets. If such a word is
matched, it is replaced with “negator”, “in-
tensifier” or “diminisher”, respectively.

• User and topic labeling. Finally, the users
mentioned in the tweet, which are marked
with “@”, are replaced with “PERSON” and
the topics which the tweet refers to (marked
with “#”) are replaced with “TOPIC”.

4.2 Sentiment Classification of Tweets

Once the tweets are preprocessed, they are passed
on to the sentiment classification module. We em-
ployed supervised learning using SVM SMO with
a linear kernel, employing boolean features - the
presence or absence of unigrams and bigrams de-
termined from the training data (tweets that were
previousely preprocessed as described above) that
appeared at least twice. Bigrams are used espe-
cially to spot the influence of modifiers (nega-
tions, intensifiers, diminishers) on the polarity of
the sentiment-bearing words. We tested the ap-
proach on different datasets and dataset splits, us-
ing the Weka data mining software 6. The training
models are built on a cluster of computers (4 cores,
5000MB of memory each).

5 Evaluation and Discussion

5.1 Evaluation of the News-Twitter Linking
Component

The algorithm employed to retrieve tweets simi-
lar to news clusters was evaluated by Tanev et al.
[2012]. The precision attained was 75%. Recall
cannot be computed, as the use of the Twitter API
allows only the retrieval of a subset of tweets.

In order to evaluate the link extraction compo-
nent, we randomly chose 68 URLs, extracted from
10 different news stories. For each URL, we eval-
uated its relevance to the news story in the follow-
ing way: A URL is considered relevant only if it

6http://www.cs.waikato.ac.nz/ml/weka/

reports about the same news story or talks about
facts, like effects, post developments and motiva-
tions, directly related to this news story. It turned
out that 66 out of the 68 were relevant, which gives
accuracy of 97%.

5.2 Evaluation of the Sentiment Analysis
System

In order to evaluate the sentiment analysis sys-
tem on external resources, we employed the data
provided for training in the SemEval 2013 Task
2 “Sentiment Analysis from Twitter” 7. The ini-
tial training data has been provided in two stages:
1) sample datasets for the first task and the sec-
ond task and 2) additional training data for the two
tasks. We employ the joint sample datasets as test
data (denoted as t∗) and the data released subse-
quently as training data (denoted as T∗). We em-
ploy the union of these two datasets to perform
cross-validation experiments (the joint dataset is
denoted as T ∗ +t∗. The characteristics of the
dataset are described in Table 1. On the last col-
umn, we also include the baseline in terms of ac-
curacy, which is computed as the number of ex-
amples of the majoritary class over the total num-
ber of examples. The results of the experiments

Data #Tweet #Pos #Neg #Neu B%
T* 19241 4779 2343 12119 62
t* 2597 700 393 1504 57
T*+t* 21838 5479 2736 13623 62

Table 1: Characteristics of the training (T*), test-
ing (t*) and joint training and testing datasets.

are presented in Table 2. Given the difficulty of

Measure Train(T*) & test(t*) 10-fold CV
Acc. 0.74 0.93
Ppos 0.66 0.91
Rpos 0.88 0.69
Pneg 0.94 0.62
Rneg 0.81 0.49
Pneu 0.93 0.80
Rneg 0.97 0.82

Table 2: Results in terms of accuracy and preci-
sion and recall per polarity class on training and
test sets evaluation and 10-fold cross-validation.

language in social media, the results are good and
7http://www.cs.york.ac.uk/semeval-2013/task2/
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useful in the context of our application (Figure 2).

6 Conclusions and Future Work

In this demo paper, we presented a system that
links mainstream media stories to tweets that com-
ment on the events covered. The system retrieves
relevant tweets, extracts the links they contain and
subsequently performs sentiment analysis. The
system works at a good level, giving an accurate
picture of the social media reaction to the main-
stream media stories.

As future work, we would like to extend the sys-
tem to more languages and analyze and include
new features that are particular to social media to
improve the performance of both the retrieval and
sentiment analysis components.
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Abstract
We introduce DISSECT, a toolkit to
build and explore computational models
of word, phrase and sentence meaning
based on the principles of distributional
semantics. The toolkit focuses in partic-
ular on compositional meaning, and im-
plements a number of composition meth-
ods that have been proposed in the litera-
ture. Furthermore, DISSECT can be use-
ful to researchers and practitioners who
need models of word meaning (without
composition) as well, as it supports var-
ious methods to construct distributional
semantic spaces, assessing similarity and
even evaluating against benchmarks, that
are independent of the composition infras-
tructure.

1 Introduction

Distributional methods for meaning similarity are
based on the observation that similar words oc-
cur in similar contexts and measure similarity
based on patterns of word occurrence in large cor-
pora (Clark, 2012; Erk, 2012; Turney and Pan-
tel, 2010). More precisely, they represent words,
or any other target linguistic elements, as high-
dimensional vectors, where the dimensions repre-
sent context features. Semantic relatedness is as-
sessed by comparing vectors, leading, for exam-
ple, to determine that car and vehicle are very sim-
ilar in meaning, since they have similar contextual
distributions. Despite the appeal of these meth-
ods, modeling words in isolation has limited ap-
plications and ideally we want to model semantics
beyond word level by representing the meaning of
phrases or sentences. These combinations are in-
finite and compositional methods are called for to
derive the meaning of a larger construction from
the meaning of its parts. For this reason, the ques-
tion of compositionality within the distributional

paradigm has received a lot of attention in recent
years and a number of compositional frameworks
have been proposed in the distributional seman-
tic literature, see, e.g., Coecke et al. (2010) and
Mitchell and Lapata (2010). For example, in such
frameworks, the distributional representations of
red and car may be combined, through various op-
erations, in order to obtain a vector for red car.

The DISSECT toolkit (http://clic.
cimec.unitn.it/composes/toolkit)
is, to the best of our knowledge, the first to
provide an easy-to-use implementation of many
compositional methods proposed in the literature.
As such, we hope that it will foster further work
on compositional distributional semantics, as well
as making the relevant techniques easily available
to those interested in their many potential applica-
tions, e.g., to context-based polysemy resolution,
recognizing textual entailment or paraphrase
detection. Moreover, the DISSECT tools to
construct distributional semantic spaces from
raw co-occurrence counts, to measure similarity
and to evaluate these spaces might also be of
use to researchers who are not interested in the
compositional framework. DISSECT is freely
available under the GNU General Public License.

2 Building and composing distributional
semantic representations

The pipeline from corpora to compositional mod-
els of meaning can be roughly summarized as con-
sisting of three stages:1

1. Extraction of co-occurrence counts from cor-
pora In this stage, an input corpus is used to ex-
tract counts of target elements co-occurring with
some contextual features. The target elements
can vary from words (for lexical similarity), to
pairs of words (e.g., for relation categorization),

1See Turney and Pantel (2010) for a technical overview of
distributional methods for semantics.
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to paths in syntactic trees (for unsupervised para-
phrasing). Context features can also vary from
shallow window-based collocates to syntactic de-
pendencies.

2. Transformation of the raw counts This
stage may involve the application of weighting
schemes such as Pointwise Mutual Information,
feature selection, dimensionality reduction meth-
ods such as Singular Value Decomposition, etc.
The goal is to eliminate the biases that typically
affect raw counts and to produce vectors which
better approximate similarity in meaning.

3. Application of composition functions
Once meaningful representations have been
constructed for the atomic target elements of
interest (typically, words), various methods, such
as vector addition or multiplication, can be used
for combining them to derive context-sensitive
representations or for constructing representations
for larger phrases or even entire sentences.

DISSECT can be used for the second and
third stages of this pipeline, as well as to measure
similarity among the resulting word or phrase vec-
tors. The first step is highly language-, task- and
corpus-annotation-dependent. We do not attempt
to implement all the corpus pre-processing and
co-occurrence extraction routines that it would
require to be of general use, and expect instead as
input a matrix of raw target-context co-occurrence
counts.2 DISSECT provides various methods to
re-weight the counts with association measures,
dimensionality reduction methods as well as the
composition functions proposed by Mitchell and
Lapata (2010) (Additive, Multiplicative and Dila-
tion), Baroni and Zamparelli (2010)/Coecke et al.
(2010) (Lexfunc) and Guevara (2010)/Zanzotto et
al. (2010) (Fulladd). In DISSECT we define and
implement these in a unified framework and in a
computationally efficient manner. The focus of
DISSECT is to provide an intuitive interface for
researchers and to allow easy extension by adding
other composition methods.

3 DISSECT overview

DISSECT is written in Python. We provide many
standard functionalities through a set of power-

2These counts can be read from a text file containing two
strings (the target and context items) and a number (the corre-
sponding count) on each line (e.g., maggot food 15) or
from a matrix in format word freq1 freq2 ...

#create a semantic space from counts in
#dense format("dm"): word freq1 freq2 ..
ss = Space.build(data="counts.txt",

format="dm")

#apply transformations
ss = ss.apply(PpmiWeighting())
ss = ss.apply(Svd(300))

#retrieve the vector of a target element
print ss.get_row("car")

Figure 1: Creating a semantic space.

ful command-line tools, however users with ba-
sic Python familiarity are encouraged to use the
Python interface that DISSECT provides. This
section focuses on this interface (see the online
documentation on how to perform the same oper-
ations with the command-line tools), that consists
of the following top-level packages:

#DISSECT packages
composes.matrix
composes.semantic_space
composes.transformation
composes.similarity
composes.composition
composes.utils

Semantic spaces and transforma-
tions The concept of a semantic space
(composes.semantic space) is at the
core of the DISSECT toolkit. A semantic
space consists of co-occurrence values, stored
as a matrix, together with strings associated to
the rows of this matrix (by design, the target
linguistic elements) and a (potentially empty)
list of strings associated to the columns (the
context features). A number of transforma-
tions (composes.transformation) can
be applied to semantic spaces. We implement
weighting schemes such as positive Pointwise
Mutual Information (ppmi) and Local Mu-
tual Information, feature selection methods,
dimensionality reduction (Singular Value De-
composition (SVD) and Nonnegative Matrix
Factorization (NMF)), and new methods can
be easily added.3 Going from raw counts to a
transformed space is accomplished in just a few
lines of code (Figure 1).

3The complete list of transformations currently sup-
ported can be found at http://clic.cimec.unitn.
it/composes/toolkit/spacetrans.html#
spacetrans.
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#load a previously saved space
ss = io_utils.load("ss.pkl")

#compute cosine similarity
print ss.get_sim("car", "book",

CosSimilarity())

#the two nearest neighbours of "car"
print ss.get_neighbours("car", 2,

CosSimilarity())

Figure 2: Similarity queries in a semantic space.

Furthermore DISSECT allows the pos-
sibility of adding new data to a seman-
tic space in an online manner (using the
semantic space.peripheral space
functionality). This can be used as a way to effi-
ciently expand a co-occurrence matrix with new
rows, without re-applying the transformations to
the entire space. In some other cases, the user may
want to represent phrases that are specialization
of words already existing in the space (e.g.,
slimy maggot and maggot), without distorting the
computation of association measures by counting
the same context twice. In this case, adding slimy
maggot as a “peripheral” row to a semantic space
that already contains maggot implements the
desired behaviour.

Similarity queries Semantic spaces are used for
the computation of similarity scores. DISSECT
provides a series of similarity measures such as co-
sine, inverse Euclidean distance and Lin similarity,
implemented in the composes.similarity
package. Similarity of two elements can be com-
puted within one semantic space or across two
spaces that have the same dimensionality. Figure
2 exemplifies (word) similarity computations with
DISSECT.

Composition functions Composition functions
in DISSECT (composes.composition) take
as arguments a list of element pairs to be com-
posed, and one or two spaces where the elements
to be composed are represented. They return a se-
mantic space containing the distributional repre-
sentations of the composed items, which can be
further transformed, used for similarity queries, or
used as inputs to another round of composition,
thus scaling up beyond binary composition. Fig-
ure 3 shows a Multiplicative composition exam-
ple. See Table 1 for the currently available com-
position models, their definitions and parameters.

Model Composition function Parameters
Add. w1~u+ w2~v w1(= 1), w2(= 1)
Mult. ~u� ~v -
Dilation ||~u||22~v + (λ− 1)〈~u,~v〉~u λ(= 2)
Fulladd W1~u+W2~v W1,W2 ∈ Rm×m

Lexfunc Au~v Au ∈ Rm×m

Table 1: Currently implemented composition
functions of inputs (u, v) together with parame-
ters and their default values in parenthesis, where
defined. Note that in Lexfunc each functor word
corresponds to a separate matrix or tensor Au (Ba-
roni and Zamparelli, 2010).

Parameter estimation All composition models
except Multiplicative have parameters to be esti-
mated. For simple models with few parameters,
such as as Additive, the parameters can be passed
by hand. However, DISSECT supports automated
parameter estimation from training examples. In
particular, we extend to all composition methods
the idea originally proposed by Baroni and Zam-
parelli (2010) for Lexfunc and Guevara (2010) for
Fulladd, namely to use corpus-extracted example
vectors of both the input (typically, words) and
output elements (typically, phrases) in order to op-
timize the composition operation parameters. The
problem can be generally stated as:

θ∗ = arg min
θ

||P − fcompθ(U, V )||F

where U, V and P are matrices containing input
and output vectors respectively. For example U
may contain adjective vectors such as red, blue,
V noun vectors such as car, sky and P corpus-
extracted vectors for the corresponding phrases
red car, blue sky. fcompθ is a composition func-
tion and θ stands for a list of parameters that this
composition function is associated with.4 We im-
plement standard least-squares estimation meth-
ods as well as Ridge regression with the option
for generalized cross-validation, but other meth-
ods such as partial least-squares regression can be
easily added. Figure 4 exemplifies the Fulladd
model.

Composition output examples DISSECT pro-
vides functions to evaluate (compositional) distri-
butional semantic spaces against benchmarks in
the composes.utils package. However, as a
more qualitatively interesting example of what can
be done with DISSECT, Table 2 shows the nearest

4Details on the extended corpus-extracted vector estima-
tion method in DISSECT can be found in Dinu et al. (2013).
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#instantiate a multiplicative model
mult_model = Multiplicative()

#use the model to compose words from input space input_space
comp_space = mult_model.compose([("red", "book", "my_red_book"),

("red", "car", "my_red_car")],
input_space)

#compute similarity of: 1) two composed phrases and 2) a composed phrase and a word
print comp_space.get_sim("my_red_book", "my_red_car", CosSimilarity())
print comp_space.get_sim("my_red_book", "book", CosSimilarity(), input_space)

Figure 3: Creating and using Multiplicative phrase vectors.

#training data for learning an adjective-noun phrase model
train_data = [("red","book","red_book"), ("blue","car","blue_car")]

#train a fulladd model
fa_model = FullAdditive()
fa_model.train(train_data, input_space, phrase_space)

#use the model to compose a phrase from new words and retrieve its nearest neighb.
comp_space = fa_model.compose([("yellow", "table", "my_yellow_table")], input_space)
print comp_space.get_neighbours("my_yellow_table", 10, CosSimilarity())

Figure 4: Estimating a Fulladd model and using it to create phrase vectors.

Target Method Neighbours
florist Corpus Harrod, wholesaler, stockist

flora + -ist
Fulladd flora, fauna, ecologist
Lexfunc ornithologist, naturalist, botanist
Additive flora, fauna, ecosystem

Table 3: Compositional models for morphol-
ogy. Top 3 neighbours of florist using its (low-
frequency) corpus-extracted vector, and when the
vector is obtained through composition of flora
and -ist with Fulladd, Lexfunc and Additive.

neighbours of false belief obtained through com-
position with the Fulladd, Lexfunc and Additive
models. In Table 3, we exemplify a less typical ap-
plication of compositional models to derivational
morphology, namely obtaining a representation of
florist compositionally from distributional repre-
sentations of flora and -ist (Lazaridou et al., 2013).

4 Main features

Support for dense and sparse representations
Co-occurrence matrices, as extracted from text,
tend to be very sparse structures, especially when
using detailed context features which include syn-
tactic information, for example. On the other
hand, dimensionality reduction operations, which
are often used in distributional models, lead to

smaller, dense structures, for which sparse rep-
resentations are not optimal. This is our motiva-
tion for supporting both dense and sparse repre-
sentations. The choice of dense vs. sparse is ini-
tially determined by the input format, if a space
is created from co-occurrence counts. By default,
DISSECT switches to dense representations af-
ter dimensionality reduction, however the user can
freely switch from one representation to the other,
in order to optimize computations. For this pur-
pose DISSECT provides wrappers around matrix
operations, as well as around common linear alge-
bra operations, in the composes.matrix pack-
age. The underlying Python functionality is pro-
vided by numpy.array and scipy.sparse.

Efficient computations DISSECT is optimized
for speed since most operations are cast as matrix
operations, that are very efficiently implemented
in Python’s numpy and scipy modules5. Ta-
bles 4 and 5 show running times for typical DIS-
SECT operations: application of the ppmi weight-
ing scheme, nearest neighbour queries and estima-
tion of composition function parameters (on a 2.1

5For SVD on sparse structures, we use sparsesvd
(https://pypi.python.org/pypi/sparsesvd/).
For NMF, we adapted http://www.csie.ntu.edu.
tw/˜cjlin/nmf/ (Lin, 2007).
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Target Method Neighbours
belief Corpus moral, dogma, worldview, religion, world-view, morality, theism, tenet, agnosticism, dogmatic

false belief
Fulladd pantheist, belief, agnosticism, religiosity, dogmatism, pantheism, theist, fatalism, deism, mind-set
Lexfunc self-deception, untruth, credulity, obfuscation, misapprehension, deceiver, disservice, falsehood
Additive belief, assertion, falsity, falsehood, truth, credence, dogma, supposition, hearsay, denial

Table 2: Top nearest neighbours of belief and of false belief obtained through composition with the
Fulladd, Lexfunc and Additive models.

Method Fulladd Lexfunc Add. Dilation
Time (s.) 2864 787 46 68

Table 4: Composition model parameter estimation
times (in seconds) for 1 million training points in
300-dimensional space.

Matrix size (nnz) Ppmi Query
100Kx300 (30M) 5.8 0.5

100Kx100K (250M) 52.6 9.5

Table 5: Running times (in seconds) for 1) appli-
cation of ppmi weighting and 2) querying for the
top neighbours of a word (cosine similarity) for
different matrix sizes (nnz: number of non-zero
entries, in millions).

GHz machine). The price to pay for fast computa-
tions is that data must be stored in main memory.
We do not think that this is a major inconvenience.
For example, a typical symmetric co-occurrence
matrix extracted from a corpus of several billion
words, defining context in terms of 5-word win-
dows and considering the top 100K×100K most
frequent words, contains≈ 250 million entries and
requires only 2GB of memory for (double preci-
sion) storage.

Simple design We have opted for a very simple
and intuitive design as the classes interact in
very natural ways: A semantic space stores
the actual data matrix and structures to index
its rows and columns, and supports similarity
queries and transformations. Transformations
take one semantic space as input to return
another, transformed, space. Composition func-
tions take one or more input spaces and yield
a composed-elements space, which can further
undergo transformations and be used for similarity
queries. In fact, DISSECT semantic spaces also
support higher-order tensor representations, not
just vectors. Higher-order representations are
used, for example, to represent transitive verbs
and other multi-argument functors by Coecke
et al. (2010) and Grefenstette et al. (2013).
See http://clic.cimec.unitn.it/

composes/toolkit/composing.html for
an example of using DISSECT for estimating
such tensors.

Extensive documentation The DISSECT
documentation can be found at http://clic.
cimec.unitn.it/composes/toolkit.
We provide a tutorial which guides the user
through the creation of some toy semantic spaces,
estimation of the parameters of composition
models and similarity computations in semantic
spaces. We also provide a full-scale example
of intransitive verb-subject composition. We
show how to go from co-occurrence counts to
composed representations and make the data used
in the examples available for download.

Comparison to existing software In terms of
design choices, DISSECT most resembles the
Gensim toolkit (Řehůřek and Sojka, 2010). How-
ever Gensim is intended for topic modeling, and
therefore diverges considerably from DISSECT in
its functionality. The SSpace package of Jurgens
and Stevens (2010) also overlaps to some degree
with DISSECT in terms of its intended use, how-
ever, like Gensim, it does not support composi-
tional operations that, as far as we know, are an
unique feature of DISSECT.

5 Future extensions

We implemented and are currently testing DIS-
SECT functions supporting other composition
methods, including the one proposed by Socher
et al. (2012). Adding further methods is our top-
priority goal. In particular, several distributional
models of word meaning in context share impor-
tant similarities with composition models, and we
plan to add them to DISSECT. Dinu et al. (2012)
show, for example, that well-performing, simpli-
fied variants of the method in Thater et al. (2010),
Thater et al. (2011) and Erk and Padó (2008) can
be reduced to relatively simple matrix operations,
making them particularly suitable for a DISSECT
implementation.
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DISSECT is currently optimized for the compo-
sition of many phrases of the same type. This is in
line with most of the current evaluations of com-
positional models, which focus on specific phe-
nomena, such as adjectival modification, noun-
noun compounds or intransitive verbs, to name a
few. In the future we plan to provide a module for
composing entire sentences, taking syntactic trees
as input and returning composed representations
for each node in the input trees.

Finally, we intend to make use of the exist-
ing Python plotting libraries to add a visualization
module to DISSECT.
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Abstract

Implementations of word sense disam-
biguation (WSD) algorithms tend to be
tied to a particular test corpus format and
sense inventory. This makes it difficult to
test their performance on new data sets, or
to compare them against past algorithms
implemented for different data sets. In this
paper we present DKPro WSD, a freely
licensed, general-purpose framework for
WSD which is both modular and exten-
sible. DKPro WSD abstracts the WSD
process in such a way that test corpora,
sense inventories, and algorithms can be
freely swapped. Its UIMA-based architec-
ture makes it easy to add support for new
resources and algorithms. Related tasks
such as word sense induction and entity
linking are also supported.

1 Introduction

Word sense disambiguation, or WSD (Agirre and
Edmonds, 2006)—the task of determining which
of a word’s senses is the one intended in a par-
ticular context—has been a core research problem
in computational linguistics since the very incep-
tion of the field. Despite the task’s importance
and popularity as a subject of study, tools and re-
sources supporting WSD have seen relatively little
generalization and standardization. That is, most
prior implementations of WSD systems have been
hard-coded for particular algorithms, sense inven-
tories, and data sets. This makes it difficult to com-
pare systems or to adapt them to new scenarios
without extensive reimplementation.

In this paper we present DKPro WSD, a
general-purpose framework for word sense disam-
biguation which is both modular and extensible.
Its modularity means that it makes a logical sep-
aration between the data sets (e.g., the corpora

to be annotated, the answer keys, manually anno-
tated training examples, etc.), the sense invento-
ries (i.e., the lexical-semantic resources enumerat-
ing the senses to which words in the corpora are
assigned), and the algorithms (i.e., code which ac-
tually performs the sense assignments and prereq-
uisite linguistic annotations), and provides a stan-
dard interface for each of these component types.
Components which provide the same functional-
ity can be freely swapped, so that one can easily
run the same algorithm on different data sets (irre-
spective of which sense inventory they use), or test
several different algorithms on the same data set.

While DKPro WSD ships with support for a
number of common WSD algorithms, sense inven-
tories, and data set formats, its extensibility means
that it is easy to adapt to work with new meth-
ods and resources. The system is written in Java
and is based on UIMA (Lally et al., 2009), an
industry-standard architecture for analysis of un-
structured information. Support for new corpus
formats, sense inventories, and WSD algorithms
can be added by implementing new UIMA com-
ponents for them, or more conveniently by writing
UIMA wrappers around existing code. The frame-
work and all existing components are released un-
der the Apache License 2.0, a permissive free soft-
ware licence.

DKPro WSD was designed primarily to support
the needs of WSD researchers, who will appre-
ciate the convenience and flexibility it affords in
tuning and comparing algorithms and data sets.
However, as a general-purpose toolkit it could also
be used to implement a WSD module for a real-
world natural language processing application. Its
support for interactive visualization of the disam-
biguation process also makes it a powerful tool for
learning or teaching the principles of WSD.

The remainder of this paper is organized as fol-
lows: In §2 we review previous work in WSD file
formats and implementations. In §3 we describe
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our system and further explain its capabilities and
advantages. Finally, in §4 we discuss our plans for
further development of the framework.

2 Background

In the early days of WSD research, electronic
dictionaries and sense-annotated corpora tended
to be small and hand-crafted on an ad-hoc ba-
sis. It was not until the growing availability of
large-scale lexical resources and corpora in the
1990s that the need to establish a common plat-
form for the evaluation of WSD systems was rec-
ognized. This led to the founding of the Sens-
eval (and later SemEval) series of competitions,
the first of which was held in 1998. Each com-
petition defined a number of tasks with prescribed
evaluation metrics, sense inventories, corpus file
formats, and human-annotated test sets. For each
task it was therefore possible to compare algo-
rithms against each other. However, sense inven-
tories and file formats still vary across tasks and
competitions. There are also a number of increas-
ingly popular resources used outside Senseval and
SemEval, each with their own formats and struc-
tures: examples of sense-annotated corpora in-
clude SemCor (Miller et al., 1994), MASC (Ide et
al., 2010), and WebCAGe (Henrich et al., 2012),
and sense inventories include VerbNet (Kipper et
al., 2008), FrameNet (Ruppenhofer et al., 2010),
DANTE (Kilgarriff, 2010), BabelNet (Navigli and
Ponzetto, 2012), and online community-produced
resources such as Wiktionary and Wikipedia. So
despite attempts at standardization, the canon of
WSD resources remains quite fragmented.

The few publically available implementa-
tions of individual disambiguation algorithms,
such as SenseLearner (Mihalcea and Csomai,
2005), SenseRelate::TargetWord (Patwardhan et
al., 2005), UKB (Agirre and Soroa, 2009), and
IMS (Zhong and Ng, 2010), are all tied to a partic-
ular corpus and/or sense inventory, or define their
own custom formats into which existing resources
must be converted. Furthermore, where the al-
gorithm depends on linguistic annotations such as
part-of-speech tags, the users are expected to sup-
ply these themselves, or else must use the anno-
tators built into the system (which may not always
be appropriate for the corpus language or domain).

One alternative to coding WSD algorithms from
scratch is to use general-purpose NLP toolkits
such as NLTK (Bird, 2006) or DKPro (Gurevych

et al., 2007). Such toolkits provide individual
components potentially useful for WSD, such as
WordNet-based measures of sense similarity and
readers for the odd corpus format. However, these
toolkits are not specifically geared towards devel-
opment and evaluation of WSD systems; there is
no unified type system or architecture which al-
lows WSD-specific components to be combined or
substituted orthogonally.

The only general-purpose dedicated WSD sys-
tem we are aware of is I Can Sense It (Joshi et al.,
2012), a Web-based interface for running and eval-
uating various WSD algorithms. It includes I/O
support for several corpus formats and implemen-
tations of a number of baseline and state-of-the-
art disambiguation algorithms. However, as with
previous single-algorithm systems, it is not possi-
ble to select the sense inventory, and the user is
responsible for pre-annotating the input text with
POS tags. The usability and extensibility of the
system are greatly restricted by the fact that it is a
proprietary, closed-source application fully hosted
by the developers.

3 DKPro WSD

Our system, DKPro WSD, is implemented as a
framework of UIMA components (type systems,
collection readers, annotators, CAS consumers,
resources) which the user combines into a data
processing pipeline. We can best illustrate this
with an example: Figure 1 shows a pipeline for
running two disambiguation algorithms on the Es-
tonian all-words task from Senseval-2. UIMA
components are the solid, rounded boxes in the
lower half of the diagram, and the data and algo-
rithms they encapsulate are the light grey shapes
in the upper half. The first component of the
pipeline is a collection reader which reads the
text of the XML-formatted corpus into a CAS (a
UIMA data structure for storing layers of data
and stand-off annotations) and marks the words
to be disambiguated (the “instances”) with their
IDs. The next component is an annotator which
reads the answer key—a separate file which as-
sociates each instance ID with a sense ID from
the Estonian EuroWordNet—and adds the gold-
standard sense annotations to their respective in-
stances in the CAS. Processing then passes to
another annotator—in this case a UIMA wrap-
per for TreeTagger (Schmid, 1994)—which adds
POS and lemma annotations to the instances.
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Figure 1: A sample DKPro WSD pipeline for the Estonian all-words data set from Senseval-2.

Then come the two disambiguation algorithms,
also modelled as UIMA annotators wrapping non-
UIMA-aware algorithms. Each WSD annotator it-
erates over the instances in the CAS and annotates
them with sense IDs from EuroWordNet. (Euro-
WordNet itself is accessed via a UIMA resource
which wraps JMWNL (Pazienza et al., 2008) and
which is bound to the two WSD annotators.) Fi-
nally, control passes to a CAS consumer which
compares the WSD algorithms’ sense annotations
against the gold-standard annotations produced by
the answer key annotator, and outputs these sense
annotations along with various evaluation metrics
(precision, recall, etc.).

A pipeline of this sort can be written with just
a few lines of code: one or two to declare each
component and if necessary bind it to the appro-
priate resources, and a final one to string the com-
ponents together into a pipeline. Moreover, once
such a pipeline is written it is simple to substitute
functionally equivalent components. For example,
with only a few small changes the same pipeline
could be used for Senseval-3’s English lexical
sample task, which uses a corpus and sense inven-
tory in a different format and language. Specif-
ically, we would substitute the collection reader
with one capable of reading the Senseval lexical
sample format, we would pass an English instead
of Estonian language model to TreeTagger, and
we would substitute the sense inventory resource
exposing the Estonian EuroWordNet with one for
WordNet 1.7.1. Crucially, none of the WSD algo-
rithms need to be changed.

The most important features of our system are

as follows:

Corpora and data sets. DKPro WSD currently
has collection readers for all Senseval and Sem-
Eval all-words and lexical sample tasks, the AIDA
CoNLL-YAGO data set (Hoffart et al., 2011), the
TAC KBP entity linking tasks (McNamee and
Dang, 2009), and the aforementioned MASC,
SemCor, and WebCAGe corpora. Our prepack-
aged corpus analysis modules can compute statis-
tics on monosemous terms, average polysemy,
terms absent from the sense inventory, etc.

Sense inventories. Sense inventories are ab-
stracted into a system of types and interfaces ac-
cording to the sort of lexical-semantic information
they provide. There is currently support for Word-
Net (Fellbaum, 1998), WordNet++ (Ponzetto and
Navigli, 2010), EuroWordNet (Vossen, 1998), the
Turk Bootstrap Word Sense Inventory (Biemann,
2013), and UBY (Gurevych et al., 2012), which
provides access to WordNet, Wikipedia, Wik-
tionary, GermaNet, VerbNet, FrameNet, Omega-
Wiki, and various alignments between them. The
system can automatically convert between vari-
ous versions of WordNet using the UPC mappings
(Daudé et al., 2003).

Algorithms. As with sense inventories, WSD
algorithms have a type and interface hierarchy ac-
cording to what knowledge sources they require.
Algorithms and baselines already implemented in-
clude the analytically calculated random sense
baseline; the most frequent sense baseline; the
original, simplified, extended, and lexically ex-
panded Lesk variants (Miller et al., 2012); various
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graph connectivity approaches from Navigli and
Lapata (2010); Personalized PageRank (Agirre
and Soroa, 2009); the supervised TWSI system
(Biemann, 2013); and IMS (Zhong and Ng, 2010).
Our open API permits users to program support
for further knowledge-based and supervised algo-
rithms.

Linguistic annotators. Many WSD algorithms
require linguistic annotations from segmenters,
lemmatizers, POS taggers, parsers, etc. Off-the-
shelf UIMA components for producing such an-
notations, such as those provided by DKPro Core
(Gurevych et al., 2007), can be used in a DKPro
WSD pipeline with little or no adaptation.

Visualization tools. We have enhanced some
families of algorithms with animated, interactive
visualizations of the disambiguation process. For
example, Figure 2 shows part of a screenshot from
the interactive running of the degree centrality al-
gorithm (Navigli and Lapata, 2010). The system is
disambiguating the three content words in the sen-
tence “I drink milk with a straw.” Red, green, and
blue nodes represent senses (or more specifically,
WordNet sense keys) of the words drink, milk,
and straw, respectively; grey nodes are senses of
other words discovered by traversing semantic re-
lations (represented by arcs) in the sense inven-
tory. The current traversal (toast%2:34:00:: to
fuddle%2:34:00::) is drawn in a lighter colour.
Mouseover tooltips provide more detailed infor-
mation on senses. We have found such visualiza-
tions to be invaluable for understanding and de-
bugging algorithms.

Parameter sweeping. The behaviour of many
components (or entire pipelines) can be altered ac-
cording to various parameters. For example, for
the degree centrality algorithm one must specify
the maximum search depth, the minimum vertex
degree, and the context size. DKPro WSD can
perform a parameter sweep, automatically running
the pipeline once for every possible combination
of parameters in user-specified ranges and con-
catenating the results into a table from which the
optimal system configurations can be identified.

Reporting tools. There are several reporting
tools to support evaluation and error analysis. Raw
sense assignments can be output in a variety of for-
mats (XML, HTML, CSV, Senseval answer key,
etc.), some of which support colour-coding to

Figure 2: DKPro WSD’s interactive visualization
of a graph connectivity WSD algorithm.

highlight correct and incorrect assignments. The
system can also compute common evaluation met-
rics (Agirre and Edmonds, 2006, pp. 76–80) and
plot precision–recall curves for each algorithm in
the pipeline, as well as produce confusion matri-
ces for algorithm pairs. Users can specify backoff
algorithms, and have the system compute results
with and without the backoff. Results can also be
broken down by part of speech. Figure 3 shows
an example of an HTML report produced by the
system—on the left is the sense assignment table,
in the upper right is a table of evaluation metrics,
and in the lower right is a precision–recall graph.

DKPro WSD also has support for tasks closely
related to word sense disambiguation:

Entity linking. Entity linking (EL) is the task of
linking a named entity in a text (e.g., Washington)
to its correct representation in some knowledge
base (e.g., either George Washington or Washing-
ton, D.C. depending on the context). EL is very
similar to WSD in that both tasks involve connect-
ing ambiguous words in a text to entries in some
inventory. DKPro WSD supports EL-specific
sense inventories such as the list of Wikipedia
articles used in the Knowledge Base Population
workshop of the Text Analysis Conference (TAC
KBP). This workshop, held annually since 2009,
provides a means for comparing different EL sys-
tems in a controlled setting. DKPro WSD contains
a reader for the TAC KBP data set, components
for mapping other sense inventories to the TAC
KBP inventory, and evaluation components for the
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Figure 3: An HTML report produced by DKPro WSD.

official metrics. Researchers can therefore miti-
gate the entry barrier for their first participation at
TAC KBP and experienced participants can extend
their systems by making use of further WSD algo-
rithms.

Word sense induction. WSD is usually per-
formed with respect to manually created sense in-
ventories such as WordNet. In word sense induc-
tion (WSI) a sense inventory for target words is
automatically constructed from an unlabelled cor-
pus. This can be useful for search result cluster-
ing, or for general applications of WSD for lan-
guages and domains for which a sense inventory
is not yet available. It is usually necessary to per-
form WSD at some point in the evaluation of WSI.
DKPro WSD supports WSI by providing state-of-
the art WSD algorithms capable of using arbitrary
sense inventories, including induced ones. It also
includes readers and writers for the SemEval-2007
and -2013 WSI data sets.

4 Conclusions and future work

In this paper we introduced DKPro WSD, a Java-
and UIMA-based framework for word sense dis-
ambiguation. Its primary advantages over exist-

ing tools are its modularity, its extensibility, and
its free licensing. By segregating and providing
layers of abstraction for code, data sets, and sense
inventories, DKPro WSD greatly simplifies the
comparison of WSD algorithms in heterogeneous
scenarios. Support for a wide variety of commonly
used algorithms, data sets, and sense inventories
has already been implemented.

The framework is under active development,
with work on several new features planned or in
progress. These include implementations or wrap-
pers for further algorithms and for the DANTE
and BabelNet sense inventories. A Web inter-
face is in the works and should be operational
by the time of publication. Source code, bi-
naries, documentation, tutorials, FAQs, an issue
tracker, and community mailing lists are avail-
able on the project’s website at https://code.
google.com/p/dkpro-wsd/.
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Abstract

U-Compare is a UIMA-based workflow
construction platform for building natu-
ral language processing (NLP) applica-
tions from heterogeneous language re-
sources (LRs), without the need for pro-
gramming skills. U-Compare has been
adopted within the context of the META-
NET Network of Excellence, and over
40 LRs that process 15 European lan-
guages have been added to the U-Compare
component library. In line with META-
NET’s aims of increasing communication
between citizens of different European
countries, U-Compare has been extended
to facilitate the development of a wider
range of applications, including both mul-
tilingual and multimodal workflows. The
enhancements exploit the UIMA Subject
of Analysis (Sofa) mechanism, that allows
different facets of the input data to be rep-
resented. We demonstrate how our cus-
tomised extensions to U-Compare allow
the construction and testing of NLP appli-
cations that transform the input data in dif-
ferent ways, e.g., machine translation, au-
tomatic summarisation and text-to-speech.

1 Introduction

Currently, there are many repositories that con-
tain a range of NLP components, e.g., OpenNLP1,
Stanford CoreNLP2, JULIE NLP Toolsuite3 and
NaCTeM software tools4. The ability to chain
components from these repositories into pipelines
is a prerequisite to facilitate the development of

∗The authors have contributed equally to the development
of this work and production of the manuscript.

1http://opennlp.sourceforge.net/projects.html
2http://nlp.stanford.edu/software/corenlp.shtml
3http://www.julielab.de/Resources/Software/NLP Tools.html
4http://nactem.ac.uk/software.php

complex NLP applications. Combining together
heterogeneous components is not, however, al-
ways straightforward. The various components
used in a pipeline may be implemented using dif-
ferent programming languages, may have incom-
patible input/output formats, e.g., stand-off or in-
line annotations, or may require or produce incom-
patible data types, e.g., a particular named entity
recogniser (NER) may require specific types of
syntactic constituents as input, making it impor-
tant to choose the right type of syntactic parser to
run prior to the NER. Thus, the tools required to
build a new application may not be interoperable
with each other, and considerable extra work may
be required to make the tools talk to each other.

The Unstructured Information Management Ar-
chitecture (UIMA) (Ferrucci and Lally, 2004) was
created as a means to alleviate such problems. It
is a framework that facilitates the straightforward
combination of LRs, i.e., tools and corpora, into
workflow applications. UIMA is an OASIS stan-
dard that enables interoperability of LRs by defin-
ing a standard workflow metadata format and stan-
dard input/output representations.

U-Compare (Kano et al., 2011) is a graphical
NLP workflow construction platform built on top
of UIMA. It facilitates the rapid construction, test-
ing and evaluation of NLP workflows using drag-
and-drop actions within its graphical user inter-
face (GUI). U-Compare enhances interoperabil-
ity among UIMA-compliant LRs, by defining a
common and sharable Type System, i.e., a hier-
archy of annotation types, which models a wide
range of NLP data types, e.g., sentence, token,
part-of-speech tag, named entity and discourse
annotations. The aim is for all components in
U-Compare’s library to be compliant with this
type system. In the context of META-NET, U-
Compare’s library has been extended with 46 new
LRs supporting 15 European languages, all of
which are compliant with the same type system.
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This makes U-Compare the world’s largest repos-
itory of type system-compatible LRs, allowing
users to seamlessly combine together resources to
create a range of NLP applications.

Previously, U-Compare was able to support the
development of a wide range of monolingual lex-
ical, syntactic and semantic processing tasks ap-
plications that enriched textual input documents
by adding annotations of various types. However,
not all NLP applications operate in this way; some
workflows transform the input data to create new
“views” of the input data. The META-NET project
aims to ensure equal access to information by all
European citizens. This aim implies the devel-
opment of both multilingual applications, which
transform input data from one language into an-
other, or multimodal applications, in which text
may be transformed into speech, or vice versa.

U-Compare has been extended in several ways
to support the construction of these more complex
workflow types. Specifically, information about
both the original and transformed data, together
with annotations associated with each view, can
now be visualised in a straightforward manner.
The changes support two new categories of work-
flow. Firstly, workflows that produce two or more
textual views of an input text are useful not only
for multilingual applications, such as those that
carry out machine translation, but also applica-
tions that transform the input text in other ways,
such as those that produce a summary of an in-
put text. Secondly, workflows that output audio as
well as textual views, e.g., text-to-speech applica-
tions, are also supported.

2 Related work

Over the past few years, an increasing num-
bers of researchers have begun to create and dis-
tribute their own workflow construction architec-
tures (Ferrucci and Lally, 2004; Cunningham et
al., 2002; Grishman et al., 1997; Schäfer, 2006)
or platforms (Kano et al., 2011; Rak et al., 2012;
Ogrodniczuk and Karagiozov, 2011; Savova et al.,
2010) that allow the rapid development of NLP ap-
plications.

GATE (Cunningham et al., 2002) is a workflow
construction framework that has been used to de-
velop several types of NLP applications, including
summarisation systems. It facilitates the develop-
ment of a wide range of NLP applications by pro-
viding a collection of components that can process

various languages, together with Java libraries that
handle character encoding for approximately 100
languages. However, GATE does not formally de-
fine any standards to model multilingual or mul-
timodal applications, but rather aims to boost the
development process of NLP applications.

TIPSTER (Grishman et al., 1997) is a generic
framework for the development of NLP applica-
tions. TIPSTER provides multilingual function-
alities by associating text segments of a paral-
lel document with one or more languages. This
allows language-dependent NLP components to
process only the appropriate mono-lingual sub-
documents. However, TIPSTER does not provide
explicit guidelines regarding the annotation types
and attributes that are produced by components.
This lack of a common and sharable system of
annotation types discourages interoperability be-
tween LRs. However, TIPSTER does not provide
a mechanism that facilitates the development of
multilingual or multimodal NLP applications.

Heart of Gold (Schäfer, 2006) is an XML-
based workflow construction architecture that en-
ables interoperability of tools developed in dif-
ferent programming languages to be combined
into pipelines. Heart of Gold contains a rich li-
brary of shallow and deep parsing components
supporting several languages, e.g., English, Ger-
man, Japanese and Greek. Nonetheless, Heart of
Gold does not specifically support the construction
of multilingual or multimodal workflows.

In contrast to the other frameworks introduced
above, UIMA (Ferrucci and Lally, 2004) provides
an abstract-level mechanism that can be used to
support the development of workflows that carry
out transformations of the input data. This mech-
anism is called the Subject of Analysis or Sofa.
Multiple Sofas can be linked with an input file,
each of which stores different data and associ-
ated annotations. This mechanism can thus be ex-
ploited to represent alternative “views” of the in-
put data, such as a source text and its translation.
The data stored in different Sofas is not restricted
to textual information; it can also correspond to
other modalities, such as audio data. This makes
the Sofa mechanism equally suitable for storing
the output of text-to-speech workflows. Our ex-
tensions to U-Compare are thus implemented by
reading and displaying the contents of different
types of Sofas.

The Sofa mechanism has previously been
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under-exploited by UIMA developers, despite its
power in allowing more complex NLP workflows
to be constructed. Indeed, no other existing
UIMA-based platform (Kano et al., 2011; Rak et
al., 2012; Savova et al., 2010; Hahn et al., 2008)
has demonstrated the use of Sofas to construct
multilingual or multimodal applications. Thus, to
our knowledge, our enhancements to U-Compare
constitute the first attempt to make the construc-
tion of workflows that carry out transformations of
input data more readily available to UIMA users,
without the need for programming skills.

3 METANET4U Components in
U-Compare

The two dozen national and many regional lan-
guages of Europe present linguistic barriers that
can severely limit the free flow of goods, infor-
mation and services. The META-NET Network
of Excellence was created to respond to this is-
sue. Consisting of 60 research centres from 34
countries, META-NET has aimed to stimulate a
concerted, substantial and continent-wide effort to
push forward language technology research and
engineering, in order to ensure equal access to
information and knowledge for all European cit-
izens.

META-NET’s aims are dependent on the ready
availability of LRs that can carry out NLP and
text mining (TM) on a range of European lan-
guages. Such resources constitute the building
blocks for constructing language technology ap-
plications that can help European citizens to gain
easy access to the information they require. One
of the major outcomes of META-NET has been
the development of META-SHARE, an open, dis-
tributed facility for sharing and exchange of LRs
in a large number of European languages.

Within the context of META-NET, interoper-
ability of LRs is clearly of utmost importance, to
expedite the process of developing new NLP ap-
plications. In order to provide a concrete demon-
stration of the utility and power of promoting in-
teroperability within META-SHARE, one of the
sub-projects of META-NET, i.e., METANET4U,
has carried out a pilot study on interoperability,
making use of the UIMA framework and the U-
Compare platform. It is in this context that a set
of 46 new LRs, available in META-SHARE, were
wrapped as UIMA components and made avail-
able in U-Compare. Of these components, 37 op-

erate on one or more specific languages other than
English and 4 are language-independent. Table 1
shows the full set of categories of UIMA com-
ponents created during the METANET4U project,
together with the languages supported.

Several of these new components output mul-
tiple Sofas, i.e., two machine translation compo-
nents, two automatic summarisation components
and a text-to-speech component. It is hoped that
our U-Compare extensions will help to stimulate
the development of a greater number of related
UIMA components, and thus promote a new level
of complexity for future UIMA workflows.

Component Function Supported Languages
Language Identifier 54 modern languages
Paragraph breaker pt, mt

Sentence splitter
en, pt ,mt, es, ca, ast,
cy, gl, it

Tokeniser
en, pt, mt, es, ca, ast,
cy, gl, it, fr

Morph. Analyser
en, pt, es, ca, ast,
cy, gl, it, ro, eu, fr

POS Tagger
en, es, ca, cy, gl, it,
pt, ro, eu, fr, mt

Syntactic chunker
en, es, ca, gl,
ast, ro, fr

NP chunker ro
Segmenter ro, en
FDG Parser ro
Dependency Parser en, es, ca, gl, ast
Discourse Parser ro

NER
Language
independent

Summariser ro, en

Machine translation
es↔{gl,pt,ca}
en↔es, eu→es

Table 1: METANET4U UIMA components

4 Enhancements to U-Compare

In UIMA, an artefact, i.e., raw text, audio, im-
age, video, and its annotations, e.g., part-of-
speech tags, are represented in a standard format,
namely the Common Analysis Structure (CAS).
A CAS can contain any number of smaller sub-
CASes, i.e., Sofas, that carry different artefacts
with their linked annotations. Figure 1 illustrates
the different types of Sofas that are created by the
three types of workflows that we will demonstrate.
Firstly, for a machine translation workflow, at least
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Figure 1: UIMA based multilingual and multi-
modal workflow architecture

two CAS views, i.e., Sofas, are created, the first
corresponding to the text in the source language,
and the other Sofas corresponding to the transla-
tion(s) of the source text into target language(s).
The second type of workflow, i.e., automatic sum-
marisation, is related to the former workflow, in
that the two Sofas produced by the workflow are
both textual, one containing the input text and one
containing a summary of the original text. The
third type of workflow is different, in that a Sofa
containing audio data is used to represent the out-
put of a multimodal workflow.

Two specific extensions have been made to U-
Compare to handle both textual and audio So-
fas. When the output of a workflow consists of
multiple textual views (Sofas), the default anno-
tation viewer is automatically split to allow mul-
tiple views of the text to be displayed and side-
by-side. This can be useful, e.g., to allow careful
comparison of a source text and target translation
in a machine translation workflow. To handle au-
dio Sofas, we have developed a new, customised
viewer that can visualise and play audio data. The
visualisation consists of a graphical display of the
waveform, power information and spectrogram, as
well as segmentation of the audio data into re-
gions (such as individual tokens) and transcrip-
tions, if such information is present in the audio
Sofa. The viewer makes use the open-source li-
brary Java Speech Toolkit (JSTK)5.

5 Workflow applications

In order to provide a practical demonstration of
the enhanced capabilities of U-Compare, we show

5http://code.google.com/p/jstk

three different workflows that transform the input
data in different ways, namely translation, auto-
matic summarisation and speech synthesis. In this
section, we provide brief details of these work-
flows.

5.1 Machine translation
The University of Manchester has created UIMA
wrapper components corresponding to different
modules of Apertium (Corbı́-Bellot et al., 2005), a
free rule-based machine translation engine. These
components consist of a morphological analyser,
POS tagger and translator. The three components
must be run in sequence to carry out translation,
although the first two components can be used
in other workflows to carry out monolingual
analyses. The UIMA components currently
handle a subset of the 27 languages dealt with
by the complete Apertium system, corresponding
to the languages of the METANET4U partners,
i.e., English↔Spanish, Galician↔Spanish,
Portuguese↔Spanish, Catalan↔Spanish and
Basque→Spanish. However, additional language
pairs can be added straightforwardly. Our sample
workflow includes as its initial component the
Language Identifier from the Romanian Academy
Research Institute for Artificial Intelligence
(RACAI), to automatically detect the language of
the text in the input Sofa. The subsequent compo-
nents in the workflow are the Apertium modules.
The workflow demonstrates how heterogeneous
components from different research groups can
be combined into workflows to create new NLP
applications. A sample output from running the
workflow is shown in Figure 2. The input text
was detected as English by the RACAI Language
Identifier. The English text was subsequently
analysed by the morphological analyser and POS
Tagger, and translated to Spanish by the translator.
Figure 2 illustrates the side-by-side display of the
contents of the two Sofas.

5.2 Automatic summarisation
Automatic summarisation for Romanian text can
be carried out by creating a workflow consisting
of two components developed by the Universitatea
“Alexandru Ioan Cuza” din Iaşi (UAIC). Firstly,
a segmenter (UAICSeg) splits the input text into
fragments, which are in turn used as input to the
summariser component (UAICSum). The length
of the output summary (percentage of the whole
document) is parameterised. As can be seen in

46



Figure 2: Translation of English text to Spanish

Figure 3: Summarisation of Romanian text

Figure 3, the output of this workflow is displayed
using the same parallel Sofa viewer. In this case,
the full text is displayed in the left-hand pane and
the summary is shown in the right-hand pane.

5.3 Speech synthesis
The Universitat Politècnica de Catalunya (UPC)
developed a speech synthesiser component that
is based around their Ogmios text-to-speech sys-
tem (Bonafonte et al., 2006). The UIMA com-
ponent version of this tool generates separate text
and audio Sofas; the former stores the textual to-
kens and textual representations of their pronun-
ciations, whilst the latter stores the start and end
time offsets of each of the tokens in the audio file,
together with their transcriptions. Fig. 4 shows
how the textual Sofa information is displayed in
U-Compare’s default annotation viewer, whilst the
audio Sofa information is shown in the new au-
dio visualiser mentioned above. The three differ-
ent types of visual information are displayed be-

low each other, and the segments (tokens) of the
audio file, together with their transcriptions, are
displayed at the bottom of the window. A “Play”
button allows either the complete file or a selected
segment to be played.

6 Conclusions

The requirements of META-NET have motivated
several new enhancements to the U-Compare plat-
form, which, to our knowledge, make it the first
UIMA-based workflow construction platform that
is fully geared towards the development of NLP
applications that support a wide range of European
languages. The 46 new UIMA-wrapped LRs that
have been made available through U-Compare,
supporting 15 different European languages and
all compliant with the same type system, mean
that the improved U-Compare is essentially a hub
of multilingual resources, which can be freely and
flexibly combined to create new workflows. In
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Figure 4: Speech Synthesis

addition, our enhancements to U-Compare mean
that various types of multilingual and multimodal
workflows can now be created with the minimum
effort. These enhancements are intended to make
U-Compare more attractive to users, and to help
stimulate the development of a new generation of
more complex UIMA-based NLP applications. As
future work, we intend to extend the library of
components that output multiple Sofas, and further
extend the functionalities of U-Compare to handle
other data modalities, e.g., video.
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M. Poprat, K. Tomanek, and J. Wermter. 2008. An
overview of JCoRe, the JULIE lab UIMA compo-
nent repository. In LREC’08 Workshop ‘Towards
Enhanced Interoperability for Large HLT Systems:
UIMA for NLP‘, pages 1–7, Marrakech, Morocco,
May.

Y. Kano, M. Miwa, K. Cohen, L. Hunter, S. Ananiadou,
and J. Tsujii. 2011. U-compare: A modular nlp
workflow construction and evaluation system. IBM
Journal of Research and Development, 55(3):11.

M. Ogrodniczuk and D. Karagiozov. 2011. Atlas - the
multilingual language processing platform. Proce-
samiento de Lenguaje Natural, 47(0):241–248.

R. Rak, A. Rowley, W. Black, and S. Ananiadou.
2012. Argo: an integrative, interactive, text mining-
based workbench supporting curation. Database:
The Journal of Biological Databases and Curation,
2012.

G. Savova, J. Masanz, P. Ogren, J. Zheng, S. Sohn,
K. Kipper-Schuler, and C. Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507–513.
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Abstract

The growing need for Chinese natural
language processing (NLP) is largely
in a range of research and commer-
cial applications. However, most of
the currently Chinese NLP tools or
components still have a wide range
of issues need to be further improved
and developed. FudanNLP is an open
source toolkit for Chinese natural lan-
guage processing (NLP), which uses
statistics-based and rule-based meth-
ods to deal with Chinese NLP tasks,
such as word segmentation, part-of-
speech tagging, named entity recogni-
tion, dependency parsing, time phrase
recognition, anaphora resolution and so
on.

1 Introduction
Chinese is one of the most widely used lan-

guages in this world, and the proportion that
Chinese language holds on the Internet is also
quite high. Under the current circumstances,
there are greater and greater demands for in-
telligent processing and analyzing of the Chi-
nese texts.

Similar to English, the main tasks in Chi-
nese NLP include word segmentation (CWS),
part-of-speech (POS) tagging, named en-
tity recognition (NER), syntactic parsing,
anaphora resolution (AR), and so on. Al-
though the general ways are essentially the
same for English and Chinese, the implemen-
tation details are different. It is also non-
trivial to optimize these methods for Chinese
NLP tasks.

There are also some toolkits to be used
for NLP, such as Stanford CoreNLP1, Apache
OpenNLP2, Curator3 and NLTK4. But these
toolkits are developed mainly for English and
not optimized for Chinese.

In order to customize an optimized system
for Chinese language process, we implement
an open source toolkit, FudanNLP5, which is
written in Java. Since most of the state-of-the-
art methods for NLP are based on statistical
learning, the whole framework of our toolkit
is established around statistics-based meth-
ods, supplemented by some rule-based meth-
ods. Therefore, the quality of training data
is crucial for our toolkit. However, we find
that there are some drawbacks in currently
most commonly used corpora, such as CTB
(Xia, 2000) and CoNLL (Hajič et al., 2009)
corpora. For example, in CTB corpus, the set
of POS tags is relative small and some cate-
gories are derived from the perspective of En-
glish grammar. And in CoNLL corpus, the
head words are often interrogative particles
and punctuations, which are unidiomatic in
Chinese. These drawbacks bring more chal-
lenges to further analyses, such as informa-
tion extraction and semantic understanding.
Therefore, we first construct a corpus with
a modified guideline, which is more in ac-
cordance with the common understanding for
Chinese grammar.

In addition to the basic Chinese NLP tasks
1http://nlp.stanford.edu/software/corenlp.

shtml
2http://incubator.apache.org/opennlp/
3http://cogcomp.cs.illinois.edu/page/

software_view/Curator
4http://www.nltk.org/
5http://fudannlp.googlecode.com
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Figure 1: System Structure of FudanNLP

mentioned above, the toolkit also provides
many minor functions, such as text classifi-
cation, dependency tree kernel, tree pattern-
based information extraction, keywords ex-
traction, translation between simplified and
traditional Chinese, and so on.

Currently, our toolkit has been used by
many universities and companies for various
applications, such as the dialogue system, so-
cial computing, recommendation system and
vertical search.

The rest of the demonstration is organized
as follows. We first briefly describe our system
and its main components in section 2. Then we
show system performances in section 3. Sec-
tion 4 introduces three ways to use our toolkit.
In section 5, we summarize the paper and give
some directions for our future efforts.

2 System Overview
The components of our system have three

layers of structure: data preprocessing, ma-
chine learning and natural language process-
ing, which is shown in Figure 1. We will in-
troduce these components in detail in the fol-
lowing subsections.

2.1 Data Preprocessing Component
In the natural language processing system,

the original input is always text. However,
the statistical machine learning methods often
deal with data with vector-based representa-
tion. So we firstly need to preprocess the input
texts and transform them to the required for-
mat. Due to the fact that text data is usually
discrete and sparse, the sparse vector struc-
ture is largely used. Similar to Mallet (Mc-
Callum, 2002), we use the pipeline structure
for a flexible transformation of various data.

The pipeline consists of several serial or par-
allel modules. Each module, called “pipe”, is
aimed at a single and simple function.

For example, when we transform a sentence
into a vector with “bag-of-words”, the trans-
formation process would involve the following
serial pipes:

1. String2Token Pipe: to transform a string
into word tokens.

2. Token2Index Pipe: to look up the word
alphabet to get the indices of the words.

3. WeightByFrequency Pipe: to calculate
the vector weight for each word accord-
ing to its frequency of occurrence.

With the pipeline structure, the data pre-
processing component has good flexibility, ex-
tensibility and reusability.

2.2 Machine Learning Component
The outputs of NLP are often structured,

so the structured learning is our core module.
Structured learning is the task of assigning a
structured label y to an input x. The label y
can be a discrete variable, a sequence, a tree
or a more complex structure.

To illustrate by a sample x, we define the
feature as Φ(x, y). Thus, we can label x with
a score function,

ŷ = arg max
y

F (w,Φ(x, y)), (1)

where w is the parameter of function F (·).
The feature vector Φ(x, y) consists of lots of
overlapping features, which is the chief benefit
of a discriminative model.

For example, in sequence labeling, both x =
x1, . . . , xL and y = y1, . . . , yL are sequences.
For first-order Markov sequence labeling, the
feature can be denoted as ϕk(yi−1, yi, x, i),
where i is the position in the sequence. Then
the score function can be rewritten as

ŷ = arg max
y

F (

L∑

i=1

∑

k

wkϕk(yi−1, yi, x, i)), (2)

where L is the length of x.
Different algorithms vary in the definition of

F (·) and the corresponding objective function.
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F (·) is usually defined as a linear or exponen-
tial family function. For example, in condi-
tional random fields (CRFs) (Lafferty et al.,
2001), F (·) is defined as:

Pw(y|x) =
1

Zw
exp(wT Φ(x, y)), (3)

where Zw is the normalization constant such
that it makes the sum of all the terms one.

In FudanNLP, the linear function is univer-
sally used as the objective function. Eq. (1) is
written as:

ŷ = arg max
y

< w,Φ(x, y) > . (4)

2.2.1 Training
In the training stage, we use the passive-

aggressive algorithm to learn the model pa-
rameters. Passive-aggressive (PA) algorithm
(Crammer et al., 2006) was proposed for nor-
mal multi-class classification and can be easily
extended to structure learning (Crammer et
al., 2005). Like Perceptron, PA is an online
learning algorithm.

2.2.2 Inference
For consistency with statistical machine

learning, we call the process to calculate the
Eq.(1) as “inference”. In structured learning,
the number of possible solutions is very huge,
so dynamic programming or approximate ap-
proaches are often used for efficiency. For NLP
tasks, the most popular structure is sequence.
To label the sequence, we use Viterbi dynamic
programming to solve the inference problem in
Eq. (4).

Our system can support any order of Viterbi
decoding. In addition, we also implement a
constrained Viterbi algorithm to reduce the
number of possible solutions by pre-defined
rules. For example, when we know the prob-
able labels, we delete the unreachable states
from state transition matrix. It is very useful
for CWS and POS tagging with sequence la-
beling. When we have a word dictionary or
know the POS for some words, we can get
more accurate results.

2.2.3 Other Algorithms
Apart from the core modules of structured

learning, our system also includes several tra-
ditional machine learning algorithms, such as
Perceptron, Adaboost, kNN, k-means, and so
on.

2.3 Natural Language Processing
Components

Our toolkit provides the basic NLP func-
tions, such as word segmentation, part-of-
speech tagging, named entity recognition, syn-
tactic parsing, temporal phrase recognition,
anaphora resolution, and so on. These func-
tions are trained on our developed corpus. We
also develop a visualization module to display-
ing the output. Table 1 shows the output rep-
resentation of our toolkit.

2.3.1 Chinese Word Segmentation
Different from English, Chinese sentences

are written in a continuous sequence of char-
acters without explicit delimiters such as the
blank space. Since the meanings of most Chi-
nese characters are not complete, words are
the basic syntactic and semantic units. There-
fore, it is indispensable step to segment the
sentence into words in Chinese language pro-
cessing.

We use character-based sequence labeling
(Peng et al., 2004) to find the boundaries of
words. Besides the carefully chosen features,
we also use the meaning of character drawn
from HowNet(Dong and Dong, 2006), which
improves the performance greatly. Since un-
known words detection is still one of main chal-
lenges of Chinese word segmentation. We im-
plement a constrained Viterbi algorithm to al-
low users to add their own word dictionary.

2.3.2 POS tagging
Chinese POS tagging is very different from

that in English. There are no morphological
changes for a word among its different POS
tags. Therefore, most of Chinese words may
have multiple POS tags. For example, there
are different morphologies in English for the
word “毁灭 (destroy)”, such as “destroyed”,
“destroying” and “destruction”. But in Chi-
nese, there is just one same form(Xia, 2000).

There are two popular guidelines to tag the
word’s POS: CTB (Xia, 2000) and PKU (Yu
et al., 2001). We take into account both
the weaknesses and the strengths of these two
guidelines, and propose our guideline for bet-
ter subsequent analyses, such as parser and
named entity recognition. For example, the
proper name is labeled as “NR” in CTB, while
we label it with one of four categories: person,
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Input:
约翰来自华盛顿，他生于 1980 年。
John is from Washington, and he was born in 1980.
Output:

..
..约翰 ..来自 ..华盛顿 ..， ..他 ..生于 ..1980 年 ..。
..John ..is from ..Washington .., ..he ..was born in ..1980 ...
..PER ..VV ..LOC ..PU ..PRN ..NN ..PU
..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8

.

Root

.

SUB

.

CS:COO1

.

OBJ

.

PUN

.

SUB

.

OBJ

.

PUN

NER:
1 → PER
3 → LOC

AR:
5 → 1

TIME:
7 → 1980

1 CS:COO means the coordinate complex sentence.

Table 1: Example of the output representation of our toolkit

location, organization and other proper name.
Conversely, we merge the “VC” and “VE” into
“VV” since there is no link verb in Chinese.
Finally, we use a tag set with 39 categories in
total.

Since a POS tag is assigned to each word,
not to each character, Chinese POS tag-
ging has two ways: pipeline method or joint
method. Currently, the joint method is more
popular and effective because it uses more flex-
ible features and can reduce the error propa-
gation (Ng and Low, 2004). In our system,
we implement both methods for POS tagging.
Besides, we also use some knowledge to im-
prove the performance, such as Chinese sur-
name and the common suffixes of the names
of locations and organizations.

2.3.3 Named Entity Recognition
In Chinese named entity recognition (NER),

there are usually three kinds of named enti-
ties (NEs) to be dealt with: names of per-
sons (PER) , locations (LOC) and organiza-
tions (ORG). Unlike English, there is no obvi-
ous identification for NEs, such as initial capi-
tals. The internal structures are also different
for different kinds of NEs, so it is difficult to
build a unified model for named entity recog-
nition.

Our NER is based on the results of POS
tagging and uses some customize features to
detect NEs. First, the number of NEs is very
large and the new NEs are endlessly emerg-
ing, so it is impossible to store them in dic-
tionary. Since the internal structures are rela-

tively more important, we use language mod-
els to capture the internal structures. Second,
we merge the continuous NEs with some rule-
based strategies. For example, we combine the
continuous words “人民/NN大会堂/NN” into
“ 人民大会堂/LOC”.

2.3.4 Dependency parsing
Our syntactic parser is currently a depen-

dency parser, which is implemented with the
shift-reduce deterministic algorithm based on
the work in (Yamada and Matsumoto, 2003).
The syntactic structure of Chinese is more
complex than that of English, and semantic
meaning is more dominant than syntax in Chi-
nese sentences. So we select the dependency
parser to avoid the minutiae in syntactic con-
stituents and wish to pay more attention to
the subsequent semantic analysis. Since the
structure of the Chinese language is quite dif-
ferent from that of English, we use more effec-
tive features according to the characteristics of
Chinese sentences.

The common used corpus for Chinese de-
pendency parsing is CoNLL corpus (Hajič et
al., 2009). However, there are some illogical
cases in CoNLL corpus. For example, the
head words are often interrogative particles
and punctuations. Our guideline is based on
common understanding for Chinese grammar.
The Chinese syntactic components usually in-
clude subject, predicate, object, attribute, ad-
verbial modifier and complement. Figure 2
and 3 show the differences between the trees of
CoNLL and our Corpus. Table 2 shows some

52



primary dependency relations in our guideline.

....想 ..去 ..合欢山 ..赏 ..雪 ..吗 ..？
..want to ..go to ..Hehuanshan ..to see ..the snow .. ..?
..VV ..VV ..NR ..VV ..NN ..SP ..PU

.

Root

.

COMP

.

ADV

.

COMP

.

COMP

.

COMP

.

UNK

Figure 2: Dependency Tree in CoNLL Corpus

....想 ..去 ..合欢山 ..赏 ..雪 ..吗 ..？
..want to ..go to ..Hehuanshan ..to see ..the snow .. ..?
..MD ..VV ..LOC ..VV ..NN ..SP ..PU

.

Root

.

ADV

.

OBJ

.

OBJ

.

OBJ

.

VOC

.

PUN

Figure 3: Dependency Tree in Our Corpus

Relations Chinese Definitions
SUB 主语 Subject

PRED 谓语 Predicate
OBJ 宾语 Object
ATT 定语 Attribute
ADV 状语 Adverbial Modifier

COMP 补语 Complement
SVP 连动 Serial Verb Phrases

SUB-OBJ 兼语 Pivotal Construction
VOC 语态 Voice
TEN 时态 Tense
PUN 标点 Punctuation

Table 2: Some primary dependency relations

2.3.5 Temporal Phrase Recognition
and Normalization

Chinese temporal phrases is more flexible
than English. Firstly, there are two calendars:
Gregorian and lunar calendars. Both of them
are frequently used. Secondly, the forms of
same temporal phrase are various, which often
consists of Chinese characters, Arabic numer-
als and English letters, such as “早上 10 点”
and “10:00 PM”.

Different from the general process based
on machine learning, we implement the time
phrase recognizer with a rule-based method.
These rules include 376 regular expressions
and nearly a hundred logical judgments.

After recognizing the temporal phrases, we
normalize them with a standard time format.

For a phrase indicating a relative time , such
as “一年后” and “ 一小时后”, we first find the
base time in the context. If no base time is
found, or there is also no temporal phrase to
indicate the base time (such as “明天”), we
set the base time to the current system time.
Table 3 gives examples for our temporal phrase
recognition module.

Input:
08 年北京举行奥运会，8 月 8 号开幕。四年后的七月
二十七日，伦敦奥运开幕。
The Beijing Olympic Games took place from Au-
gust 8, 2008. Four years later, the London Olympic
Games took place from July 21.

今天我很忙，晚上 9 点才能下班。周日也要加班。
I’m busy today, and have to come off duty after 9:00
PM. And I also have to work this Sunday.
Output:
08 年 (2008) 2008
8 月 8 号 (August 8) 2008-8-8
七月二十七日 (July 21) 2012-7-27
今天 (today) 2012-2-221

晚上 9 点 (9:00 PM) 2012-2-22 21:00
周日 (this Sunday) 2012-2-26

1 The base time is 2012-02-22 10:00AM.

Table 3: Examples for Temporal Phrase
Recognition

2.3.6 Anaphora Resolution
Anaphora resolution is to detect the pro-

nouns and find what they are referring to.
We first find all pronouns and entity names,
then use a classifier to predict whether there
is a relation between each pair of pronoun and
entity name. Table 4 gives examples for our
anaphora resolution module.

Input:
牛津大学创建于 1167 年。它位于英国牛津城。这个
大学培育了好多优秀的学生。
Oxford University is founded in 1167. It is located
in Oxford, UK. The university has nurtured a lot
of good students.
Output:
它 (It) 牛津大学
这个大学 (The
university)

牛津大学 (Oxford University)

Table 4: Examples for Anaphora Resolution

3 System Performances
In this section, we investigate the per-

formances for the six tasks: Chinese word
segmentation (CWS), POS tagging (POS),
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named entity recognition (NER) and de-
pendency parser(DePar), Temporal Phrase
Recognition (TPR) and Anaphora Resolution
(AR). We use 5-fold cross validation on our
developed corpus. The corpus includes 65, 745
sentences and 959, 846 words. The perfor-
mances are shown in Table 5.

Task Accuracy Speed1 Memory
CWS 97.5% 98.9K 66M
POS 93.4% 44.5K 110M
NER 98.40% 38K 30M

DePar 85.3% 21.1 80M
TPR 95.16% 22.9k 237K
AR 70.3% 35.7K 52K
1 characters per second. Test environment:

CPU 2.67GHz, JRE 7.

Table 5: System Performances

4 Usages
We provide three ways to use our toolkit.
Firstly, our toolkit can be used as library.

Users can call application programming inter-
faces (API) in their own applications.

Secondly, users can also invoke the main
NLP modules to process the inputs (strings
or files) from the command line directly.

Thirdly, the web services are provided
for platform-independent and language-
independent use. We use a REST (Represen-
tational State Transfer) architecture, in which
the web services are viewed as resources and
can be identified by their URLs.

5 Conclusions
In this demonstration, we have described

the system, FudanNLP, which is a Java-based
open source toolkit for Chinese natural lan-
guage processing. In the future, we will add
more functions, such as semantic parsing. Be-
sides, we will also optimize the algorithms and
codes to improve the system performances.
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Abstract

We present ICARUS, a versatile graphi-
cal search tool to query dependency tree-
banks. Search results can be inspected
both quantitatively and qualitatively by
means of frequency lists, tables, or depen-
dency graphs. ICARUS also ships with
plugins that enable it to interface with tool
chains running either locally or remotely.

1 Introduction

In this paper we present ICARUS1 a search and
visualization tool that primarily targets depen-
dency syntax. The tool has been designed such
that it requires minimal effort to get started with
searching a treebank or system output of an auto-
matic dependency parser, while still allowing for
flexible queries. It enables the user to search de-
pendency treebanks given a variety of constraints,
including searching for particular subtrees. Em-
phasis has been placed on a functionality that
makes it possible for the user to switch back and
forth between a high-level, aggregated view of the
search results and browsing of particular corpus
instances, with an intuitive visualization of the
way in which it matches the query. We believe this
to be an important prerequisite for accessing anno-
tated corpora, especially for non-expert users.

Search queries in ICARUS can be constructed
either in a graphical or a text-based manner. Build-
ing queries graphically removes the overhead of
learning a specialized query language and thus
makes the tool more accessible for a wider audi-
ence. ICARUS provides a very intuitive way of
breaking down the search results in terms of fre-
quency statistics (such as the distribution of part-
of-speech on one child of a particular verb against
the lemma of another child). The dimensions for

1Interactive platform for Corpus Analysis and Research
tools, University of Stuttgart

the frequency break-down are simply specified by
using grouping operators in the query. The fre-
quency tables are filled and updated in real time
as the search proceeds through the corpus – allow-
ing for a quick detection of misassumptions in the
query.

ICARUS uses a plugin-based architecture that
permits the user to write his own plugins and in-
tegrate them into the system. For example, it
comes with a plugin that interfaces with an exter-
nal parser that can be used to parse a sentence from
within the user interface. The constraints for the
query can then be copy-pasted from the resulting
parse visualization. This facilitates example-based
querying, which is particularly helpful for inexpe-
rienced users – they do not have to recall details
of the annotation conventions outside of their fo-
cus of interests but can go by what the parser pro-
vides.2

ICARUS is written entirely in Java and runs out
of the box without requiring any installation of
the tool itself or additional libraries. This makes
it platform independent and the only requirement
is that a Java Runtime Environment (JRE) is in-
stalled on the host system. It is open-source and
freely available for download.3

As parsers and other Natural Language Pro-
cessing (NLP) tools are starting to find their way
into other sciences such as (digital) humanities or
social sciences, it gets increasingly important to
provide intuitive visualization tools that integrate
seamlessly with existing NLP tools and are easy
to use also for non-linguists. ICARUS interfaces
readily with NLP tools provided as web services
by CLARIN-D,4 the German incarnation of the
European Infrastructure initiative CLARIN.

2This is of course only practical with rather reliable auto-
matic parsers, but in our experience, the state-of-the-art qual-
ity is sufficient.

3www.ims.uni-stuttgart.de/forschung/
ressourcen/werkzeuge/icarus.en.html

4http://de.clarin.eu

55



The remainder of this paper is structured as fol-
lows: In Section 2 we elaborate on the motivation
for the tool and discuss related work. Section 3
presents a running example of how to build queries
and how results are visualized. In Section 4 we
outline the details of the architecture. Section 5
discusses ongoing work, and Section 6 concludes.

2 Background

Linguistically annotated corpora are among the
most important sources of knowledge for empir-
ical linguistics as well as computational modeling
of natural language. Moreover, for most users the
only way to develop a systematic understanding
of the phenomena in the annotations is through a
process of continuous exploration, which requires
suitable and intuitive tools.

As automatic analysis tools such as syntactic
parsers have reached a high quality standard, ex-
ploration of large collections of auto-parsed cor-
pus material becomes more and more common. Of
course, the querying problem is the same no matter
whether some target annotation was added manu-
ally, as in a treebank, or automatically. Yet, the
strategy changes, as the user will try to make sure
he catches systematic parsing errors and develops
an understanding of how the results he is deal-
ing with come about. While there is no guaran-
teed method for avoiding erroneous matches, we
believe that an easy-to-use transparent querying
mechanism that allows the user to look at the same
or similar results from various angles is the best
possible basis for an informed usage: frequency
tables breaking down the corpus distributions in
different dimensions are a good high-level hint,
and the actual corpus instances should be only one
or two mouse clicks away, presented with a con-
cise visualization of the respective instantiation of
the query constraints.

Syntactic annotations are quite difficult to query
if one is interested in specific constructions that
are not directly encoded in the annotation labels
(which is the case for most interesting phenom-
ena). Several tools have been developed to enable
researchers to do this. However, many of these
tools are designed for constituent trees only.

Dependency syntax has become popular as a
framework for treebanking because it lends itself
naturally to the representation of free word order
phenomena and was thus adopted in the creation of
treebanks for many languages that have less strict

word order, such as the Prague Dependency Tree-
bank for Czech (Hajič et al., 2000) or SynTagRus
for Russian (Boguslavsky et al., 2000).

A simple tool for visualization of dependency
trees is What’s wrong with my NLP? (Riedel,
2008). Its querying functionality is however lim-
ited to simple string-searching on surface forms. A
somewhat more advanced tool is MaltEval (Nils-
son and Nivre, 2008), which offers a number of
predefined search patterns ranging from part-of-
speech tag to branching degree.

On the other hand, powerful tools such as PML-
TQ (Pajas and Štěpánek, 2009) or INESS (Meurer,
2012) offer expressive query languages and can
facilitate cross-layer queries (e.g., involving both
syntactic and semantic structures). They also
accommodate both constituent and dependency
structures.

In terms of complexity in usage and expressiv-
ity, we believe ICARUS constitutes a middle way
between highly expressive and very simple visu-
alization tools. It is easy to use, requires no in-
stallation, while still having rich query and visual-
ization capabilities. ICARUS is similar to PML-
TQ in that it also allows the user to create queries
graphically. It is also similar to the search tool
GrETEL (Augustinus et al., 2012) as it interfaces
with a parser, allowing the user to create queries
starting from an automatic parse. Thus, queries
can be created without any prior knowledge of the
treebank annotation scheme.

As for searching constituent treebanks, there
is a plethora of existing search tools, such
as TGrep2 (Rohde, 2001), TigerSearch (Lezius,
2002), MonaSearch (Maryns, 2009), and Fangorn
(Ghodke and Bird, 2012), among others. They im-
plement different query languages with varying ef-
ficiency and expressiveness.

3 Introductory Example

Before going into the technical details, we show
an example of what you can do with ICARUS.
Assume that a user is interested in passive con-
structions in English, but does not know exactly
how this is annotated in a treebank. As a first step,
he can use a provided plugin that interfaces with
a tool chain5 to parse a sentence that contains a
passive construction (thus adopting the example-
based querying approach laid out in the introduc-

5using mate-tools by Bohnet (2010); available at
http://code.google.com/p/mate-tools
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tion). Figure 1 shows the parser interface. In the
lower field, the user entered the sentence. The
other two fields show the output of the parser, once
as a graph and once as a feature value description.

Figure 1: Parsing the sentence ”Mary was kissed
by a boy.” with a predefined tool chain.

In the second step, the user can then mark parts
of the output graph by selecting some nodes and
edges, and have ICARUS construct a query struc-
ture from it, following the drag-and-drop scheme
users are familiar with from typical office soft-
ware. The automatically built query can be man-
ually adjusted by the user (relaxing constraints)
and then be used to search for similar structures
in a treebank. The parsing step can of course be
skipped altogether, and a query can be constructed
by hand right away. Figure 2 shows the query
builder, where the user can define or edit search
graphs graphically in the main window, or enter
them as a query string in the lower window.

Figure 2: Query builder for constructing queries.

For the example, Figure 3 shows the query as it
is automatically constructed by ICARUS from the
partial parse tree (3a), and what it might look like
after the user has changed it (3b). The modified
query matches passive constructions in English, as

annotated in the CoNLL 2008 Shared Task data set
(Surdeanu et al., 2008), which we use here.

(a) automatically extracted (b) manually edited

Figure 3: Search graphs for finding passive con-
structions. (a) was constructed automatically from
the parsed sentence, (b) is a more general version.

The search returns 6,386 matches. Note that
the query (Figure 3b) contains a <*>-expression.
This grouping operator groups the results accord-
ing to the specified dimension, in this case by the
lemma of the passivized verb. Figure 4 shows
the result view. On the left, a list of lemmas is
presented, sorted by frequency. Clicking on the
lemma displays the list of matches containing that
particular lemma on the right side. The match-
ing sentences can then be browsed, with the active
sentence also being shown as a tree. Note that the
instantiation of the query constraints is highlighted
in the tree display.

Figure 4: Passive constructions in the treebank
grouped by lemma and sorted by frequency.

The query could be further refined to restrict it
to passives with an overt logical subject, using a
more complex search graph for the by-phrase and
a second instance of the grouping operator. The
results will then also be grouped by the lemma of
the logical subject, and are therefore presented as
a two-dimensional table. Figure 5 shows the new
query and the resulting view. The user is presented
with a frequency table, where each cell contains
the number of hits for this particular combination
of verb lemma and logical subject. Clicking on
the cell opens up a view similar to the right part of
Figure 4 where the user can then again browse the
actual trees.
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Figure 5: Search graph and result view for passive
constructions with overt logical subjects, grouped
by lemma of the verb and the lemma of the logical
subject.

Finally, we can add a third grouping operator.
Figure 6 shows a further refined query for passives
with an overt logical subject and an object. In the
results, the user is presented with a list of values
for the first grouping operator to the left. Clicking
on one item in that list opens up a table on the right
presenting the other two dimensions of the query.

Figure 6: Search graph and result view for passive
constructions with an overt logical subject and an
object, grouped by lemma of the verb, the logical
subject, and the object.

This example demonstrates a typical use case
for a user that is interested in certain linguistic
constructions in his corpus. Creating the search
graph and interpreting the results does not re-
quire any specialized knowledge other than fa-
miliarity with the annotation of the corpus being
searched. It especially does not require any pro-
gramming skills, and the possibility to graphically
build a query obviates the need to learn a special-
ized query language.

4 Architecture

This section goes into more details about the in-
ner workings of ICARUS. A main component
is the search engine, which enables the user to
quickly search treebanks for whatever he is inter-
ested in. A second important feature of ICARUS
is the plugin-based architecture, which allows for
the definition of custom extensions. Currently,
ICARUS can read the commonly used CoNLL de-
pendency formats, and it is easy to write exten-
sions in order to add additional formats.

4.1 Search Engine and Query Builder

ICARUS has a tree-based search engine for tree-
banks, and includes a graphical query builder.
Structure and appearance of search graphs are sim-
ilar to the design used for displaying dependency
trees (cf. Figure 1), which is realized with the
open-source library JGraph.6 Queries and/or their
results can be saved to disk and later reloaded for
further processing.

Defining a query graphically basically amounts
to drawing a partial graph structure that defines
the type of structure that the user is interested in.
In practice, this is done by creating nodes in the
query builder and connecting them by edges. The
nodes correspond to words in the dependency trees
of the treebank. Several features like word iden-
tity, lemma, part of speech, etc. can be specified
for each node in the search graph in order to re-
strict the query. Dominance and precedence con-
straints over a set of nodes can be defined by sim-
ply linking nodes with the appropriate edge type.
Edges can be further specified for relation type,
distance, direction, projectivity, and transitivity. A
simple example is shown in Figures 2 and 3. The
search engine supports regular expressions for all
string-properties (form, lemma, part of speech, re-
lation). It also supports negation of (existence of)
nodes and edges, and their properties.

As an alternative to the search graph, the user
can also specify the query in a text-based format
by constructing a comma separated collection of
constraints in the form of key=value pairs for a
single node contained within square brackets. Hi-
erarchical structures are expressed by nesting their
textual representation. Figure 7 shows the text-
based form of the three queries used in the exam-
ples in Section 3.

6http://www.jgraph.com/
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Query 1: [lemma=be[pos=VBN,lemma=<*>,rel=VC]]
Query 2: [lemma=be[pos=VBN,lemma=<*>,rel=VC[form=by,rel=LGS[lemma=<*>,rel=PMOD]]]]
Query 3: [lemma=be[pos=VBN,lemma=<*>,rel=VC[form=by,rel=LGS[lemma=<*>,rel=PMOD]]

[lemma=<*>,rel=OBJ]]]

Figure 7: Text representation of the three queries used in the example in Section 3.

A central feature of the query language is the
grouping operator (<*>), which will match any
value and cause the search engine to group result
entries by the actual instance of the property de-
clared to be grouped. The results of the search
will then be visualized as a list of instances to-
gether with their respective frequencies. Results
can be sorted alphabetically or by frequency (ab-
solute or relative counts) . Depending on the num-
ber of grouping operators used (up to a maximum
of three) the result is structured as a list of fre-
quencies (cf. Figure 4), a table of frequencies for
pairs of instances (cf. Figure 5), or a list where
each item then opens up a table of frequency re-
sults (cf. Figure 6). In the search graph and the
result view, different colors are used to distinguish
between different grouping operators.

The ICARUS search engine offers three differ-
ent search modes:
Sentence-based. Sentence based search stops at
the first successful hit in a sentence and returns
every sentence on a list of results at most once.
Exhaustive sentence-based. The exhaustive
sentence-based search mode extends the sentence
based search by the possibility of processing mul-
tiple hits within a single sentence. Every sentence
with at least one hit is returned exactly once. In the
result view, the user can then browse the different
hits found in one sentence.
Hit-based. Every successful hit is returned sepa-
rately on the corresponding list of results.

When a query is issued, the search results are
displayed on the fly as the search engine is pro-
cessing the treebank. The sentences can be ren-
dered in one of two ways: either as a tree, where
nodes are arranged vertically by depth in the tree,
or horizontally with all the nodes arranged side-
by-side. If a tree does not fit on the screen, part of
it is automatically collapsed but can be expanded
again by the user.

4.2 Extensibility
ICARUS relies on the Java Plugin Framework,7

which provides a powerful XML-based frame-
7http://jpf.sourceforge.net/

work for defining plugins similarly to the engine
used by the popular Eclipse IDE project. The
plugin-based architecture makes it possible for
anybody to write extensions to ICARUS that are
specialized for a particular task. The parser inte-
gration of mate-tools demonstrated in Section 3 is
an example for such an extension.

The plugin system facilitates custom extensions
that make it possible to intercept certain stages
of an ongoing search process and interact with it.
This makes it possible for external tools to pre-
process search data and apply additional annota-
tions and/or filtering, or even make use of exist-
ing indices by using search constraints to limit the
amount of data passed to the search engine. With
this general setup, it is for example possible to eas-
ily extend ICARUS to work with constituent trees.

ICARUS comes with a dedicated plugin that
enables access to web services provided by
CLARIN-D. The project aims to provide tools and
services for language-centered research in the hu-
manities and social sciences. In contrast to the in-
tegration of, e.g., mate-tools, where the tool chain
is executed locally, the user can define a tool chain
by chaining several web services (e.g., lemmatiz-
ers, part-of-speech taggers etc.) together and ap-
ply them to his own data. To do this, ICARUS
is able to read and write the TCF exchange for-
mat (Heid et al., 2010) that is used by CLARIN-D
web services. The output can then be inspected
and searched using ICARUS. As new NLP tools
are added as CLARIN-D web services they can be
immediately employed by ICARUS.

5 Upcoming Extensions

An upcoming release includes the following ex-
tensions:

• Currently, treebanks are assumed to fit into
the executing computer’s main memory.
The new implementation will support asyn-
chronous loading of data, with notifications
passed to the query engine or a plugin when
required data is available. Treebanks with
millions of entries can then be loaded in less
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memory consuming chunks, thus keeping the
system responsive when access is requested.

• The search engine is being extended with an
operator that allows disjunctions of queries.
This will enable the user to aggregate fre-
quency output over multiple queries.

6 Conclusion

We have presented ICARUS, a versatile and user-
friendly search and visualization tool for depen-
dency trees. It is aimed not only at (computa-
tional) linguists, but also at people from other dis-
ciplines, e.g., the humanities or social sciences,
who work with language data. It lets the user
create queries graphically and returns results (1)
quantitatively by means of frequency lists and ta-
bles as well as (2) qualitatively by connecting the
statistics to the matching sentences and allowing
the user to browse them graphically. Its plugin-
based architecture enables it to interface for exam-
ple with external processing pipelines, which lets
the user apply processing tools directly from the
user interface.

In the future, specialized plugins are planned
to work with different linguistic annotations, e.g.
cross-sentence annotations as used to annotate
coreference chains. Additionally, a plugin is in-
tended that interfaces the search engine with a
database.
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Abstract
In this paper we describe a platform for
embodied conversational agents with tu-
toring goals, which takes as input written
and spoken questions and outputs answers
in both forms. The platform is devel-
oped within a game environment, and cur-
rently allows speech recognition and syn-
thesis in Portuguese, English and Spanish.
In this paper we focus on its understand-
ing component that supports in-domain in-
teractions, and also small talk. Most in-
domain interactions are answered using
different similarity metrics, which com-
pare the perceived utterances with ques-
tions/sentences in the agent’s knowledge
base; small-talk capabilities are mainly
due to AIML, a language largely used by
the chatbots’ community. In this paper
we also introduce EDGAR, the butler of
MONSERRATE, which was developed in
the aforementioned platform, and that an-
swers tourists’ questions about MONSER-
RATE.

1 Introduction

Several initiatives have been taking place in the
last years, targeting the concept of Edutainment,
that is, education through entertainment. Fol-
lowing this strategy, virtual characters have ani-
mated several museums all over the world: the
3D animated Hans Christian Andersen is ca-
pable of establishing multimodal conversations
about the writer’s life and tales (Bernsen and
Dybkjr, 2005), Max is a virtual character em-
ployed as guide in the Heinz Nixdorf Museums
Forum (Pfeiffer et al., 2011), and Sergeant Black-
well, installed in the Cooper-Hewitt National De-
sign Museum in New York, is used by the U.S.
Army Recruiting Command as a hi-tech attrac-
tion and information source (Robinson et al.,

Figure 1: EDGAR at MONSERRATE.

2008). DuARTE Digital (Mendes et al., 2009)
and EDGAR are also examples of virtual charac-
ters for the Portuguese language with the same
edutainment goal: DuARTE Digital answers ques-
tions about Custódia de Belém, a famous work of
the Portuguese jewelry; EDGAR is a virtual butler
that answers questions about MONSERRATE (Fig-
ure 1).

Considering the previous mentioned agents,
they all cover a specific domain of knowledge (al-
though a general Question/Answering system was
integrated in Max (Waltinger et al., 2011)). How-
ever, as expected, people tend also to make small
talk when interacting with these agents. There-
fore, it is important that these systems properly
deal with it. Several strategies are envisaged to
this end and EDGAR is of no exception. In this
paper, we describe the platform behind EDGAR,
which we developed aiming at the fast insertion of
in-domain knowledge, and to deal with small talk.
This platform is currently in the process of being
industrially applied by a company known for its
expertise in building and deploying kiosks. We
will provide the hardware and software required
to demonstrate EDGAR, both on a computer and
on a tablet.

This paper is organized as follows: in Sec-
tion 2 we present EDGAR’s development platform
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Figure 2: EDGAR architecture

and describe typical interactions, in Section 3 we
show how we move from in-domain interactions
to small talk, and in Section 4 we present an anal-
ysis on collected logs and their initial evaluation
results. Finally, in Section 5 we present some con-
clusions and point to future work.

2 The Embodied Conversational Agent
platform

2.1 Architecture overview

The architecture of the platform, generally de-
signed for the development of Embodied Con-
versational Agents (ECAs) (such as EDGAR), is
shown in Figure 2. In this platform, several mod-
ules intercommunicate by means of well defined
protocols, thus leveraging the capabilities of inde-
pendent modules focused on specific tasks, such
as speech recognition or 3D rendering/animation.
This independence allows us to use subsets of this
platform modules in scenarios with different re-
quirements (for instance, we can record characters
uttering a text).

Design and deployment of the front end of
EDGAR is performed in a game engine, which has
enabled the use of computer graphics technologies
and high quality assets, as seen in the video game
industry.

2.2 Multimodal components

The game environment, where all the interac-
tion with EDGAR takes place, is developed in the
Unity1 platform, being composed of one highly

1http://unity3d.com/

detailed character, made and animated by Rocket-
box studios2, a virtual keyboard and a push-while-
talking button.

In this platform, Automatic Speech Recogni-
tion (ASR) is performed by AUDIMUS (Meinedo
et al., 2003) for all languages, using generic acous-
tic and language models, recently compiled from
broadcast news data (Meinedo et al., 2010). Lan-
guage models were interpolated with all the do-
main questions defined in the Natural Language
Understanding (NLU) framework (see below),
while ASR includes features such as speech/non-
speech (SNS) detection and automatic gain control
(AGC). Speech captured in a public space raises
several ASR robustness issues, such as loudness
variability of spoken utterances, which is partic-
ularly bound to happen in a museological envi-
ronment (such as MONSERRATE) where silence is
usually incited. Thus, we have added a bounded
amplication to the captured signal, despite the
AGC mechanism, ensuring that too silent sounds
are not discarded by the SNS mechanism.

Upon a spoken input, AUDIMUS translates it
into a sentence, with a confidence value. An
empty recognition result, or one with low con-
fidence, triggers a control tag (“ REPEAT ”) to
the NLU module, which results in a request for
the user to repeat what was said. The answer re-
turned by the NLU module is synthesized in a lan-
guage dependent Text To Speech (TTS) system,
with DIXI (Paulo et al., 2008) being used for Por-
tuguese, while a recent version of FESTIVAL (Zen
et al., 2009) covers both English and Spanish. The

2http://www.rocketbox-libraries.com/
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synthesized audio is played while the correspond-
ing phonemes are mapped into visemes, repre-
sented as skeletal animations, being synchronized
according to phoneme durations, available in all
the employed TTS engines.

Emotions are declared in the knowledge sources
of the agent. As shown in Figure 3, they are coor-
dinated with viseme animations.

Figure 3: The EDGAR character in a joyful state.

2.3 Interacting with EDGAR

In a typical interaction, the user enters a ques-
tion with a virtual keyboard or says it to the mi-
crophone while pressing a button (Figure 4), in
the language chosen in the interface (as previously
said, Portuguese, English or Spanish).

Figure 4: A question written in the EDGAR inter-
face.

Then, the ASR will transcribe it and the NLU
module will process it. Afterwards, the answer,
chosen by the NLU module, is heard through
the speakers, due to the TTS, and sequentially
written in a talk bubble, according to the pro-
duced speech. The answer is accompanied with
visemes, represented by movements of the char-
acter’s mouth/lips, and by facial emotions as
marked in the answers of the NLU knowledge
base. A demo of EDGAR, only for English interac-
tions, can be tested in https://edgar.l2f.
inesc-id.pt/m3/edgar.php.

3 The natural language understanding
component

3.1 In-domain knowledge sources
The in-domain knowledge sources of the agent
are XML files, hand-crafted by domain experts.

This XML files have multilingual pairs consti-
tuted by different paraphrases of the same ques-
tion and possible answers. The main reason to
follow this approach (and contrary to other works
where grammars are used), is to ease the process
of creating/enriching the knowledge sources of the
agent being developed, which is typically done
by non experts in linguistics or computer science.
Thus, we opted for following a similar approach
of the work described, for instance, in (Leuski et
al., 2006), where the agents knowledge sources are
easy to create and maintain. An example of a ques-
tions/answers pair is:

<questions>
<q en="How is everything?"

es="Todo bien?">
Tudo bem?</q>

</questions>
<answers>

<a en="I am ok, thank you."
es="Estoy bien, gracias."
emotion="smile_02">
Estou bem, obrigado.</a>

</answers>

As it can been see from this example, emotions
are defined in these files, associated to each ques-
tion/answer pair (emotion=“smile” in the exam-
ple, one of the possible smile emotions).

These knowledge sources can be (automati-
cally) extended with “synonyms”. We call them
“synonyms”, because they do not necessarily fit
in the usual definition of synonyms. Here we fol-
low a broader approach to this concept and if two
words, within the context of a sentence from the
knowledge source, will lead to the same answer,
then we consider them to be “synonyms”. For
instance “palace” or “castle” are not synonyms.
However, people tend to refer to MONSERRATE in
both forms. Thus, we consider them to be “syn-
onyms” and if one of these is used in the orig-
inal knowledge sources, the other is used to ex-
pand them. It should be clear that we will gener-
ate many incorrect questions with this procedure,
but empirical tests (out of the scope of this paper)
show that these questions do not hurt the system
performance. Moreover, they are useful for ASR
language model interpolation, which is based on
N-grams.
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3.2 Out-of-domain knowledge sources

The same format of the previously described
knowledge sources can be used to represent out-
of-domain knowledge. Here, we extensively used
the “synonyms” approach. For instance, words
wife and girlfriend are considered to be “syn-
onyms” as all the personal questions with these
words should be answered with the same sentence:
I do not want to talk about my private life.

Nevertheless, and taking into consideration the
work around small talk developed by the chat-
bots community (Klwer, 2011), we decided to
use the most popular language to build chat-
bots: the “Artificial Intelligence Markup Lan-
guage”, widely known as AIML, a derivative of
XML. With AIML, knowledge is coded as a set
of rules that will match the user input, associ-
ated with templates, the generators of the out-
put. A detailed description of AIML syntax can
be found in http://www.alicebot.org/
aiml.html. In what respects AIML inter-
preters, we opted to use Program D (java), which
we integrated in our platform. Currently, we use
AIML to deal with slang and to answer questions
that have to do with cinema and compliments.

As a curiosity, we should explain that we deal
with slang when input came from the keyboard,
and not when it is speech, as the language models
are not trained with this specific lexicon. The rea-
son we do that is because if the language models
were trained with slang, it would be possible to er-
roneously detect it in utterances and then answer
them accordingly, which could be extremely un-
pleasant. Therefore, EDGAR only deals with slang
when the input is the keyboard.

The current knowledge sources have 152 ques-
tion/answer pairs, corresponding to 763 questions
and 206 answers. For Portuguese, English and
Spanish the use of 226, 219 and 53 synonym re-
lations, led to the generation of 22 194, 16 378
and 1 716 new questions, respectively.

3.3 Finding the appropriate answer

The NLU module is responsible for the answer se-
lection process. It has three main components.

The first one, STRATEGIES, is responsible to
choose an appropriate answer to the received inter-
action. Several strategies are implemented, includ-
ing the ones based on string matching, string dis-
tances (as for instance, Levenshtein, Jaccard and
Dice), N-gram Overlap and support vector ma-

chines (seeing the answer selection as a classifica-
tion problem). Currently, best results are attained
using a combination of Jaccard and bigram Over-
lap measures and word weight through the use of
tf-idf statistic. In this case, Jaccard takes into ac-
count how many words are shared between the
user’s interaction and the knowledge source en-
try, bigram Overlap gives preference to the shared
sequences of words and tf-idf contributes to the
results attained by previous measures, by given
weight to unfrequent words, which should have
more weight on the decision process (for example,
the word MONSERRATE occurs in the majority of
the questions in the corpus, so it is not very infor-
mative and should not have the same weight as, for
instance, the word architect or owner).

The second component, PLUGINS, deals with
two different situations. First, it accesses Pro-
gram D when interactions are not answered by the
STRATEGIES component. That is, when the tech-
nique used by STRATEGIES returns a value that
is lower than a threshold (dependent of the used
technique), the PLUGIN component runs Program
D in order to try to find an answer to the posed
question. Secondly, when the ASR has no confi-
dence of the attained transcription (and returns the
“ REPEAT ” tag) or Program D is not able to find
an answer, the PLUGINS component does the fol-
lowing (with the goal of taking the user again to
the agent topic of expertise):

• In the first time that this occurs, a sentence
such as Sorry, I did not understand you. is
chosen as the answer to be returned.

• The second time this occurs, EDGAR asks the
user I did not understand you again. Why
don’t you ask me X?, being X generated in
run time and being a question from a subset
of the questions from the knowledge sources.
Obviously, only in-domain (not expanded)
questions are considered for replacing X.

• The third time there is a misunderstanding,
EDGAR says We are not understanding each
other, let me talk about MONSERRATE. And
it randomly choses some answer to present to
the user.

The third component is the HISTORY-
TRACKER, which handles the agent knowledge
about previous interactions (kept until a default
time without interactions is reached).
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4 Preliminary evaluation

Edgar is more a domain-specific Question An-
swering (QA) than a task-oriented dialogue sys-
tem. Therefore, we evaluated it with the metrics
typically used in QA. The mapping of the dif-
ferent situations in true/false positives/negatives is
explained in the following.

We have manually transcribed 1086 spoken ut-
terances (in Portuguese), which were then labeled
with the following tags, some depending on the
answer given by EDGAR:

• 0: in-domain question incorrectly answered,
although there was information in the knowl-
edge sources (excluding Program D) to an-
swer it;

• 1: out-of-domain question, incorrectly an-
swered;

• 2: question correctly answered by Program
D;

• 3: question correctly answered by using
knowledge sources (excluding Program D);

• 4: in-domain question, incorrectly answered.
There is no information in the knowledge
source to answer it, but it should be;

• 5: multiple questions, partially answered;

• 6: multiple questions, unanswered;

• 7: question with implicit information (there,
him, etc.), unanswered;

• 8: question which is not “ipsis verbis” in the
knowledge source, but has a paraphrase there
and was not correctly answered;

• 9: question with a single word (garden,
palace), unanswered;

• 10: question that we do not want the system
to answer (some were answered, some were
not).

The previous tags were mapped into:

• true positives: questions marked with 2, 3
and 5;

• true negatives: questions marked with 0 and
10 (the ones that were not answered by the
system);

• false positives: questions marked with 0 and
10 (the ones that were answered by the sys-
tem);

• false negatives: questions marked with 4, 6,
7, 8 and 9.

Then, two experiments were conducted: in the
first, the NLU module was applied to the manual
transcriptions; in the second, directly to the output
of the ASR. Table 1 shows the results.

NLU input = manual transcriptions
Precision Recall F-measure

0.92 0.60 0.72
acNLU input = ASR

Precision Recall F-measure
0.71 0.32 0.45

Table 1: NLU results

The ASR Word Error Rate (WER) is of 70%.
However, we detect some problems in the way we
were collecting the audio, and in more recent eval-
uations (by using 363 recent logs where previous
problems were corrected), that error decreased to a
WER of 52%, including speech from 111 children,
21 non native Portuguese speakers (thus, with a
different pronunciation), 23 individuals not talking
in Portuguese and 27 interactions where multiple
speakers overlap. Here, we should refer the work
presented in (Traum et al., 2012), where an eval-
uation of two virtual guides in a museum is pre-
sented. They also had to deal with speakers from
different ages and with question off-topic, and re-
port a ASR with 57% WER (however they major-
ity of their user are children: 76%).

We are currently preparing a new corpus for
evaluating the NLU module, however, the follow-
ing results remain: in the best scenario, if tran-
scription is perfect, the NLU module behaves as
indicated in Table 1 (manual transcriptions).

5 Conclusions and Future Work

We have described a platform for developing
ECAs with tutoring goals, that takes both speech
and text as input and output, and introduced
EDGAR, the butler of MONSERRATE, which was
developed in that platform. Special attention was
given to EDGAR’s NLU module, which couples
techniques that try to find distances between the
user input and sentences in the existing knowledge

65



sources, with a framework imported from the chat-
bots community (AIML plus Program D). EDGAR

has been tested with real users for the last year and
we are currently performing a detailed evaluation
of it. There is much work to be done, including to
be able to deal with language varieties, which is an
important source of recognition errors. Moreover,
the capacity of dealing with out-of-domain ques-
tions is still a hot research topic and one of our
priorities in the near future. We have testified that
people are delighted when EDGAR answers out-
of-domain questions (Do you like soccer?/I rather
have a tea and read a good criminal book) and we
cannot forget that entertainment is also one of this
Embodied Conversational Agent (ECA)’s goal.
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Curto and Pedro Cláudio scholarships were sup-
ported under project FALACOMIGO (ProjectoVII
em co-promoção, QREN n 13449).

References
N. O. Bernsen and L. Dybkjr. 2005. Meet hans chris-

tian andersen. In In Proceedings of Sixth SIGdial
Workshop on Discourse and Dialogue, pages 237–
241.

Tina Klwer. 2011. “i like your shirt” – dialogue acts
for enabling social talk in conversational agents. In
Proceedings of the 11th International Conference on
Intelligent Virtual Agents. International Conference
on Intelligent Virtual Agents (IVA), 11th, September
17-19, Reykjavik, Iceland. Springer.

Anton Leuski, Ronakkumar Patel, David Traum, and
Brandon Kennedy. 2006. Building effective ques-
tion answering characters. In 7th SIGdial Workshop
on Discourse and Dialogue, Sydney, Australia.

Hugo Meinedo, Diamantino Caseiro, João Neto, and
Isabel Trancoso. 2003. Audimus.media: a broad-
cast news speech recognition system for the euro-
pean portuguese language. In Proceedings of the 6th
international conference on Computational process-
ing of the Portuguese language, PROPOR’03, pages
9–17, Berlin, Heidelberg. Springer-Verlag.

H. Meinedo, A. Abad, T. Pellegrini, I. Trancoso, and
J. P. Neto. 2010. The l2f broadcast news speech
recognition system. In Proceedings of Fala2010,
Vigo, Spain.

Ana Cristina Mendes, Rui Prada, and Luı́sa Coheur.
2009. Adapting a virtual agent to users’ vocabu-
lary and needs. In Proceedings of the 9th Interna-
tional Conference on Intelligent Virtual Agents, IVA
’09, pages 529–530, Berlin, Heidelberg. Springer-
Verlag.

Sérgio Paulo, Luı́s C. Oliveira, Carlos Mendes, Luı́s
Figueira, Renato Cassaca, Céu Viana, and Helena
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Abstract 

In this paper, we propose PAL, a prototype 
chatterbot for answering non-obstructive 
psychological domain-specific questions. This 
system focuses on providing primary 
suggestions or helping people relieve pressure 
by extracting knowledge from online forums, 
based on which the chatterbot system is 
constructed. The strategies used by PAL, 
including semantic-extension-based question 
matching, solution management with personal 
information consideration, and XML-based 
knowledge pattern construction, are described 
and discussed. We also conduct a primary test 
for the feasibility of our system. 

1 Introduction 

A wide variety of chatterbots and 
question-and-answer (Q&A) systems have been 
proposed over the past decades, each with 
strengths that make them appropriate for 
particular applications. With numerous advances 
in information construction, people increasingly 
aim to communicate with computers using natural 
language. For example, chatterbots in some 
e-commerce Web sites can interact with 
customers and provide help similar to a real-life 
secretary (DeeAnna Merz Nagel, 2011; Yvette 
Colón, 2011). 
  In this paper, we propose PAL (Psychologist of 
Artificial Language), a chatterbot system for 
answering non-obstructive psychological 
questions. Non-obstructive questions refer to 
problems on family, human relationships, 
marriage, life pressure, learning, work and so on. 
In these cases, we expect the chatterbot to play an 
active role by providing tutoring, solution, 
support, advice, or even sympathy depending on 
the help needed by its users.  

  The difference of PAL from existing 
chatterbots lies not only in the specific research 
focus of this paper but also in the strategies we 
designed, such as P-XML templates for storing a 
knowledge base, comprehensive question 
matching method by considering both index and 
semantic similarities, and solution management 
by considering personal information. In the 
following sections, we will briefly discuss related 
work and then introduce our system and its main 
features. 

2 Related Work 

A number of research work on chatterbots 
(Rafael E. Banchs, Haizhou Li, 2012; Ai Ti Aw 
and Lian Hau Lee, 2012), Q&A systems (Shilin 
Ding, Gao Cong, Chin-Yew Lin, 2008; Leila 
Kosseim, 2008; Tiphaine Dalmas, 2007), and 
related natural language understanding 
technologies have recently been conducted 
(Walid S. Saba, 2007; Jing dong, 2009). Several 
studies on the application of natural language 
processing technologies for non-obstructive 
psychological Q&A systems have also been 
published (Hai-hu Shi, 2005).  

Several online psychology counselling Web 
sites with service provided by human experts have 
also been established recently (DeeAnna Merz 
Nagel, 2011; Yvette Colón, 2011). For these Web 
sites, when the visitors ask similar questions, the 
expert may provide the same or very similar 
answers repeatedly. Based on this observation and 
consideration, we collected a large number of 
counselling Q&A pairs to extract common 
knowledge for the construction of a chatterbot 
system. Advances in automatic language analysis 
and processing are used as the bases for the 
emergence of a complex, task-oriented chatterbot 
system. 
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3 Basic Framework of PAL 

A running screenshot of PAL is shown in Figure 
1, and its basic system structure is demonstrated 
in Figure 2. As shown in Figure 2, the basic 
principles of PAL are as follows: 
1) All interactions between system and users are 

scheduled by control logic; 
2) When the user inputs a question, the system 

will search through its knowledge base for 
the matching entry, and then 

3) The system will respond with an appropriate 
answer by analysing both the matched entry 
and the dialogue history. 

Figure 1. Running Screenshot of PAL 
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 Figure 2. Basic Framework of PAL 

4 Conversation Control Strategy of PAL 

The Q&A process of the PAL system is 
coordinated by control logic to communicate with 
users effectively. The basic control logic strategy 
is shown in Figure 3.  

  

Figure 3. Basic Control Logic of PAL 

68



As shown in Figure 3, the initial state is set to 
welcome mode, and the system can select a 
sentence from the “sign on” list, which will then 
provide a response. When users enter a question, 
the system will conduct the necessary analysis. 
The system’s knowledge base is indexed by 
Clucene1 beforehand. Thus, the knowledge index 
will be used to search the matched records quickly. 
If the system can find the matched patterns 
directly and the answer is suitable for the current 
user, one answer will be randomly selected to 
generate the response. Historical information and 
personal information will be analysed when 
necessary. We mainly adopted the method of 
ELIZA2

5 Knowledge Construction and 
Question Matching Method 

, which is an open-source program, to 
consider the historical information. A “not found” 
response list is also set to deal with situations 
when no suitable answers can be identified. Both 
system utterance and user input will be pushed 
into the stack as historical information. Given that 
user questions are at times very simple, the 
combination with historical input may also be 
required to determine its meaning. This step can 
also avoid the duplication of utterances. 

We design P-XML to store the knowledge base 
for PAL, as shown in Figure 4. The knowledge 
base for PAL is mainly derived from the Q&A 
pairs in the BAIDU ZHIDAO community3

<?xml version="1.0" encoding="GB2312"?> 

. One 
question usually has many corresponding 
answers. 

<domain name="*"> <qapair speaker="*">        
<zhidao_question_title>*</zhidao_question_t
itle> 
<zhidao_question_content>*</zhidao_question
_content><zhidao_other_answer 
intersection_number="4">* 
<entity_and_problemword>*</entity_and_probl
emword> <peopleword>*</peopleword>          
</zhidao_other_answer>    
<title_extension>*</title_extension>   
</qapair> 
… 
</domain> 

Figure 4. The Structure of P-XML 
                                                           
1 http://sourceforge.net/projects/clucene/ 
2 http://www.codeforge.cn/article/191554 
3 http://Zhidao.baidu.com 

 
An effective method of capturing the user’s 

meaning accurately is to create an extension for 
questions in the knowledge base. In this paper, the 
extension is primarily a synonym expansion of the 
keywords of questions, with CILIN (Wanxiang 
Che, 2010) as extension knowledge source.  

The questions are indexed by Clucene to 
improve the retrieval efficiency of the search for a 
matched entry in the knowledge base. During the 
knowledge base searching step, both the index of 
the original form and the extension form of the 
problem are used to find the most possible 
matched record for the user’s question, as shown 
in algorithm 1. Algorithm 1 is used to examine the 
similarity between user input and the record 
returned by Clucene, including traditional and 
extension similarities.   

Algorithm 1. Problem-matching method 
Begin  

1) User inputs question Q; 
2) Search from the index of original questions and 

obtain the returned record set RS1; 
3) For the highest ranked record R1 in RS1, 

a) compute the similarity sim1 between 
question R1 and Q; 

b) compute the extension similarity sim2 
between the question extensions of R1 and 
Q;  

4) If sim1 is greater than the threshold value T1 or 
sim2 is greater than the threshold value T2, go to 
the solution management stage and obtain the 
answers of R1, and then find the candidate 
answer using algorithm 2; 

5) Otherwise, a “not found” prompt is given.  
End 

6 Response Management Method 

 One question usually has many corresponding 
answers in the knowledge base, and these 
answers differ in explanation quality. Thus, the 
basic strategy employed by solution management 
is to select a reliable answer from the matched 
record as response, as shown in algorithm 2. 

Personalised information includes name entity, 
gender, marital status and age information. PAL 
maintains some heuristics rules to help recognize 
such information. Based on these rules, if one 
answer contains personal information, it will be 
selected as the candidate answer only when the 
personal information is consistent with that of the 
current user. Very concise answers that do not 
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contain personal information can generally be 
selected as a candidate answer. 

 
Algorithm 2.  Answer-selection method 
Begin 
1) User inputs one question Q; 
2) The system extracts the speaker role S and 

personal information from Q; 
3) Use Q as query to conduct information retrieval 

from the index and knowledge base and obtain 
the top matched record set R; 

4) For each matched question Q’ in R, test the 
following conditions: 
a) (condition 1) extract the speaker role S’ 

in Q’, and examine if S’ is equal to S; 
b) (condition 2) extract personal 

information in Q’, and examine if they 
are equal to that of in Q； 

c) For each answer A’ of Q’ 
i. If no personal information is found 

in A’, A’ will be pushed into 
response list; 

ii. If personal information is contained 
in A’ and if both conditions 1 and 2 
are true, A’ will be pushed into 
response list; 

d) End for 
5) End for 
End 

7 Experiments 

For the current implementation of PAL, the size of 
the knowledge base is approximately 1.2G and 
contains six different topics: “Husband and 
wife”, “Family relations”, “Love affairs”, 
“Adolescence”, “Feeling and Mood”, and 
“Mental tutors”. Dialogue data collection used in 
PAL is mainly crawled from 
http://zhidao.baidu.com, which is one of the 
largest Chinese online communities. The 
criterion for choosing these six categories is also 
because they are the main topics in BAIDU 
communities about psychological problems. 
Some information on the knowledge base is 
given in Table 1, in which “Percent of questions 
matched” denotes the number of similar 
questions found when 100 open questions are 
input (we suppose that if the similarity threshold 
is bigger than 0.5, then a similar question will be 
deemed as “hit” in the knowledge base). 

In 7.1, we examine the feasibility of using 
downloaded dialogue collection for constructing 
the knowledge base. Some dialogue examples are 
given in 7.2.  

 

Domain Avg. ques. 

 length 

Num. of unique 

 Terms in ques. 

Avg. ans. 

 length 

Num. of unique 

terms in ans. 

Percent of questions 

matched (similarity threshold: 0.5) 

Size(MB) 

QS1 58.69 11571 64.13 27312 25 125 

QS2 54.96 10918 64.92 25185 24 292 

QS3 59.66 13530 49.52 13664 15 53 

QS4 42.41 8607 47.11 23492 22 224 

QS5 63.57 11915 48.86 26860 26 276 

QS6 31.82 10009 98.55 20896 25 216 

Table 1. Information of the knowledge base 

 
7.1 System Performance Evaluation 

Additional questions and their corresponding 
answers beyond the knowledge base are also used 
as a test set to evaluate system performance. 
Concretely, suppose question Q has |A| answers in 
the test set. Q is then input into the system. 
Suppose the system output is O, we examine if 
one best answer exists among |A| answers that are 
very similar to O (the similarity is greater than 
threshold T3). If yes, we then assume that one 
suitable answer has been found. In this way, 

precision can be calculated as the number of 
questions that have very similar answers in the 
system divided by the number of all input 
questions.  

The performance evaluation results are shown 
in Figure 5. The horizon axis denotes the 
similarity threshold (T1 for sim1 and T2 for sim2) 
between a user’s input and the questions in the 
knowledge base. Sim1 is the original similarity, 
whereas sim2 is the semantic extension similarity. 
Different thresholds were used (0.5 to 0.9). The 
similarity threshold T3 denotes the similarity 
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between the answer in the test set and system 
output O. From Figures 5 (A) and (B), different 
T3 values were used (0.5 to 0.8).  

Some observations can be made from Figure 5. 
The average system precision is approximately 
0.5, and the range is from 0.2 to 0.9. Basically, 
when T3 is bigger, the system’s performance 
tends to decrease because a high T3 value denotes 
a strict evaluation standard. Performance also 

differs between different areas, such that D4, D5 
and D6 outperform than D1, D2 and D3.  

When only index is used and both sim1 and 
sim2 are below the corresponding threshold T1 or 
T2, the system can still return record set RS2, but 
the returned answer may be inconsistent with 
user’s question. Thus, incorporating semantic 
search shown in algorithm 1 is necessary. 

  

  
（A）(Sim. Thres. T3=0.5) （B）(Sim. Thres. T3=0.6) 

  
(C) (Sim. Thres. T3=0.7) (D) (Sim. Thres. T3=0.8) 

Figure 5. Precision of PAL with different similarity thresholds T3 (The X axis denotes different thresholds 
for sim1 (T1) and sim2 (T2). For example, 0.5(sim1) indicates that the threshold for sim1 is 0.5, whereas 
0.5(sim2) suggests that the threshold for sim2 is 0.5. The Y axis stands for the precision value of different 
T1, T2 and T3 values for different areas). 

7.2．Some Interaction Examples 

Table 2 provides an interaction example of PAL in 
English. As users input their questions, the system 
can output the corresponding responses. The entire 
dialogue history can also be displayed. Basically, 
when users describe their troubles, PAL can 
provide some explanation or even try to console the 
user.  

Compared to other chatterbots like Eliza, PAL 
is domain-specific and may provide help to some 
extent. Many different answers can usually be 
identified. Thus, the user could input the same 
question many times, with the system providing 
suggestions from different angles. PAL can also 
output voice by using Xiao-kun and Microsoft 
Anna as the text-to-speech (TTS) engine. The 
speed, volume and echo properties of the voice can 
be adjusted.  
 

Dialog for Figure 1 (in English) 

PAL> Hello, you are welcome to communicate with 
me! You can input from the left side and press enter to 
get answer! 
I> How do I deal with the children who like to 
complain very frequently?  
PAL>Very simple. Don't’ let him experience the 
benefits of complaining very frequently. 
I> Why do parents give children so much pressure  
PAL> Children have pressure indeed; but parents also 
have a lot of pressure.  
I> Why am I unable to control my emotions, and often 
quarrel with my parents?  
PAL.> Now you may be in the stage of treason. And 
have your own uncertain plan for the future, want to be 
yourself, and do not want to be disturbed. So when 
parents criticize, you will be unhappy. 
I> How to solve the gap problem?  
PAL.> Communication, and listening . 

Table 2. Example of an interaction with PAL (in English) 
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8 Conclusions 

In this paper, we introduce a simple chatterbot for 
answering non-obstructive psychological 
questions. The knowledge behind the chatterbot is 
learned from the Q&A pairs derived from an 
online forum using several extraction strategies. 
The historical and personal information from the 
dialogues are also incorporated to output an 
appropriate answer. 

For future work, we expect to add more features 
to PAL, e.g., enabling the system to ask questions 
actively and further improving P-XML to form 
richer patterns for storing Q&A knowledge. 
Another interesting aspect would be to add speech 
input as well as TTS and to transform PAL into a 
mobile platform for widespread use.  
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Abstract

This paper describes the online tool Phon-
Matrix, which analyzes a word list with re-
spect to the co-occurrence of sounds in a
specified context within a word. The co-
occurrence counts from the user-specified
context are statistically analyzed accord-
ing to a number of association measures
that can be selected by the user. The
statistical values then serve as the input
for a matrix visualization where rows and
columns represent the relevant sounds un-
der investigation and the matrix cells indi-
cate whether the respective ordered pair of
sounds occurs more or less frequently than
expected. The usefulness of the tool is
demonstrated with three case studies that
deal with vowel harmony and similar place
avoidance patterns.

1 Introduction

In this paper, we introduce the PhonMatrix1 tool,
which is designed to visualize co-occurrence con-
straints of sounds within words given a reasonably
sized word list of the language. It is a web-based
implementation of the visualization method pro-
posed in (Mayer et al., 2010a), including some
further development such as an interactive com-
ponent and a range of association measures and
sorting methods to choose from. The original mo-
tivation for this tool is to give linguists the oppor-
tunity to upload their own word lists in order to
visually explore co-occurrence constraints in lan-
guages. The basic idea behind the visual compo-
nent of the tool is to provide for a first, at-a-glance
mode of analysis which can be used to generate
hypotheses about the data by simply looking at the
visualization matrices.

1http://paralleltext.info/phonmatrix/

Phonotactic constraints in languages abound.
One of the most well-known and wide-spread con-
straints is commonly referred to as vowel har-
mony (van der Hulst and van de Weijer, 1995). In
vowel harmony languages, vowels are separated
into groups where vowels of the same group tend
to co-occur within words, while vowels from dif-
ferent groups rarely co-occur. Likewise, in some
languages there are patterns of consonant har-
mony (Hansson, 2010) that show a similar behav-
ior with respect to consonants. Less common are
cases of “synharmonism” (Trubetzkoy, 1967, p.
251) where both vowels and consonants form such
groups and words usually only contain sounds
from the same group (e.g., only front vowels and
palatalized consonants). Whereas vowel harmony
patterns are easily detectable in many harmonic
languages due to the harmonic alternants in af-
fixes, other co-occurrence constraints are less ob-
vious. This is especially true for disharmonic pat-
terns, the most famous of which is the principle
of Similar Place Avoidance (SPA) in Semitic con-
sonantal roots (Greenberg, 1950). Recent studies
have shown that this principle is not only active
in Semitic languages, where it was already known
by grammarians in the Middle Ages, but is a more
widespread tendency among the languages of the
world (Pozdniakov and Segerer, 2007; Mayer et
al., 2010b). One of the reasons why statistical con-
straints like SPA are more difficult to detect is the
fact that they exhibit many frequent counterexam-
ples and are therefore less easily spotted as a gen-
eral (albeit statistical) tendency.

In our view, there are many more phonotactic
constraints that wait to be discovered by linguists.
With the availability of language data in electronic
format such tendencies can be automatically pro-
cessed and presented to the user in a form that
allows for an easy exploration of the results in a
short period of time. Thus a larger number of
phonotactic contexts can be explored in order to
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find potential patterns in the data. The PhonMa-
trix tool is part of an ongoing effort to integrate
methods and techniques from the field of visual
analytics (Thomas and Cook, 2005) into linguis-
tic research. The present tool will be gradually
augmented with further functionalities in order to
enhance its usefulness.

2 Related work

A related tool that quantifies the co-occurrence of
sounds in a given corpus is the Vowel Harmony
Calculator (Harrison et al., 2004). The major dif-
ference between PhonMatrix and the Vowel Har-
mony Calculator is that the latter is restricted to
the context of vowel harmony and requires the user
to input the harmony classes beforehand whereas
PhonMatrix is designed to detect these classes
by making potential harmonic patterns more eas-
ily perceptible to the user. The Vowel Harmony
Calculator quantifies the notion of vowel har-
mony for the input corpus by giving the percent-
age of harmonic words and the harmony threshold.
The harmony threshold is the percentage of words
that would be expected to be harmonic purely by
chance. The output of the Vowel Harmony Cal-
culator consists of a list of values (number of
polysyllabic words, harmony threshold, percent-
age of harmonic words, harmony index, among
other things) but does not give any information
about the harmonic strength of individual vowel
pairs. In short, the Vowel Harmony Calculator is
a way to quantify the notion of harmony given the
harmony classes of the language whereas Phon-
Matrix is intended to help detect such patterns.

3 System overview

PhonMatrix is a web-based visualization tool that
statistically analyzes sound co-occurrences within
words and displays the result in a symmetric sound
matrix. The statistical components are written
in Python whereas the visualization part is in
Javascript, using the D3 library (Bostock et al.,
2011). Before discussing the individual steps of
the system in more detail we will give a brief
overview of the overall processing pipeline (see
Figure 1).

In the first step, the user has to upload the text
file containing the word list that serves as the in-
put to the analysis process. Text files have to be
encoded in UTF-8 and list only one word per line.
For a meaningful analysis the words should be

given in some phonemic transcription (e.g., using
IPA).2

After the file has been uploaded to the server all
symbols in the word list are analyzed according
to their unigram and bigram frequencies. These
frequencies are used to infer an automatic dis-
tinction between vowels, consonants and infre-
quent symbols. Infrequent symbols are consid-
ered to be noise in the data and can be ignored
for further processing. A distinction between vow-
els and consonants is automatically inferred from
the word list by means of Sukhotin’s algorithm
(Sukhotin, 1962). The results of Sukhotin’s algo-
rithm are presented to the user together with the
frequency counts of the individual symbols in the
word list.

In the third step, the user can make changes to
the automatic classification of symbols into vow-
els and consonants and exclude infrequent sym-
bols from further consideration. The subsequent
calculations of co-occurrence values are mostly
based on the distinction of input symbols into con-
sonants (C) and vowels (V). Users can choose
among a number of options that define the con-
text for the co-occurrence calculations.3 Two of
those options will be discussed in more detail in
this paper (vowel co-occurrences in VCV and CC
sequences). Depending on the user’s choice, the
co-occurrences in the selected context are calcu-
lated and analyzed with respect to a number of sta-
tistical association measures from which the user
can choose one for the visualization.

In the last step, the results of the statistical anal-
ysis of the co-occurrence counts are displayed in a
quadratic matrix of sounds. The rows and columns
of the matrix represent the individual sounds that
are relevant for the selected context (e.g., vow-
els in the context of VCV sequences). The rows
thereby stand for the first members of the relevant
sound pairs, whereas the columns contain the sec-
ond members. Each cell of the matrix then shows
the result for the pair of sounds in the respective
row and column.

The final result is a visualization of the co-
occurrence matrix with rows and columns sorted
according to the similarity of the sound vectors
and statistical values represented as colors in the
matrix cells. The visualization features a number

2For more information on the minimum amount of data
necessary see (Mayer et al., 2010a).

3It is also possible for users to define their own contexts
with regular expressions.
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Figure 1: The processing pipeline of the PhonMatrix visualization tool.

of interactive components that facilitate the detec-
tion of potential patterns in the results by the user.

4 PhonMatrix components

PhonMatrix consists of three main components:
preprocessing (including vowel-consonant dis-
tinction), statistical analysis of co-occurrence
counts and visualization. In what follows, we will
describe each component in more detail, with spe-
cial emphasis on the visualization component.

4.1 Vowel-consonant distinction

Most of the co-occurrence restrictions that might
be of interest make reference to a distinction be-
tween vowels and consonants. Since a manual
classification of all sounds in the input into vowels
and consonants is a tedious task (especially with
a larger number of symbols), the first component
deals with an automatic inference of such a dis-
tinction. Many methods have been discussed in
the literature on how to discriminate vowels from
consonants on the basis of their distribution in
texts. Many of them involve many lines of code
and are computationally demanding. Yet there is a
very simple and fast algorithm that yields reason-
ably good results (Sukhotin, 1962; Guy, 1991).

The basic idea of Sukhotin’s algorithm is that
vowels and consonants have the tendency not to
occur in groups within words but to alternate.
Based on the additional assumption that the most
frequent symbol in the text is a vowel, the algo-
rithm iteratively selects the symbol which occurs
most frequently adjacent to a vowel and deter-
mines it to be a consonant. The algorithm stops
if no more consonants can be selected because no
co-occurrence counts with any remaining vowel
are positive. Although the algorithm is quite old
and very simple, it gives reasonably good results
(Goldsmith and Xanthos, 2009; Guy, 1991; Sas-
soon, 1992). PhonMatrix makes use of Sukhotin’s
algorithm as a preprocessing step to give a first
guess of the class for each symbol, which the user
can then modify if it turns out to be wrong. It
mainly serves to speed up the classification step.

4.2 Co-occurrence statistics

With the distinction of symbols into vowels and
consonants at hand, the user can then select a rel-
evant context for the co-occurrence counts. The
relevant context can be chosen from a list of pre-
defined options. Here we will illustrate the statis-
tical analysis with the context of VCV sequences
to investigate vowel harmony in Turkish. The in-
put consists of 20,968 orthographic words from
the Turkish New Testament.4 The tool automati-
cally extracts all VCV sequences in the words and
counts the co-occurrences of sounds in these se-
quences. The counts are then summarized in a
quadratic contingency table and can be used for
further statistical analyses.

In our experiments, two measures turned out to
be especially useful for the detection of potential
patterns: the probability and φ values. The φ value
is a normalized χ2 measure which allows for an
easier mapping of values to the color scale because
it is always between −1 and 1.5 The φ values for
the vowels in the Turkish text are shown in Table
1. Apart from probability and φ values, the user
can also choose among a number of other asso-
ciation measures such as pointwise mutual infor-
mation, likelihood ratios or t-scores (Manning and
Schütze, 1999).

4.3 Visualization component

The input to the visualization component is a ma-
trix of association measures for each sound pair
in the relevant context. Two additional steps have
to be performed in order to arrive at the final
matrix visualization: 1) the rows and columns
of the matrix have to be sorted in a meaning-
ful way; 2) the association measures have to be
mapped to visual variables. For the matrix ar-
rangement, we decided to have the same order of
symbols for the rows and columns. The order
of symbols is determined by a clustering of the

4Turkish orthography represents the modern pronuncia-
tion with a high degree of accuracy.

5Apart from this, φ makes good use of the off-diagonal
cells in the contingency tables (Church and Gale, 1991).

75



a e i o u ö ü ı
a 0.53699 -0.49730 -0.54579 -0.30421 -0.38117 -0.03895 -0.36874 0.65791
e -0.48371 0.54763 0.64548 -0.28216 -0.37907 -0.05792 -0.32882 -0.53454
i -0.40334 0.37477 0.59682 0.30227 -0.33970 0.09038 -0.30307 -0.49651
o 0.20048 -0.28306 -0.31395 -0.14114 0.65493 -0.05532 -0.20696 -0.33238
u 0.28855 -0.34937 -0.38283 0.17629 0.73451 0.10011 -0.22066 -0.39304
ö -0.28879 0.32352 -0.29843 -0.16465 -0.21329 -0.04885 0.65373 -0.29354
ü -0.31709 0.33094 -0.34774 0.14995 -0.24351 -0.05829 0.75780 -0.35024
ı 0.30302 -0.40711 -0.46423 0.32671 -0.33210 -0.07607 -0.28459 0.58548

Table 1: φ values of VCV sequences in Turkish.

symbols based on the similarity of their row val-
ues. The clustering is performed with the Python
scipy.cluster.hierarchy package from
the SciPy library. As a default setting Ward’s al-
gorithm (Ward, 1963) is used but other clustering
algorithms can also be easily integrated.

Whereas the preprocessing steps and the data-
driven sorting of rows and columns have been
written in Python, the actual visualization of the
results in the browser is implemented in Javascript
using the D3 library (Bostock et al., 2011). The
association measures and the order of the sym-
bols are referenced as Javascript variables in the
visualization document. The data is then automat-
ically bound to DOM elements of the HTML doc-
ument through the D3 data operator. The mapping
from association measures to color values is made
with the linear scale method from the d3.scale
package. Scale methods map from an input do-
main to an output range. The input domain for the
φ values is the interval [−1; 1], while the output
range can be given as a color scale ranging from
one color to the other. For the φ values we de-
cided to use two unipolar scales, one from −1 to
0 (red) and the other from 0 to +1 (blue). In order
to reserve a larger color range for the densely pop-
ulated area of low values we did not linearly map
the numerical association measures but used the
square roots of the numerical values as the input
for the scale function. Additionally, the sign of the
φ value, which shows whether the co-occurrence
of a certain symbol pair occurs more (+) or less
(−) frequently than expected, is displayed in the
matrix cell.6 The result of the matrix visualization
for the φ values of the vowels in Turkish VCV se-
quences is shown in Section 5.1.

6The algebraic sign is displayed in white and therefore
stands out more clearly with higher absolute φ values.

The matrix visualization also features some in-
teraction to explore the results in more detail. On
mouse-over, the respective matrix cell shows the
actual values that serve as the input for the data
mapping process. Additionally, the row and col-
umn labels are highlighted in order to show more
clearly which pair of symbols is currently selected
(see Figure 2). The size of the matrix can also
be adjusted to the user’s needs with the help of
a slider above the matrix. Next to the slider is a
dropdown menu from which users can choose the
association measure that they want to be displayed
in the visualization.

5 Case studies

After the description of the PhonMatrix system we
will illustrate the usefulness of the visualization of
co-occurrence patterns in sounds with three case
studies. They are presented as a proof of concept
that the visualization component allows for an at-
a-glance exploration of potential patterns. The vi-
sualization part is thereby not considered to be a
replacement of more detailed linguistic investiga-
tions but rather serves as a way to explore a mul-
titude of different contexts and data in a compara-
tively short period of time. After a suspicious pat-
tern has been detected it is indispensable to look
at the actual data to see whether the visualization
result is an artifact of the method or data at hand
or whether the detected pattern is an interesting
phonotactic feature of the language under consid-
eration.

5.1 Turkish vowel harmony

The first case study shows the results of the VCV
sequences in Turkish described above. For this
purpose the vowels a, e, i, o, u, ö, ü, ı are selected
as the relevant sounds that are to be compared in
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Figure 2: The visualization of the φ values of VCV
sequences in the Turkish text.

the visualization. Figure 2 shows the results for
the φ values that have been computed from the
co-occurrence counts of the symbols in VCV se-
quences. The arrangement of the symbols in the
matrix rows and columns already show a distinc-
tion between front (the first four vowels) and back
(the last four vowels) vowels, reflecting the palatal
harmony in Turkish. This distinction can best be
seen when looking at the e- and a-columns where
the top four vowels all have positive φ values for
e and negative φ values for a, whereas the bottom
four vowels show the opposite behavior. On closer
inspection, the labial harmony for high vowels can
also be seen in the matrix visualization. From top
to bottom there are always pairs of vowels that
take the same harmonic vowel, starting with (ö,
ü) taking ü and followed by (e, i) taking i, (o, u)
taking u and finally (a, ı) taking ı. The usefulness
of the visualization component to detect such pat-
terns can best be seen when comparing Figure 2
with Table 1, which contains the same informa-
tion.

5.2 Finnish vowel harmony

The second case study shows that the harmonic
patterns can also be detected in orthographic
words of the Finnish Bible text. Finnish differs
from Turkish in having only one type of harmony
(palatal harmony) and neutral vowels, i.e., vowels
that do not (directly) participate in the harmony
process. As a different underlying association
measure for the visualization consider the proba-
bility values in Figure 3. For probability values

28.05.13 22:03Matrix Visualization
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Figure 3: The visualization of the probabilities of
VCV sequences in the Finnish text.

we have chosen a bipolar color scale ranging from
white (for 0) over green (for 0.5) to blue (for 1).
The probability matrix clearly shows the relevant
blocks of vowels that mark the harmony groups.7

The clustering algorithm separates the back vow-
els (first three vowels o, a, u) from the front vowels
(vowels four to six, ö, y, ä) and the neutral vowels
(e, i). The blocks along the main diagonal of the
matrix show the harmonic pattern among the har-
mony groups, whereas the neutral vowels do not
display any regular behavior.

5.3 Maltese verbal roots

PhonMatrix is not only useful to find vowel har-
mony patterns. The third case study shows that
other co-occurrence constraints such as SPA can
also be detected. To illustrate this, we show the
visualization of CC patterns in a comprehensive
list of Maltese verbal roots (Spagnol, 2011). The
consonant matrix in Figure 4 shows two clusters,
with one cluster (the first twelve consonants in
the top row) containing labial and dorsal and the
other cluster (the last eleven consonants) compris-
ing only coronal consonants.8 The visualization
also reveals that, unlike in vowel harmony, conso-
nants from the same cluster do not occur next to
each other in the CC sequences, as shown by the
red blocks in the top left and bottom right. This is
exactly what SPA would predict.

7The +/− signs in the matrix are taken from the φ values.
8The consonants are given in their orthographic represen-

tation (Borg and Azzopardi-Alexander, 1997, p. 299).
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Figure 4: The visualization of the φ values of con-
sonant sequences in Maltese verbal roots.

6 Conclusions

In this paper, we have presented PhonMatrix, a
web-based, interactive visualization tool for in-
vestigating co-occurrence restrictions of sounds
within words. The case studies of vowel harmony
and SPA have shown that interesting patterns in
the data can easily be seen only by looking at the
matrix visualizations.
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Abstract

We describe QUEST, an open source
framework for machine translation quality
estimation. The framework allows the ex-
traction of several quality indicators from
source segments, their translations, exter-
nal resources (corpora, language models,
topic models, etc.), as well as language
tools (parsers, part-of-speech tags, etc.). It
also provides machine learning algorithms
to build quality estimation models. We
benchmark the framework on a number of
datasets and discuss the efficacy of fea-
tures and algorithms.

1 Introduction

As Machine Translation (MT) systems become
widely adopted both for gisting purposes and to
produce professional quality translations, auto-
matic methods are needed for predicting the qual-
ity of a translated segment. This is referred to as
Quality Estimation (QE). Different from standard
MT evaluation metrics, QE metrics do not have
access to reference (human) translations; they are
aimed at MT systems in use. QE has a number of
applications, including:
• Deciding which segments need revision by a

translator (quality assurance);
• Deciding whether a reader gets a reliable gist

of the text;
• Estimating how much effort it will be needed

to post-edit a segment;
• Selecting among alternative translations pro-

duced by different MT systems;
• Deciding whether the translation can be used

for self-training of MT systems.

Work in QE for MT started in the early 2000’s,
inspired by the confidence scores used in Speech
Recognition: mostly the estimation of word pos-
terior probabilities. Back then it was called confi-

dence estimation, which we believe is a narrower
term. A 6-week workshop on the topic at John
Hopkins University in 2003 (Blatz et al., 2004)
had as goal to estimate automatic metrics such as
BLEU (Papineni et al., 2002) and WER. These
metrics are difficult to interpret, particularly at the
sentence-level, and results of their very many trials
proved unsuccessful. The overall quality of MT
was considerably lower at the time, and therefore
pinpointing the very few good quality segments
was a hard problem. No software nor datasets
were made available after the workshop.

A new surge of interest in the field started re-
cently, motivated by the widespread used of MT
systems in the translation industry, as a conse-
quence of better translation quality, more user-
friendly tools, and higher demand for translation.
In order to make MT maximally useful in this
scenario, a quantification of the quality of trans-
lated segments similar to “fuzzy match scores”
from translation memory systems is needed. QE
work addresses this problem by using more com-
plex metrics that go beyond matching the source
segment with previously translated data. QE can
also be useful for end-users reading translations
for gisting, particularly those who cannot read the
source language.

QE nowadays focuses on estimating more inter-
pretable metrics. “Quality” is defined according to
the application: post-editing, gisting, etc. A num-
ber of positive results have been reported. Exam-
ples include improving post-editing efficiency by
filtering out low quality segments which would re-
quire more effort or time to correct than translating
from scratch (Specia et al., 2009; Specia, 2011),
selecting high quality segments to be published as
they are, without post-editing (Soricut and Echi-
habi, 2010), selecting a translation from either
an MT system or a translation memory for post-
editing (He et al., 2010), selecting the best trans-
lation from multiple MT systems (Specia et al.,
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2010), and highlighting sub-segments that need re-
vision (Bach et al., 2011).

QE is generally addressed as a supervised ma-
chine learning task using a variety of algorithms to
induce models from examples of translations de-
scribed through a number of features and anno-
tated for quality. For an overview of various al-
gorithms and features we refer the reader to the
WMT12 shared task on QE (Callison-Burch et
al., 2012). Most of the research work lies on
deciding which aspects of quality are more rel-
evant for a given task and designing feature ex-
tractors for them. While simple features such as
counts of tokens and language model scores can be
easily extracted, feature engineering for more ad-
vanced and useful information can be quite labour-
intensive. Different language pairs or optimisation
against specific quality scores (e.g., post-editing
time vs translation adequacy) can benefit from
very different feature sets.

QUEST, our framework for quality estimation,
provides a wide range of feature extractors from
source and translation texts and external resources
and tools (Section 2). These go from simple,
language-independent features, to advanced, lin-
guistically motivated features. They include fea-
tures that rely on information from the MT sys-
tem that generated the translations, and features
that are oblivious to the way translations were
produced (Section 2.1). In addition, by inte-
grating a well-known machine learning toolkit,
scikit-learn,1 and algorithms that are known
to perform well on this task, QUEST provides a
simple and effective way of experimenting with
techniques for feature selection and model build-
ing, as well as parameter optimisation through grid
search (Section 2.2). In Section 3 we present
experiments using the framework with nine QE
datasets.

In addition to providing a practical platform
for quality estimation, by freeing researchers from
feature engineering, QUEST will facilitate work
on the learning aspect of the problem. Quality
estimation poses several machine learning chal-
lenges, such as the fact that it can exploit a large,
diverse, but often noisy set of information sources,
with a relatively small number of annotated data
points, and it relies on human annotations that are
often inconsistent due to the subjectivity of the
task (quality judgements). Moreover, QE is highly

1http://scikit-learn.org/

non-linear: unlike many other problems in lan-
guage processing, considerable improvements can
be achieved using non-linear kernel techniques.
Also, different applications for the quality predic-
tions may benefit from different machine learn-
ing techniques, an aspect that has been mostly ne-
glected so far. Finally, the framework will also
facilitate research on ways of using quality predic-
tions in novel extrinsic tasks, such as self-training
of statistical machine translation systems, and for
estimating quality in other text output applications
such as text summarisation.

2 The QUEST framework

QUEST consists of two main modules: a feature
extraction module and a machine learning mod-
ule. The first module provides a number of feature
extractors, including the most commonly used fea-
tures in the literature and by systems submitted to
the WMT12 shared task on QE (Callison-Burch et
al., 2012). More than 15 researchers from 10 in-
stitutions contributed to it as part of the QUEST

project.2 It is implemented in Java and provides
abstract classes for features, resources and pre-
processing steps so that extractors for new features
can be easily added.

The basic functioning of the feature extraction
module requires raw text files with the source and
translation texts, and a few resources (where avail-
able) such as the source MT training corpus and
language models of source and target. Configura-
tion files are used to indicate the resources avail-
able and a list of features that should be extracted.

The machine learning module provides
scripts connecting the feature files with the
scikit-learn toolkit. It also uses GPy, a
Python toolkit for Gaussian Processes regression,
which outperformed algorithms commonly used
for the task such as SVM regressors.

2.1 Feature sets

In Figure 1 we show the types of features that
can be extracted in QUEST. Although the text
unit for which features are extracted can be of any
length, most features are more suitable for sen-
tences. Therefore, a “segment” here denotes a sen-
tence.

From the source segments QUEST can extract
features that attempt to quantify the complexity

2http://www.dcs.shef.ac.uk/˜lucia/
projects/quest.html
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Figure 1: Families of features in QUEST.

of translating those segments, or how unexpected
they are given what is known to the MT system.
Examples of features include:
• number of tokens in the source segment;
• language model (LM) probability of source

segment using the source side of the parallel
corpus used to train the MT system as LM;
• percentage of source 1–3-grams observed in

different frequency quartiles of the source
side of the MT training corpus;
• average number of translations per source

word in the segment as given by IBM 1
model with probabilities thresholded in dif-
ferent ways.

From the translated segments QUEST can ex-
tract features that attempt to measure the fluency
of such translations. Examples of features include:
• number of tokens in the target segment;
• average number of occurrences of the target

word within the target segment;
• LM probability of target segment using a

large corpus of the target language to build
the LM.

From the comparison between the source and
target segments, QUEST can extract adequacy
features, which attempt to measure whether the
structure and meaning of the source are pre-
served in the translation. Some of these are based
on word-alignment information as provided by
GIZA++. Features include:
• ratio of number of tokens in source and target

segments;
• ratio of brackets and punctuation symbols in

source and target segments;
• ratio of percentages of numbers, content- /

non-content words in the source & target seg-
ments;
• ratio of percentage of nouns/verbs/etc in the

source and target segments;
• proportion of dependency relations between

(aligned) constituents in source and target
segments;
• difference between the depth of the syntactic

trees of the source and target segments;
• difference between the number of

PP/NP/VP/ADJP/ADVP/CONJP phrases in
the source and target;
• difference between the number of per-

son/location/organization entities in source
and target sentences;
• proportion of person/location/organization

entities in source aligned to the same type of
entities in target segment;
• percentage of direct object personal or pos-

sessive pronouns incorrectly translated.

When available, information from the MT sys-
tem used to produce the translations can be very
useful, particularly for statistical machine transla-
tion (SMT). These features can provide an indi-
cation of the confidence of the MT system in the
translations. They are called “glass-box” features,
to distinguish them from MT system-independent,
“black-box” features. To extract these features,
QUEST assumes the output of Moses-like SMT
systems, taking into account word- and phrase-
alignment information, a dump of the decoder’s
standard output (search graph information), global
model score and feature values, n-best lists, etc.
For other SMT systems, it can also take an XML
file with relevant information. Examples of glass-
box features include:

• features and global score of the SMT system;
• number of distinct hypotheses in the n-best

list;
• 1–3-gram LM probabilities using translations

in the n-best to train the LM;
• average size of the target phrases;
• proportion of pruned search graph nodes;
• proportion of recombined graph nodes.

We note that some of these features are
language-independent by definition (such as the
confidence features), while others can be depen-
dent on linguistic resources (such as POS taggers),
or very language-specific, such as the incorrect
translation of pronouns, which was designed for
Arabic-English QE.

Some word-level features have also been im-
plemented: they include standard word posterior
probabilities and n-gram probabilities for each tar-
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get word. These can also be averaged across the
whole sentence to provide sentence-level value.

The complete list of features available is given
as part of QUEST’s documentation. At the current
stage, the number of BB features varies from 80
to 123 depending on the language pair, while GB
features go from 39 to 48 depending on the SMT
system used (see Section 3).

2.2 Machine learning

QUEST provides a command-line interface mod-
ule for the scikit-learn library implemented
in Python. This module is completely indepen-
dent from the feature extraction code and it uses
the extracted feature sets to build QE models.
The dependencies are the scikit-learn li-
brary and all its dependencies (such as NumPy3

and SciPy4). The module can be configured to
run different regression and classification algo-
rithms, feature selection methods and grid search
for hyper-parameter optimisation.

The pipeline with feature selection and hyper-
parameter optimisation can be set using a con-
figuration file. Currently, the module has an
interface for Support Vector Regression (SVR),
Support Vector Classification, and Lasso learn-
ing algorithms. They can be used in conjunction
with the feature selection algorithms (Randomised
Lasso and Randomised decision trees) and the grid
search implementation of scikit-learn to fit
an optimal model of a given dataset.

Additionally, QUEST includes Gaussian Pro-
cess (GP) regression (Rasmussen and Williams,
2006) using the GPy toolkit.5 GPs are an ad-
vanced machine learning framework incorporating
Bayesian non-parametrics and kernel machines,
and are widely regarded as state of the art for
regression. Empirically we found the perfor-
mance to be similar to SVR on most datasets,
with slightly worse MAE and better RMSE.6 In
contrast to SVR, inference in GP regression can
be expressed analytically and the model hyper-
parameters optimised directly using gradient as-
cent, thus avoiding the need for costly grid search.
This also makes the method very suitable for fea-
ture selection.

3http://www.numpy.org/
4http://www.scipy.org/
5https://github.com/SheffieldML/GPy
6This follows from the optimisation objective: GPs use a

quadratic loss (the log-likelihood of a Gaussian) compared to
SVR which penalises absolute margin violations.

Data Training Test
WMT12 (en-es) 1,832 422
EAMT11 (en-es) 900 64
EAMT11 (fr-en) 2,300 225
EAMT09-s1-s4 (en-es) 3,095 906
GALE11-s1-s2 (ar-en) 2,198 387

Table 1: Number of sentences used for training
and testing in our datasets.

3 Benchmarking

In this section we benchmark QUEST on nine ex-
isting datasets using feature selection and learning
algorithms known to perform well in the task.

3.1 Datasets
The statistics of the datasets used in the experi-
ments are shown in Table 1.7

WMT12 English-Spanish sentence translations
produced by an SMT system and judged for
post-editing effort in 1-5 (worst-best), taking a
weighted average of three annotators.

EAMT11 English-Spanish (EAMT11-en-es)
and French-English (EAMT11-fr-en) sentence
translations judged for post-editing effort in 1-4.

EAMT09 English sentences translated by four
SMT systems into Spanish and scored for post-
editing effort in 1-4. Systems are denoted by s1-s4.

GALE11 Arabic sentences translated by two
SMT systems into English and scored for ade-
quacy in 1-4. Systems are denoted by s1-s2.

3.2 Settings
Amongst the various learning algorithms available
in QUEST, to make our results comparable we se-
lected SVR with radial basis function (RBF) ker-
nel, which has been shown to perform very well
in this task (Callison-Burch et al., 2012). The op-
timisation of parameters is done with grid search
using the following ranges of values:
• penalty parameter C: [1, 10, 10]
• γ: [0.0001, 0.1, 10]
• ε: [0.1, 0.2, 10]

where elements in list denote beginning, end and
number of samples to generate, respectively.

For feature selection, we have experimented
with two techniques: Randomised Lasso and

7The datasets can be downloaded from http://www.
dcs.shef.ac.uk/˜lucia/resources.html
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Gaussian Processes. Randomised Lasso (Mein-
shausen and Bühlmann, 2010) repeatedly resam-
ples the training data and fits a Lasso regression
model on each sample. A feature is said to be se-
lected if it was selected (i.e., assigned a non-zero
weight) in at least 25% of the samples (we do this
1000 times). This strategy improves the robust-
ness of Lasso in the presence of high dimensional
and correlated inputs.

Feature selection with Gaussian Processes is
done by fitting per-feature RBF widths (also
known as the automatic relevance determination
kernel). The RBF width denotes the importance
of a feature, the narrower the RBF the more impor-
tant a change in the feature value is to the model
prediction. To make the results comparable with
our baseline systems we select the 17 top ranked
features and then train a SVR on these features.8

As feature sets, we select all features available
in QUEST for each of our datasets. We differen-
tiate between black-box (BB) and glass-box (GB)
features, as only BB are available for all datasets
(we did not have access to the MT systems that
produced the other datasets). For the WMT12 and
GALE11 datasets, we experimented with both BB
and GB features. For each dataset we build four
systems:
• BL: 17 baseline features that performed well

across languages in previous work and were
used as baseline in the WMT12 QE task.
• AF: All features available for dataset.
• FS: Feature selection for automatic ranking

and selection of top features with:
– RL: Randomised Lasso.
– GP: Gaussian Process.

Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are used to evaluate the
models.

3.3 Results

The error scores for all datasets with BB features
are reported in Table 2, while Table 3 shows the re-
sults with GB features, and Table 4 the results with
BB and GB features together. For each table and
dataset, bold-faced figures are significantly better
than all others (paired t-test with p ≤ 0.05).

It can be seen from the results that adding more
BB features (systems AF) improves the results in
most cases as compared to the baseline systems

8More features resulted in further performance gains on
most tasks, with 25–35 features giving the best results.

Dataset System #feats. MAE RMSE

WMT12

BL 17 0.6802 0.8192
AF 80 0.6703 0.8373

FS(RL) 69 0.6628 0.8107
FS(GP) 17 0.6537 0.8014

EAMT11(en-es)

BL 17 0.4867 0.6288
AF 80 0.4696 0.5438

FS(RL) 29 0.4657 0.5424
FS(GP) 17 0.4640 0.5420

EAMT11(fr-en)

BL 17 0.4387 0.6357
AF 80 0.4275 0.6211

FS(RL) 65 0.4266 0.6196
FS(GP) 17 0.4240 0.6189

EAMT09-s1

BL 17 0.5294 0.6643
AF 80 0.5235 0.6558

FS(RL) 73 0.5190 0.6516
FS(GP) 17 0.5195 0.6511

EAMT09-s2

BL 17 0.4604 0.5856
AF 80 0.4734 0.5973

FS(RL) 59 0.4601 0.5837
FS(GP) 17 0.4610 0.5825

EAMT09-s3

BL 17 0.5321 0.6643
AF 80 0.5437 0.6827

FS(RL) 67 0.5338 0.6627
FS(GP) 17 0.5320 0.6630

EAMT09-s4

BL 17 0.3583 0.4953
AF 80 0.3569 0.5000

FS(RL) 40 0.3554 0.4995
FS(GP) 17 0.3560 0.4949

GALE11-s1

BL 17 0.5456 0.6905
AF 123 0.5359 0.6665

FS(RL) 56 0.5358 0.6649
FS(GP) 17 0.5410 0.6721

GALE11-s2

BL 17 0.5532 0.7177
AF 123 0.5381 0.6933

FS(RL) 54 0.5369 0.6955
FS(GP) 17 0.5424 0.6999

Table 2: Results with BB features.

Dataset System #feats. MAE RMSE

WMT12 AF 47 0.7036 0.8476
FS(RL) 26 0.6821 0.8388
FS(GP) 17 0.6771 0.8308

GALE11-s1
AF 39 0.5720 0.7392

FS(RL) 46 0.5691 0.7388
FS(GP) 17 0.5711 0.7378

GALE11-s2
AF 48 0.5510 0.6977

FS(RL) 46 0.5512 0.6970
FS(GP) 17 0.5501 0.6978

Table 3: Results with GB features.

Dataset System #feats. MAE RMSE

WMT12 AF 127 0.7165 0.8476
FS(RL) 26 0.6601 0.8098
FS(GP) 17 0.6501 0.7989

GALE11-s1
AF 162 0.5437 0.6741

FS(RL) 69 0.5310 0.6681
FS(GP) 17 0.5370 0.6701

GALE11-s2
AF 171 0.5222 0.6499

FS(RL) 82 0.5152 0.6421
FS(GP) 17 0.5121 0.6384

Table 4: Results with BB and GB features.
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BL, however, in some cases the improvements are
not significant. This behaviour is to be expected
as adding more features may bring more relevant
information, but at the same time it makes the rep-
resentation more sparse and the learning prone to
overfitting. In most cases, feature selection with
both or either RL and GP improves over all fea-
tures (AF). It should be noted that RL automati-
cally selects the number of features used for train-
ing while FS(GP) was limited to selecting the top
17 features in order to make the results compara-
ble with our baseline feature set. It is interesting
to note that system FS(GP) outperformed the other
systems in spite of using fewer features. This tech-
nique is promising as it reduces the time require-
ments and overall computational complexity for
training the model, while achieving similar results
compared to systems with many more features.

Another interesting question is whether these
feature selection techniques identify a common
subset of features from the various datasets. The
overall top ranked features are:
• LM perplexities and log probabilities for

source and target;
• size of source and target sentences;
• average number of possible translations of

source words (IBM 1 with thresholds);
• ratio of target by source lengths in words;
• percentage of numbers in the target sentence;
• percentage of distinct unigrams seen in the

MT source training corpus.
Interestingly, not all top ranked features are

among the baseline 17 features which are report-
edly best in literature.

GB features on their own perform worse than
BB features, but in all three datasets, the combi-
nation of GB and BB followed by feature selec-
tion resulted in significantly lower errors than us-
ing only BB features with feature selection, show-
ing that the two features sets are complementary.

4 Remarks

The source code for the framework, the datasets
and extra resources can be downloaded from
http://www.quest.dcs.shef.ac.uk/.
The project is also set to receive contribution from
interested researchers using a GitHub repository:
https://github.com/lspecia/quest.

The license for the Java code, Python and shell
scripts is BSD, a permissive license with no re-
strictions on the use or extensions of the software

for any purposes, including commercial. For pre-
existing code and resources, e.g., scikit-learn, GPy
and Berkeley parser, their licenses apply, but fea-
tures relying on these resources can be easily dis-
carded if necessary.
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Abstract

The quality of automatic translation is af-
fected by many factors. One is the diver-
gence between the specific source and tar-
get languages. Another lies in the source
text itself, as some texts are more com-
plex than others. One way to handle such
texts is to modify them prior to transla-
tion. Yet, an important factor that is of-
ten overlooked is the source translatabil-
ity with respect to the specific translation
system and the specific model that are be-
ing used. In this paper we present an in-
teractive system where source modifica-
tions are induced by confidence estimates
that are derived from the translation model
in use. Modifications are automatically
generated and proposed for the user’s ap-
proval. Such a system can reduce post-
editing effort, replacing it by cost-effective
pre-editing that can be done by monolin-
guals.

1 Introduction

While Machine Translation (MT) systems are con-
stantly improving, they are still facing many dif-
ficulties, such as out-of-vocabulary words (i.e.
words unseen at training time), lack of sufficient
in-domain data, ambiguities that the MT model
cannot resolve, and the like. An important source
of problems lies in the source text itself – some
texts are more complex to translate than others.

Consider the following English-to-French
translation by a popular service, BING TRANS-
LATOR:1 Head of Mali defense seeks more arms
→ Défense de la tête du Mali cherche bras plus.
There, apart from syntactic problems, both head
and arms have been translated as if they were

1http://www.bing.com/translator, accessed
on 4/4/2013.

body parts (tête and bras). However, suppose
that we express the same English meaning in the
following way: Chief of Mali defense wants more
weapons. Then BING produces a much better
translation: Chef d’état-major de la défense du
Mali veut plus d’armes.

The fact that the formulation of the source can
strongly influence the quality of the translation has
long been known, and there have been studies in-
dicating that adherence to so-called “Controlled
Language” guidelines, such as Simplified Techni-
cal English2 can reduce the MT post-edition ef-
fort. However, as one such study (O’Brien, 2006)
notes, it is unfortunately not sufficient to just “ap-
ply the rules [i.e. guidelines] and press Translate.
We need to analyze the effect that rules are hav-
ing on different language pairs and MT systems,
and we need to tune our rule sets and texts ac-
cordingly”.

In the software system presented here, SORT

(SOurce Rewriting Tool), we build on the basic in-
sight that formulation of the source needs to be
geared to the specific MT model being used, and
propose the following approach. First, we assume
that the original source text in English (say) is not
necessarily under the user’s control, but may be
given to her. While she is a fluent English speaker,
she does not know at all the target language, but
uses an MT system; crucially, this system is able
to provide estimates of the quality of its transla-
tions (Specia et al., 2009). SORT then automati-
cally produces a number of rewritings of each En-
glish sentence, translates them with the MT sys-
tem, and displays to the user those rewritings for
which the translation quality estimates are higher
than the estimate for the original source. The user
then interactively selects one such rewriting per
sentence, checking that it does not distort the orig-
inal meaning, and finally the translations of these

2http://www.asd-ste100.org
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reformulations are made available.
One advantage of this framework is that the

proposed rewritings are implicitly “aware” of the
underlying strengths and limitations of the spe-
cific MT model. A good quality estimation3

component, for instance, will feel more confident
about the translation of an unambiguous word like
weapon than about that of an ambiguous one such
as arm, or about the translation of a known term
in its domain than about a term not seen during
training.

Such a tool is especially relevant for business
situations where post-edition costs are very high,
for instance because of lack of people both ex-
pert in the domain and competent in the target lan-
guage. Post-edition must be reserved for the most
difficult cases, while pre-edition may be easier to
organize. While the setup cannot fully guarantee
the accuracy of all translations, it can reduce the
number of sentences that need to go through post-
edition and the overall cost of this task.

2 The rewriting tool

In this section we describe SORT, our implemen-
tation of the aforementioned rewriting approach.
While the entire process can in principle be fully
automated, we focus here on an interactive pro-
cess where the user views and approves suggested
rewritings. The details of the rewriting methods
and of the quality estimation used in the current
implementation are described in Sections 3 and 4.

Figure 1 presents the system’s interface, which
is accessed as a web application. With this in-
terface, the user uploads the document that needs
to be translated. The translation confidence of
each sentence is computed and displayed next to
it. The confidence scores are color-coded to en-
able quickly focusing on the sentences that require
more attention. Green denotes sentences for which
the translation confidence is high, and are thus ex-
pected to produce good translations. Red marks
sentences that are estimated to be poorly trans-
lated, and all those in between are marked with
an orange label.

We attempt to suggest rewritings only for sen-
tences that are estimated to be not so well trans-
lated. When we are able to propose rewriting(s)
with higher translation confidence than the origi-
nal, a magnifying glass icon is displayed next to the
sentence. Clicking it displays, on the right side of

3Also known as confidence estimation.

the screen, an ordered list of the more confident
rewritings, along with their corresponding confi-
dence estimations. The first sentence on the list
is always the original one, to let it be edited, and
to make it easier to view the difference between
the original and the rewritings. An example is
shown on the right side of Figure 1, where we see
a rewriting suggestion for the fourth sentence in
the document. Here, the suggestion is simply to
replace the word captured with the word caught, a
rewriting that is estimated to improve the transla-
tion of the sentence.

The user can select one of the suggestions or
choose to edit either the original or one of the
rewritings. The current sentence which is being
examined is marked with a different color and the
alternative under focus is marked with a small icon
(the bidirectional arrows). The differences between
the alternatives and the original are highlighted.
After the user’s confirmation (with the check mark
icon), the display of the document on the left-hand
side is updated based on her selection, including
the updated confidence estimation. At any time,
the user (if she speaks the target language) can
click on the cogwheel icon and view the transla-
tion of the source or of its rewritten version. When
done, the user can save the edited text or its trans-
lation. Moses Release 1.0 of an English-Spanish
Europarl-trained model4 was used in this work to
obtain English-Spanish translations.

2.1 System and software architecture

SORT is implemented as a web application, using
an MVC (Model View Controller) software archi-
tecture. The Model part is formed by Java classes
representing the application state (user input, se-
lected text lines, associated rewriting propositions
and scores). The Controller consists of several
servlet components handling each user interaction
with the backend server (file uploads, SMT tools
calls via XML-RPC or use of the embedded Java
library that handles the actual rewritings). Finally,
the View is built with standard web technologies:
HTML5, JavaScript (AJAX) and CSS style sheets.
The application was developed and deployed on
Linux (CentOS release 6.4), with a Java Runtime
6 (Java HotSpot 64-Bit Server VM), within a Tom-
cat 7.0 Application Server, and tested with Firefox
as the web client both on Linux and Windows 7.

Figure 2 shows the system architecture of SORT,

4http://www.statmt.org/moses/RELEASE-1.0/model/
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Figure 1: SORT’s interface

Figure 2: SORT’s system architecture. For simplicity, only
partial input-output details are shown.

with some details of the current implementation.
The entire process is performed via a client-server
architecture in order to provide responsiveness, as
required in an interactive system. The user com-
municates with the system through the interface
shown in Figure 1. When a document is loaded,
its sentences are translated in parallel by an SMT
Moses server (Koehn et al., 2007). Then, the
source and the target are sent to the confidence es-
timator, and the translation model information is
also made available to it. The confidence estima-
tor extracts features from that input and returns a
confidence score. Specifically, the language model
features are computed with two SRILM servers
(Stolcke, 2002), one for the source language and
one for the target language. Rewritings are pro-
duced by the rewriting modules (see Section 3 for

the implemented rewriting methods). For each
rewriting, the same process of translation and con-
fidence estimation is performed. Translations are
cached during the session; thus, when the user
wishes to view a translation or download the trans-
lations of the entire document, the response is im-
mediate.

3 Source rewriting

Various methods can be used to rewrite a source
text. In what follows we describe two rewriting
methods, based on Text Simplification techniques,
which we implemented and integrated in the cur-
rent version of SORT. Simplification operations
include the replacement of words by simpler ones,
removal of complicated syntactic structures, short-
ening of sentences etc. (Feng, 2008). Our assump-
tion is that simpler sentences are more likely to
yield higher quality translations. Clearly, this is
not always the case; yet, we leave this decision to
the confidence estimation component.

Sentence-level simplification (Specia, 2010)
has proposed to model text simplification as a Sta-
tistical Machine Translation (SMT) task where the
goal is to translate sentences to their simplified
version in the same language. In this approach, a
simplification model is learnt from a parallel cor-
pus of texts and their simplified versions. Apply-
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ing this method, we train an SMT model from En-
glish to Simple English, based on the PWKP par-
allel corpus generated from Wikipedia (Zhu et al.,
2010);5 we use only alignments involving a single
sentence on each side. This results in a phrase ta-
ble containing many entries where source and tar-
get phrases are identical, but also phrase-pairs that
are mapping complex phrases to their simplified
counterparts, such as the following:

• due to its location on→ because it was on
• primarily dry and secondarily cold → both

cold and dry
• the high mountainous alps→ the alps

Also, the language model is trained with Simple
English sentences to encourage the generation of
simpler texts. Given a source text, it is translated
to its simpler version, and its n-best translations
are assessed by the confidence estimation compo-
nent.

Lexical simplification One of the primary oper-
ations for text-simplification is lexical substitution
(Table 2 in (Specia, 2010)). Hence, in addition to
rewriting a full sentence using the previous tech-
nique, we implemented a second method, address-
ing lexical simplification directly, and only modi-
fying local aspects of the source sentence. The ap-
proach here is to extract relevant synonyms from
our trained SMT model of English to Simplified
English, and use them as substitutions to simplify
new sentences. We extract all single token map-
pings from the phrase table of the trained model,
removing punctuations, numbers and stop-words.
We check whether their lemmas were synonyms
in WordNet (Fellbaum, 1998) (with all possible
parts-of-speech as this information was not avail-
able in the SMT model). Only those are left as
valid substitution pairs. When a match of an En-
glish word is found in the source sentence it is re-
placed with its simpler synonym to generate an al-
ternative for the source. For example, using this
rewriting method for the source sentence “Why the
Galileo research program superseded rival pro-
grams,” three rewritings of the sentence are gen-
erated when rival is substituted by competitor or
superseded by replaced, and when both substitu-
tions occur together.

5Downloaded from:
http://www.ukp.tu-darmstadt.de/data/
sentence-simplification

In the current version of SORT, both sentence-
level and lexical simplification methods are used
in conjunction to suggest rewritings for sentences
with low confidence scores.

4 Confidence estimation

Our confidence estimator is based on the system
and data provided for the 2012 Quality estima-
tion shared task (Callison-Burch et al., 2012). In
this task, participants were required to estimate the
quality of automated translations. Their estimates
were compared to human scores of the translation
which referred to the suitability of the translation
for post-editing. The scores ranged from 1 to 5,
where 1 corresponded to translation that practi-
cally needs to be done from scratch, and 5 to trans-
lations that requires little to no editing.

The task’s training set consisted of approxi-
mately 1800 source sentences in English, their
Moses translations to Spanish and the scores given
to the translations by the three judges. With this
data we trained an SVM regression model using
SVMlight (Joachims, 1999). Features were ex-
tracted with the task’s feature-extraction baseline
module. Two types of features are used in this
module (i) black-box features, which do not as-
sume access to the translation system, such as
the length of the source and the target, number
of punctuation marks and language model prob-
abilities, and (ii) glass-box features, which are ex-
tracted from the translation model, such as the
average number of translations per source word
(Specia et al., 2009).

5 Initial evaluation and analysis

We performed an initial evaluation of our ap-
proach in an English to Spanish translation setting,
using the 2008 News Commentary data.6 First,
two annotators who speak English but not Spanish
used SORT to rewrite an English text. They re-
viewed the proposed rewritings for 960 sentences
and were instructed to “trust the judgment” of the
confidence estimator; that is, reviewing the sug-
gestions from the most to the least confident one,
they accepted the first rewriting that was fluent and
preserved the meaning of the source document as
a whole. 440 pairs of the original sentence and
the selected alternative were then both translated
to Spanish and were presented as competitors to

6Available at http://www.statmt.org
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three native Spanish speakers. The sentences were
placed within their context in the original docu-
ment, taken from the Spanish side of the corpus.
The order of presentation of the two competitors
was random. In this evaluation, the translation of
the original was preferred 20.6% of the cases, the
rewriting 30.4% of them, and for 49% of the sen-
tences, no clear winner was chosen.7 Among the
two rewriting methods, the sentence-level method
more often resulted in preferred translations.

These results suggest that rewriting is esti-
mated to improve translation quality. However,
the amount of preferred original translations indi-
cates that the confidence estimator is not always
discriminative enough: by construction, for every
rewriting that is displayed, the confidence compo-
nent estimates the translation of the original to be
less accurate than that of the rewriting; yet, this is
not always reflected in the preferences of the eval-
uators. On a different dimension than translation
quality, the large number of cases with no clear
winner, and the analysis we conducted, indicate
that the user’s cognitive effort would be decreased
if we only displayed those rewritings associated
with a substantial improvement in confidence; due
to the nature of our methods, frequently, identi-
cal or near-identical translations were generated,
with only marginal differences in confidence, e.g.,
when two source synonyms were translated to the
same target word. Also, often a wrong synonym
was suggested as a replacement for a word (e.g.
Christmas air for Christmas atmosphere). This
was somewhat surprising as we had expected the
language model features of the confidence estima-
tor to help removing these cases. While they were
filtered by the English-speaking users, and thus
did not present a problem for translation, they cre-
ated unnecessary workload. Putting more empha-
sis on context features in the confidence estimation
or explicitly verifying context-suitability of a lex-
ical substitutions could help addressing this issue.

6 Related work

Some related approaches focus on the authoring
process and control a priori the range of possible
texts, either by interactively enforcing lexical and
syntactic constraints on the source that simplify
the operations of a rule-based translation system
(Carbonell et al., 1997), or by semantically guid-

7One should consider these figures with caution, as the
numbers may be too small to be statistically meaningful.

ing a monolingual author in the generation of mul-
tilingual texts (Power and Scott, 1998; Dymetman
et al., 2000). A recent approach (Venkatapathy
and Mirkin, 2012) proposes an authoring tool that
consults the MT system itself to propose phrases
that should be used during composition to obtain
better translations. All these methods address the
authoring of the source text from scratch. This
is inherently different from the objective of our
work where an existing text is modified to improve
its translatability. Moving away from authoring
approaches, (Choumane et al., 2005) propose an
interactive system where the author helps a rule-
based translation system disambiguate a source
text inside a structured document editor. The
techniques are generic and are not automatically
adapted to a specific MT system or model. Closer
to our approach of modifying the source text, one
approach is to paraphrase the source or to gener-
ate sentences entailed by it (Callison-Burch et al.,
2006; Mirkin et al., 2009; Marton et al., 2009;
Aziz et al., 2010). These works, however, fo-
cus on handling out-of-vocabulary (OOV) words,
do not assess the translatability of the source sen-
tence and are not interactive.8 The MonoTrans2
project (Hu et al., 2011) proposes monolingual-
based editing for translation. Monolingual speak-
ers of the source and target language collaborate
to improve the translation. Unlike our approach,
here both the feedback for poorly translated sen-
tences and the actual modification of the source
is done by humans. This contrasts with the auto-
matic handling (albeit less accurate) of both these
tasks in our work.

7 Conclusions and future work

We introduced a system for rewriting texts for
translation under the control of a confidence esti-
mator. While we focused on an interactive mode,
where a monolingual user is asked to check the
quality of the source reformulations, in an exten-
sion of this approach, the quality of the reformu-
lations could also be assessed automatically, re-
moving the interactive aspects at the cost of an in-
creased risk of rewriting errors. For future work
we wish to add more powerful rewriting tech-
niques that are able to explore a larger space of
possible reformulations, but compensate this ex-

8Another way to use paraphrases for improved translation
has been proposed by (Max, 2010) who uses paraphrasing of
the source text to increase the number of training examples
for the SMT system.
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panded space by robust filtering methods. Based
on an evaluation of the quality of the generated al-
ternatives as well as on user selection decisions,
we may be able to learn a quality estimator for
the rewriting operations themselves. Such meth-
ods could be useful both in an interactive mode,
to minimize the effort of the monolingual source
user, as well as in an automatic mode, to avoid
misinterpretation. In this work we used an avail-
able baseline feature extraction module for confi-
dence estimation. A better estimator could bene-
fit our system significantly, as we argued above.
Lastly, we wish to further improve the user inter-
face of the tool, based on feedback from actual
users.
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Abstract

In this paper we describe Travatar, a
forest-to-string machine translation (MT)
engine based on tree transducers. It pro-
vides an open-source C++ implementation
for the entire forest-to-string MT pipeline,
including rule extraction, tuning, decod-
ing, and evaluation. There are a number
of options for model training, and tuning
includes advanced options such as hyper-
graph MERT, and training of sparse fea-
tures through online learning. The train-
ing pipeline is modeled after that of the
popular Moses decoder, so users famil-
iar with Moses should be able to get
started quickly. We perform a valida-
tion experiment of the decoder on English-
Japanese machine translation, and find that
it is possible to achieve greater accuracy
than translation using phrase-based and
hierarchical-phrase-based translation. As
auxiliary results, we also compare differ-
ent syntactic parsers and alignment tech-
niques that we tested in the process of de-
veloping the decoder.

Travatar is available under the LGPL at
http://phontron.com/travatar

1 Introduction

One of the recent trends in statistical machine
translation (SMT) is the popularity of models that
use syntactic information to help solve problems
of long-distance reordering between the source
and target language text. These techniques can
be broadly divided into pre-ordering techniques,
which first parse and reorder the source sentence
into the target order before translating (Xia and

McCord, 2004; Isozaki et al., 2010b), and tree-
based decoding techniques, which take a tree or
forest as input and choose the reordering and
translation jointly (Yamada and Knight, 2001; Liu
et al., 2006; Mi et al., 2008). While pre-ordering is
not able to consider both translation and reorder-
ing in a joint model, it is useful in that it is done
before the actual translation process, so it can be
performed with a conventional translation pipeline
using a standard phrase-based decoder such as
Moses (Koehn et al., 2007). For tree-to-string sys-
tems, on the other hand, it is necessary to have
available or create a decoder that is equipped with
this functionality, which becomes a bottleneck in
the research and development process.

In this demo paper, we describe Travatar, an
open-source tree-to-string or forest-to-string trans-
lation system that can be used as a tool for transla-
tion using source-side syntax, and as a platform
for research into syntax-based translation meth-
ods. In particular, compared to other decoders
which mainly implement syntax-based translation
in the synchronous context-free grammar (SCFG)
framework (Chiang, 2007), Travatar is built upon
the tree transducer framework (Graehl and Knight,
2004), a richer formalism that can help capture
important distinctions between parse trees, as we
show in Section 2. Travatar includes a fully docu-
mented training and testing regimen that was mod-
eled around that of Moses, making it possible for
users familiar with Moses to get started with Tra-
vatar quickly. The framework of the software is
also designed to be extensible, so the toolkit is ap-
plicable for other tree-to-string transduction tasks.

In the evaluation of the decoder on English-
Japanese machine translation, we perform a com-
parison to Moses’s phrase-based, hierarchical-
phrase-based, and SCFG-based tree-to-string
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Figure 1: Tree-to-string translation rules for
SCFGs and tree transducers.

translation. Based on the results, we find that tree-
to-string, and particularly forest-to-string, transla-
tion using Travatar provides competitive or supe-
rior accuracy to all of these techniques. As aux-
iliary results, we also compare different syntactic
parsers and alignment techniques that we tested in
the process of developing the decoder.

2 Tree-to-String Translation

2.1 Overview

Tree-to-string translation uses syntactic informa-
tion to improve translation by first parsing the
source sentence, then using this source-side parse
tree to decide the translation and reordering of the
input. This method has several advantages, includ-
ing efficiency of decoding, relatively easy han-
dling of global reordering, and an intuitive repre-
sentation of de-lexicalized rules that express gen-
eral differences in order between the source and
target languages. Within tree-to-string translation
there are two major methodologies, synchronous
context-free grammars (Chiang, 2007), and tree
transducers (Graehl and Knight, 2004).

An example of tree-to-string translation rules
supported by SCFGs and tree transducers is shown
in Figure 1. In this example, the first rule is a
simple multi-word noun phrase, the second exam-
ple is an example of a delexicalized rule express-
ing translation from English SVO word order to
Japanese SOV word order. The third and fourth
examples are translations of a verb, noun phrase,
and prepositional phrase, where the third rule has

the preposition attatched to the verb, and the fourth
has the preposition attached to the noun.

For the SCFGs, it can be seen that on the source
side of the rule, there are placeholders correspond-
ing to syntactic phrases, and on the target side of
the rule there corresponding placeholders that do
not have a syntactic label. On the other hand in the
example of the translation rules using tree trans-
ducers, it can be seen that similar rules can be ex-
pressed, but the source rules are richer than simple
SCFG rules, also including the internal structure
of the parse tree. This internal structure is im-
portant for achieving translation results faithful to
the input parse. In particular, the third and fourth
rules show an intuitive example in which this in-
ternal structure can be important for translation.
Here the full tree structures demonstrate important
differences in the attachment of the prepositional
phrase to the verb or noun. While this is one of
the most difficult and important problems in syn-
tactic parsing, the source side in the SCFG is iden-
tical, losing the ability to distinguish between the
very information that parsers are designed to dis-
ambiguate.

In traditional tree-to-string translation methods,
the translator uses a single one-best parse tree out-
put by a syntactic parser, but parse errors have the
potential to degrade the quality of translation. An
important advance in tree-to-string translation that
helps ameliorate this difficulity is forest-to-string
translation, which represents a large number of
potential parses as a packed forest, allowing the
translator to choose between these parses during
the process of translation (Mi et al., 2008).

2.2 The State of Open Source Software

There are a number of open-source software pack-
ages that support tree-to-string translation in the
SCFG framework. For example, Moses (Koehn et
al., 2007) and NiuTrans (Xiao et al., 2012) sup-
port the annotation of source-side syntactic labels,
and taking parse trees (or in the case of NiuTrans,
forests) as input.

There are also a few other decoders that sup-
port other varieties of using source-side syntax
to help improve translation or global reorder-
ing. For example, the cdec decoder (Dyer et al.,
2010) supports the context-free-reordering/finite-
state-translation framework described by Dyer and
Resnik (2010). The Akamon decoder (Wu et
al., 2012) supports translation using head-driven
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phrase structure grammars as described by Wu et
al. (2010).

However, to our knowledge, while there is a
general-purpose tool for tree automata in general
(May and Knight, 2006), there is no open-source
toolkit implementing the SMT pipeline in the tree
transducer framework, despite it being a target of
active research (Graehl and Knight, 2004; Liu et
al., 2006; Huang et al., 2006; Mi et al., 2008).

3 The Travatar Machine Translation
Toolkit

In this section, we describe the overall framework
of the Travatar decoder, following the order of the
training pipeline.

3.1 Data Preprocessing

This consists of parsing the source side sentence
and tokenizing the target side sentences. Travatar
can decode input in the bracketed format of the
Penn Treebank, or also in forest format. There is
documentation and scripts for using Travatar with
several parsers for English, Chinese, and Japanese
included with the toolkit.

3.2 Training

Once the data has been pre-processed, a tree-
to-string model can be trained with the training
pipeline included in the toolkit. Like the train-
ing pipeline for Moses, there is a single script that
performs alignment, rule extraction, scoring, and
parameter initialization. Language model training
can be performed using a separate toolkit, and in-
structions are provided in the documentation.

For word alignment, the Travatar training
pipeline is integrated with GIZA++ (Och and Ney,
2003) by default, but can also use alignments from
any other aligner.

Rule extraction is performed using the GHKM
algorithm (Galley et al., 2006) and its extension to
rule extraction from forests (Mi and Huang, 2008).
There are also a number of options implemented,
including rule composition, attachment of null-
aligned target words at either the highest point in
the tree, or at every possible position, and left and
right binarization (Galley et al., 2006; Wang et al.,
2007).

Rule scoring uses a standard set of forward
and backward conditional probabilities, lexical-
ized translation probabilities, phrase frequency,
and word and phrase counts. Rule scores are

stored as sparse vectors by default, which allows
for scoring using an arbitrarily large number of
feature functions.

3.3 Decoding

Given a translation model Travatar is able to de-
code parsed input sentences to generate transla-
tions. The decoding itself is performed using the
bottom-up forest-to-string decoding algorithm of
Mi et al. (2008). Beam-search implemented us-
ing cube pruning (Chiang, 2007) is used to adjust
the trade-off between search speed and translation
accuracy.

The source side of the translation model is
stored using a space-efficient trie data structure
(Yata, 2012) implemented using the marisa-trie
toolkit.1 Rule lookup is performed using left-to-
right depth-first search, which can be implemented
as prefix lookup in the trie for efficient search.

The language model storage uses the implemen-
tation in KenLM (Heafield, 2011), and particu-
larly the implementation that maintains left and
right language model states for syntax-based MT
(Heafield et al., 2011).

3.4 Tuning and Evaluation

For tuning the parameters of the model, Travatar
natively supports minimum error rate training
(MERT) (Och, 2003) and is extension to hyper-
graphs (Kumar et al., 2009). This tuning can
be performed for evaluation measures including
BLEU (Papineni et al., 2002) and RIBES (Isozaki
et al., 2010a), with an easily extendable interface
that makes it simple to support other measures.

There is also a preliminary implementation of
online learning methods such as the structured per-
ceptron algorithm (Collins, 2002), and regularized
structured SVMs trained using FOBOS (Duchi
and Singer, 2009). There are plans to implement
more algorithms such as MIRA or AROW (Chi-
ang, 2012) in the near future.

The Travatar toolkit also provides an evaluation
program that can calculate the scores of transla-
tion output according to various evaluation mea-
sures, and calculate the significance of differ-
ences between systems using bootstrap resampling
(Koehn, 2004).

1http://marisa-trie.googlecode.com
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4 Experiments

4.1 Experimental Setup

In our experiments, we validated the performance
of the translation toolkit on English-Japanese
translation of Wikipedia articles, as specified by
the Kyoto Free Translation Task (KFTT) (Neubig,
2011). Training used the 405k sentences of train-
ing data of length under 60, tuning was performed
on the development set, and testing was performed
on the test set using the BLEU and RIBES mea-
sures. As baseline systems we use the Moses2 im-
plementation of phrase-based (MOSES-PBMT), hi-
erarchical phrase-based (MOSES-HIER), and tree-
to-string translation (MOSES-T2S). The phrase-
based and hierarchical phrase-based models were
trained with the default settings according to tuto-
rials on each web site.

For all systems, we use a 5-gram Kneser-Ney
smoothed language model. Alignment for each
system was performed using either GIZA++3 or
Nile4 with main results reported for the aligner
that achieved the best accuracy on the dev set, and
a further comparison shown in the auxiliary exper-
iments in Section 4.3. Tuning was performed with
minimum error rate training to maximize BLEU
over 200-best lists. Tokenization was performed
with the Stanford tokenizer for English, and the
KyTea word segmenter (Neubig et al., 2011) for
Japanese.

For all tree-to-string systems we use Egret5 as
an English parser, as we found it to achieve high
accuracy, and it allows for the simple output of
forests. Rule extraction was performed using one-
best trees, which were right-binarized, and lower-
cased post-parsing. For Travatar, composed rules
of up to size 4 and a maximum of 2 non-terminals
and 7 terminals for each rule were used. Null-
aligned words were only attached to the top node,
and no count normalization was performed, in
contrast to Moses, which performs count normal-
ization and exhaustive null word attachment. De-
coding was performed over either one-best trees
(TRAV-T2S), or over forests including all edges in-
cluded in the parser 200-best list (TRAV-F2S), and
a pop limit of 1000 hypotheses was used for cube

2http://statmt.org/moses/
3http://code.google.com/p/giza-pp/
4http://code.google.com/p/nile/ As Nile is

a supervised aligner, we trained it on the alignments provided
with the KFTT.

5http://code.google.com/p/
egret-parser/

BLEU RIBES Rules Sent/s.
MOSES-PBMT 22.27 68.37 10.1M 5.69
MOSES-HIER 22.04 70.29 34.2M 1.36
MOSES-T2S 23.81 72.01 52.3M 1.71
TRAV-T2S 23.15 72.32 9.57M 3.29
TRAV-F2S 23.97 73.27 9.57M 1.11

Table 1: Translation results (BLEU, RIBES), rule
table size, and speed in sentences per second for
each system. Bold numbers indicate a statistically
significant difference over all other systems (boot-
strap resampling with p > 0.05) (Koehn, 2004).

pruning.

4.2 System Comparison

The comparison between the systems is shown in
Table 1. From these results we can see that the
systems utilizing source-side syntax significantly
outperform the PBMT and Hiero, validating the
usefulness of source side syntax on the English-to-
Japanese task. Comparing the two tree-to-string
sytems, we can see that TRAV-T2S has slightly
higher RIBES and slightly lower BLEU than
MOSES-T2S. One reason for the slightly higher
BLEU of MOSES-T2S is because Moses’s rule ex-
traction algorithm is more liberal in its attachment
of null-aligned words, resulting in a much larger
rule table (52.3M rules vs. 9.57M rules) and mem-
ory footprint. In this setting, TRAV-T2S is approx-
imately two times faster than MOSES-T2S. When
using forest based decoding in TRAV-F2S, we see
significant gains in accuracy over TRAV-T2S, with
BLEU slightly and RIBES greatly exceeding that
of MOSES-T2S.

4.3 Effect of Alignment/Parsing

In addition, as auxiliary results, we present a com-
parison of Travatar’s tree-to-string and forest-to-
string systems using different alignment methods
and syntactic parsers to examine the results on
translation (Table 2).

For parsers, we compared Egret with the Stan-
ford parser.6 While we do not have labeled data
to calculate parse accuracies with, Egret is a clone
of the Berkeley parser, which has been reported to
achieve higher accuracy than the Stanford parser
on several domains (Kummerfeld et al., 2012).
From the translation results, we can see that STAN-

6http://nlp.stanford.edu/software/
lex-parser.shtml
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GIZA++ Nile
BLEU RIBES BLEU RIBES

PBMT 22.28 68.37 22.37 68.43
HIER 22.05 70.29 21.77 69.31
STAN-T2S 21.47 70.94 22.44 72.02
EGRET-T2S 22.82 71.90 23.15 72.32
EGRET-F2S 23.35 71.77 23.97 73.27

Table 2: Translation results (BLEU, RIBES), for
several translation models (PBMT, Hiero, T2S,
F2S), aligners (GIZA++, Nile), and parsers (Stan-
ford, Egret).

T2S significantly underperforms EGRET-T2S, con-
firming that the effectiveness of the parser plays a
large effect on the translation accuracy.

Next, we compared the unsupervised aligner
GIZA++, with the supervised aligner Nile, which
uses syntactic information to improve alignment
accuracy (Riesa and Marcu, 2010). We held out
10% of the hand aligned data provided with the
KFTT, and found that GIZA++ achieves 58.32%
alignment F-measure, while Nile achieves 64.22%
F-measure. With respect to translation accuracy,
we found that for translation that does not use syn-
tactic information, improvements in alignment do
not necessarily increase translation accuracy, as
has been noted by Ganchev et al. (2008). How-
ever, for all tree-to-string systems, the improved
alignments result in significant improvements in
accuracy, showing that alignments are, in fact, im-
portant in our syntax-driven translation setup.

5 Conclusion and Future Directions

In this paper, we introduced Travatar, an open-
source toolkit for forest-to-string translation using
tree transducers. We hope this decoder will be
useful to the research community as a test-bed for
forest-to-string systems. The software is already
sufficiently mature to be used as is, as evidenced
by the competitive, if not superior, results in our
English-Japanese evaluation.

We have a number of plans for future devel-
opment. First, we plan to support advanced rule
extraction techniques, such as fuller support for
count regularization and forest-based rule extrac-
tion (Mi and Huang, 2008), and using the EM
algorithm to choose attachments for null-aligned
words (Galley et al., 2006) or the direction of rule
binarization (Wang et al., 2007). We also plan
to incorporate advances in decoding to improve

search speed (Huang and Mi, 2010). In addition,
there is a preliminary implementation of the abil-
ity to introduce target-side syntactic information,
either through hard constraints as in tree-to-tree
translation systems (Graehl and Knight, 2004), or
through soft constraints, as in syntax-augmented
machine translation (Zollmann and Venugopal,
2006). Finally, we will provide better support of
parallelization through the entire pipeline to in-
crease the efficiency of training and decoding.
Acknowledgements: We thank Kevin Duh and an
anonymous reviewer for helpful comments. Part
of this work was supported by JSPS KAKENHI
Grant Number 25730136.
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Abstract

This paper presents PLIS, an open source
Probabilistic Lexical Inference System
which combines two functionalities: (i)
a tool for integrating lexical inference
knowledge from diverse resources, and (ii)
a framework for scoring textual inferences
based on the integrated knowledge. We
provide PLIS with two probabilistic im-
plementation of this framework. PLIS is
available for download and developers of
text processing applications can use it as
an off-the-shelf component for injecting
lexical knowledge into their applications.
PLIS is easily configurable, components
can be extended or replaced with user gen-
erated ones to enable system customiza-
tion and further research. PLIS includes
an online interactive viewer, which is a
powerful tool for investigating lexical in-
ference processes.

1 Introduction and background

Semantic Inference is the process by which ma-
chines perform reasoning over natural language
texts. A semantic inference system is expected to
be able to infer the meaning of one text from the
meaning of another, identify parts of texts which
convey a target meaning, and manipulate text units
in order to deduce new meanings.

Semantic inference is needed for many Natural
Language Processing (NLP) applications. For in-
stance, a Question Answering (QA) system may
encounter the following question and candidate
answer (Example 1):
Q: which explorer discovered the New World?
A: Christopher Columbus revealed America.

As there are no overlapping words between the
two sentences, to identify that A holds an answer
for Q, background world knowledge is needed

to link Christopher Columbus with explorer and
America with New World. Linguistic knowledge
is also needed to identify that reveal and discover
refer to the same concept.

Knowledge is needed in order to bridge the gap
between text fragments, which may be dissimilar
on their surface form but share a common mean-
ing. For the purpose of semantic inference, such
knowledge can be derived from various resources
(e.g. WordNet (Fellbaum, 1998) and others, de-
tailed in Section 2.1) in a form which we denote as
inference links (often called inference/entailment
rules), each is an ordered pair of elements in which
the first implies the meaning of the second. For in-
stance, the link ship→vessel can be derived from
the hypernym relation of WordNet.

Other applications can benefit from utilizing in-
ference links to identify similarity between lan-
guage expressions. In Information Retrieval, the
user’s information need may be expressed in rele-
vant documents differently than it is expressed in
the query. Summarization systems should identify
text snippets which convey the same meaning.

Our work addresses a generic, application in-
dependent, setting of lexical inference. We there-
fore adopt the terminology of Textual Entailment
(Dagan et al., 2006), a generic paradigm for ap-
plied semantic inference which captures inference
needs of many NLP applications in a common un-
derlying task: given two textual fragments, termed
hypothesis (H) and text (T ), the task is to recog-
nize whether T implies the meaning of H , denoted
T→H. For instance, in a QA application, H rep-
resents the question, and T a candidate answer. In
this setting, T is likely to hold an answer for the
question if it entails the question.

It is challenging to properly extract the needed
inference knowledge from available resources,
and to effectively utilize it within the inference
process. The integration of resources, each has its
own format, is technically complex and the quality
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Figure 1: PLIS schema - a text-hypothesis pair is processed
by the Lexical Integrator which uses a set of lexical resources
to extract inference chains which connect the two. The Lexi-
cal Inference component provides probability estimations for
the validity of each level of the process.

of the resulting inference links is often unknown in
advance and varies considerably. For coping with
this challenge we developed PLIS, a Probabilis-
tic Lexical Inference System1. PLIS, illustrated in
Fig 1, has two main modules: the Lexical Integra-
tor (Section 2) accepts a set of lexical resources
and a text-hypothesis pair, and finds all the lex-
ical inference relations between any pair of text
term ti and hypothesis term hj , based on the avail-
able lexical relations found in the resources (and
their combination). The Lexical Inference module
(Section 3) provides validity scores for these rela-
tions. These term-level scores are used to estimate
the sentence-level likelihood that the meaning of
the hypothesis can be inferred from the text, thus
making PLIS a complete lexical inference system.

Lexical inference systems do not look into the
structure of texts but rather consider them as bag
of terms (words or multi-word expressions). These
systems are easy to implement, fast to run, practi-
cal across different genres and languages, while
maintaining a competitive level of performance.

PLIS can be used as a stand-alone efficient in-
ference system or as the lexical component of any
NLP application. PLIS is a flexible system, al-
lowing users to choose the set of knowledge re-
sources as well as the model by which inference

1The complete software package is available at http://
www.cs.biu.ac.il/nlp/downloads/PLIS.html and an online in-
teractive viewer is available for examination at http://irsrv2.
cs.biu.ac.il/nlp-net/PLIS.html.

is done. PLIS can be easily extended with new
knowledge resources and new inference models. It
comes with a set of ready-to-use plug-ins for many
common lexical resources (Section 2.1) as well
as two implementation of the scoring framework.
These implementations, described in (Shnarch et
al., 2011; Shnarch et al., 2012), provide probabil-
ity estimations for inference. PLIS has an inter-
active online viewer (Section 4) which provides a
visualization of the entire inference process, and is
very helpful for analysing lexical inference mod-
els and lexical resources usability.

2 Lexical integrator

The input for the lexical integrator is a set of lex-
ical resources and a pair of text T and hypothe-
sis H . The lexical integrator extracts lexical in-
ference links from the various lexical resources to
connect each text term ti∈T with each hypothesis
term hj ∈H2. A lexical inference link indicates a
semantic relation between two terms. It could be
a directional relation (Columbus→navigator) or a
bidirectional one (car←→ automobile).

Since knowledge resources vary in their rep-
resentation methods, the lexical integrator wraps
each lexical resource in a common plug-in inter-
face which encapsulates resource’s inner repre-
sentation method and exposes its knowledge as a
list of inference links. The implemented plug-ins
that come with PLIS are described in Section 2.1.
Adding a new lexical resource and integrating it
with the others only demands the implementation
of the plug-in interface.

As the knowledge needed to connect a pair of
terms, ti and hj , may be scattered across few re-
sources, the lexical integrator combines inference
links into lexical inference chains to deduce new
pieces of knowledge, such as Columbus resource1−−−−−−→
navigator resource2−−−−−−→ explorer. Therefore, the only
assumption the lexical integrator makes, regarding
its input lexical resources, is that the inferential
lexical relations they provide are transitive.

The lexical integrator generates lexical infer-
ence chains by expanding the text and hypothesis
terms with inference links. These links lead to new
terms (e.g. navigator in the above chain example
and t′ in Fig 1) which can be further expanded,
as all inference links are transitive. A transitivity

2Where i and j run from 1 to the length of the text and
hypothesis respectively.
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limit is set by the user to determine the maximal
length for inference chains.

The lexical integrator uses a graph-based rep-
resentation for the inference chains, as illustrates
in Fig 1. A node holds the lemma, part-of-speech
and sense of a single term. The sense is the ordi-
nal number of WordNet sense. Whenever we do
not know the sense of a term we implement the
most frequent sense heuristic.3 An edge represents
an inference link and is labeled with the semantic
relation of this link (e.g. cytokine→protein is la-
beled with the WordNet relation hypernym).

2.1 Available plug-ins for lexical resources
We have implemented plug-ins for the follow-
ing resources: the English lexicon WordNet
(Fellbaum, 1998)(based on either JWI, JWNL
or extJWNL java APIs4), CatVar (Habash and
Dorr, 2003), a categorial variations database,
Wikipedia-based resource (Shnarch et al., 2009),
which applies several extraction methods to de-
rive inference links from the text and structure
of Wikipedia, VerbOcean (Chklovski and Pantel,
2004), a knowledge base of fine-grained semantic
relations between verbs, Lin’s distributional simi-
larity thesaurus (Lin, 1998), and DIRECT (Kotler-
man et al., 2010), a directional distributional simi-
larity thesaurus geared for lexical inference.

To summarize, the lexical integrator finds all
possible inference chains (of a predefined length),
resulting from any combination of inference links
extracted from lexical resources, which link any
t, h pair of a given text-hypothesis. Developers
can use this tool to save the hassle of interfac-
ing with the different lexical knowledge resources,
and spare the labor of combining their knowledge
via inference chains.

The lexical inference model, described next,
provides a mean to decide whether a given hypoth-
esis is inferred from a given text, based on weigh-
ing the lexical inference chains extracted by the
lexical integrator.

3 Lexical inference

There are many ways to implement an infer-
ence model which identifies inference relations
between texts. A simple model may consider the

3This disambiguation policy was better than considering
all senses of an ambiguous term in preliminary experiments.
However, it is a matter of changing a variable in the configu-
ration of PLIS to switch between these two policies.

4http://wordnet.princeton.edu/wordnet/related-projects/

number of hypothesis terms for which inference
chains, originated from text terms, were found. In
PLIS, the inference model is a plug-in, similar to
the lexical knowledge resources, and can be easily
replaced to change the inference logic.

We provide PLIS with two implemented base-
line lexical inference models which are mathemat-
ically based. These are two Probabilistic Lexical
Models (PLMs), HN-PLM and M-PLM which are
described in (Shnarch et al., 2011; Shnarch et al.,
2012) respectively.

A PLM provides probability estimations for the
three parts of the inference process (as shown in
Fig 1): the validity probability of each inference
chain (i.e. the probability for a valid inference re-
lation between its endpoint terms) P (ti → hj), the
probability of each hypothesis term to be inferred
by the entire text P (T → hj) (term-level proba-
bility), and the probability of the entire hypothesis
to be inferred by the text P (T → H) (sentence-
level probability).

HN-PLM describes a generative process by
which the hypothesis is generated from the text.
Its parameters are the reliability level of each of
the resources it utilizes (that is, the prior proba-
bility that applying an arbitrary inference link de-
rived from each resource corresponds to a valid in-
ference). For learning these parameters HN-PLM
applies a schema of the EM algorithm (Demp-
ster et al., 1977). Its performance on the recog-
nizing textual entailment task, RTE (Bentivogli et
al., 2009; Bentivogli et al., 2010), are in line with
the state of the art inference systems, including
complex systems which perform syntactic analy-
sis. This model is improved by M-PLM, which de-
duces sentence-level probability from term-level
probabilities by a Markovian process. PLIS with
this model was used for a passage retrieval for a
question answering task (Wang et al., 2007), and
outperformed state of the art inference systems.

Both PLMs model the following prominent as-
pects of the lexical inference phenomenon: (i)
considering the different reliability levels of the
input knowledge resources, (ii) reducing inference
chain probability as its length increases, and (iii)
increasing term-level probability as we have more
inference chains which suggest that the hypothesis
term is inferred by the text. Both PLMs only need
sentence-level annotations from which they derive
term-level inference probabilities.

To summarize, the lexical inference module
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Figure 2: PLIS interactive viewer with Example 1 demonstrates knowledge integration of multiple inference chains and
resource combination (additional explanations, which are not part of the demo, are provided in orange).

provides the setting for interfacing with the lexi-
cal integrator. Additionally, the module provides
the framework for probabilistic inference models
which estimate term-level probabilities and inte-
grate them into a sentence-level inference deci-
sion, while implementing prominent aspects of
lexical inference. The user can choose to apply
another inference logic, not necessarily probabilis-
tic, by plugging a different lexical inference model
into the provided inference infrastructure.

4 The PLIS interactive system

PLIS comes with an online interactive viewer5 in
which the user sets the parameters of PLIS, inserts
a text-hypothesis pair and gets a visualization of
the entire inference process. This is a powerful
tool for investigating knowledge integration and
lexical inference models.

Fig 2 presents a screenshot of the processing of
Example 1. On the right side, the user configures
the system by selecting knowledge resources, ad-
justing their configuration, setting the transitivity
limit, and choosing the lexical inference model to
be applied by PLIS.

After inserting a text and a hypothesis to the
appropriate text boxes, the user clicks on the in-
fer button and PLIS generates all lexical inference
chains, of length up to the transitivity limit, that
connect text terms with hypothesis terms, as avail-
able from the combination of the selected input re-

5http://irsrv2.cs.biu.ac.il/nlp-net/PLIS.html

sources. Each inference chain is presented in a line
between the text and hypothesis.

PLIS also displays the probability estimations
for all inference levels; the probability of each
chain is presented at the end of its line. For each
hypothesis term, term-level probability, which
weighs all inference chains found for it, is given
below the dashed line. The overall sentence-level
probability integrates the probabilities of all hy-
pothesis terms and is displayed in the box at the
bottom right corner.

Next, we detail the inference process of Exam-
ple 1, as presented in Fig 2. In this QA example,
the probability of the candidate answer (set as the
text) to be relevant for the given question (the hy-
pothesis) is estimated. When utilizing only two
knowledge resources (WordNet and Wikipedia),
PLIS is able to recognize that explorer is inferred
by Christopher Columbus and that New World is
inferred by America. Each one of these pairs has
two independent inference chains, numbered 1–4,
as evidence for its inference relation.

Both inference chains 1 and 3 include a single
inference link, each derived from a different rela-
tion of the Wikipedia-based resource. The infer-
ence model assigns a higher probability for chain
1 since the BeComp relation is much more reliable
than the Link relation. This comparison illustrates
the ability of the inference model to learn how to
differ knowledge resources by their reliability.

Comparing the probability assigned by the in-
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ference model for inference chain 2 with the prob-
abilities assigned for chains 1 and 3, reveals the
sophisticated way by which the inference model
integrates lexical knowledge. Inference chain 2
is longer than chain 1, therefore its probability is
lower. However, the inference model assigns chain
2 a higher probability than chain 3, even though
the latter is shorter, since the model is sensitive
enough to consider the difference in reliability lev-
els between the two highly reliable hypernym re-
lations (from WordNet) of chain 2 and the less re-
liable Link relation (from Wikipedia) of chain 3.

Another aspect of knowledge integration is ex-
emplified in Fig 2 by the three circled probabili-
ties. The inference model takes into consideration
the multiple pieces of evidence for the inference
of New World (inference chains 3 and 4, whose
probabilities are circled). This results in a term-
level probability estimation for New World (the
third circled probability) which is higher than the
probabilities of each chain separately.

The third term of the hypothesis, discover, re-
mains uncovered by the text as no inference chain
was found for it. Therefore, the sentence-level
inference probability is very low, 37%. In order
to identify that the hypothesis is indeed inferred
from the text, the inference model should be pro-
vided with indications for the inference of dis-
cover. To that end, the user may increase the tran-
sitivity limit in hope that longer inference chains
provide the needed information. In addition, the
user can examine other knowledge resources in
search for the missing inference link. In this ex-
ample, it is enough to add VerbOcean to the in-
put of PLIS to expose two inference chains which
connect reveal with discover by combining an in-
ference link from WordNet and another one from
VerbOcean. With this additional information, the
sentence-level probability increases to 76%. This
is a typical scenario of utilizing PLIS, either via
the interactive system or via the software, for ana-
lyzing the usability of the different knowledge re-
sources and their combination.

A feature of the interactive system, which is
useful for lexical resources analysis, is that each
term in a chain is clickable and links to another
screen which presents all the terms that are in-
ferred from it and those from which it is inferred.

Additionally, the interactive system communi-
cates with a server which runs PLIS, in a full-

duplex WebSocket connection6. This mode of op-
eration is publicly available and provides a method
for utilizing PLIS, without having to install it or
the lexical resources it uses.

Finally, since PLIS is a lexical system it can
easily be adjusted to other languages. One only
needs to replace the basic lexical text processing
tools and plug in knowledge resources in the tar-
get language. If PLIS is provided with bilingual
resources,7 it can operate also as a cross-lingual
inference system (Negri et al., 2012). For instance,
the text in Fig 3 is given in English, while the hy-
pothesis is written in Spanish (given as a list of
lemma:part-of-speech). The left side of the figure
depicts a cross-lingual inference process in which
the only lexical knowledge resource used is a man-
ually built English-Spanish dictionary. As can be
seen, two Spanish terms, jugador and casa remain
uncovered since the dictionary alone cannot con-
nect them to any of the English terms in the text.

As illustrated in the right side of Fig 3,
PLIS enables the combination of the bilingual
dictionary with monolingual resources to pro-
duce cross-lingual inference chains, such as foot-

baller
hypernym−−−−−−→player manual−−−−−→jugador. Such in-

ference chains have the capability to overcome
monolingual language variability (the first link
in this chain) as well as to provide cross-lingual
translation (the second link).

5 Conclusions

To utilize PLIS one should gather lexical re-
sources, obtain sentence-level annotations and
train the inference model. Annotations are avail-
able in common data sets for task such as QA,
Information Retrieval (queries are hypotheses and
snippets are texts) and Student Response Analysis
(reference answers are the hypotheses that should
be inferred by the student answers).

For developers of NLP applications, PLIS of-
fers a ready-to-use lexical knowledge integrator
which can interface with many common lexical
knowledge resources and constructs lexical in-
ference chains which combine the knowledge in
them. A developer who wants to overcome lex-
ical language variability, or to incorporate back-
ground knowledge, can utilize PLIS to inject lex-

6We used the socket.io implementation.
7A bilingual resource holds inference links which connect

terms in different languages (e.g. an English-Spanish dictio-
nary can provide the inference link explorer→explorador).
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Figure 3: PLIS as a cross-lingual inference system. Left: the process with a single manual bilingual resource. Right: PLIS
composes cross-lingual inference chains to increase hypothesis coverage and increase sentence-level inference probability.

ical knowledge into any text understanding appli-
cation. PLIS can be used as a lightweight infer-
ence system or as the lexical component of larger,
more complex inference systems.

Additionally, PLIS provides scores for infer-
ence chains and determines the way to combine
them in order to recognize sentence-level infer-
ence. PLIS comes with two probabilistic lexical
inference models which achieved competitive per-
formance levels in the tasks of recognizing textual
entailment and passage retrieval for QA.

All aspects of PLIS are configurable. The user
can easily switch between the built-in lexical re-
sources, inference models and even languages, or
extend the system with additional lexical resources
and new inference models.
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Abstract

In this paper we present a demonstra-
tion of a multilingual generalization of
Word-Class Lattices (WCLs), a super-
vised lattice-based model used to identify
textual definitions and extract hypernyms
from them. Lattices are learned from a
dataset of automatically-annotated defini-
tions from Wikipedia. We release a Java
API for the programmatic use of multilin-
gual WCLs in three languages (English,
French and Italian), as well as a Web ap-
plication for definition and hypernym ex-
traction from user-provided sentences.

1 Introduction
Electronic dictionaries and domain glossaries are
definition repositories which prove very useful not
only for lookup purposes, but also for automatic
tasks such as Question Answering (Cui et al.,
2007; Saggion, 2004), taxonomy learning (Navigli
et al., 2011; Velardi et al., 2013), domain Word
Sense Disambiguation (Duan and Yates, 2010;
Faralli and Navigli, 2012), automatic acquisition
of semantic predicates (Flati and Navigli, 2013),
relation extraction (Yap and Baldwin, 2009) and,
more in general, knowledge acquisition (Hovy et
al., 2013). Unfortunately, constructing and updat-
ing such resources requires the effort of a team of
experts. Moreover, they are of no help when deal-
ing with new words or usages, or, even worse, new
domains. Nonetheless, raw text often contains
several definitional sentences, that is, it provides
within itself formal explanations for terms of inter-
est. Whilst it is not feasible to search texts manu-
ally for definitions in several languages, the task of
extracting definitional information can be autom-
atized by means of Machine Learning (ML) and
Natural Language Processing (NLP) techniques.

Many approaches (Snow et al., 2004; Kozareva
and Hovy, 2010, inter alia) build upon lexico-
syntactic patterns, inspired by the seminal work
of Hearst (1992). However, these methods suf-
fer from two signifiicant drawbacks: on the one
hand, low recall (as definitional sentences occur in
highly variable syntactic structures), and, on the

other hand, noise (because the most frequent def-
initional pattern – X is a Y – is inherently very
noisy). A recent approach to definition and hyper-
nym extraction, called Word-Class Lattices (Nav-
igli and Velardi, 2010, WCLs), overcomes these
issues by addressing the variability of definitional
sentences and providing a flexible way of automat-
ically extracting hypernyms from them. To do so,
lattice-based classifiers are learned from a training
set of textual definitions. Training sentences are
automatically clustered by similarity and, for each
such cluster, a lattice classifier is learned which
models the variants of the definition template de-
tected. A lattice is a directed acyclic graph, a
subclass of non-deterministic finite state automata.
The purpose of the lattice structure is to preserve
(in a compact form) the salient differences among
distinct sequences.

In this paper we present a demonstration of
Word-Class Lattices by providing a Java API and
a Web application for online usage. Since multi-
linguality is a key need in today’s information so-
ciety, and because WCLs have been tested over-
whelmingly only with the English language, we
provide experiments for three different languages,
namely English, French and Italian. To do so, in
contrast to Navigli and Velardi (2010), who cre-
ated a manually annotated training set of defini-
tions, we provide a heuristic method for the au-
tomatic acquisition of reliable training sets from
Wikipedia, and use them to determine the robust-
ness and generalization power of WCLs. We show
high performance in definition and hypernym ex-
traction for our three languages.

2 Word-Class Lattices

In this section we briefly summarize Word-Class
Lattices, originally introduced by Navigli and Ve-
lardi (2010).

2.1 Definitional Sentence Generalization
WCL relies on a formal notion of textual defi-
nition. Specifically, given a definition, e.g.: “In
computer science, a closure is a first-class func-
tion with free variables that are bound in the lex-
ical environment”, we assume that it contains the
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[In geography, a country]DF [is]V F [a political division]GF .
[In finance, a bond]DF [is]V F [a negotiable certificate]GF [that that acknowledges. . . ]REST .
[In poetry, a foot]DF [is]V F [a measure]GF [, consisting. . . ]REST .

Table 1: Example definitions (defined terms are marked in bold face, their hypernyms in italics).

In

geography

finance
poetry

NN1
, a 〈TARGET〉

foot

bond

country

a

political

negotiable

JJ NN2

division

certificate

measure

Figure 1: The DF and GF Word-Class Lattices for the sentences in Table 1.

following fields (Storrer and Wellinghoff, 2006):
definiendum (DF), definitor (VF), definiens (GF)
and rest (REST), where DF is the part of the
definition including the word being defined (e.g.,
“In computer science, a closure”), VF is the verb
phrase used to introduce the definition (e.g., “is”),
GF usually includes the hypernym (e.g., “a first-
class function”, hypernym marked in italics) and
RF includes additional clauses (e.g., “with free
variables that are bound in the lexical environ-
ment”).

Consider a set of training sentences T , each
of which is automatically part-of-speech tagged
and manually bracketed with the DF, VF, GF and
REST fields (examples are shown in Table 1). We
first identify the set of most frequent words F
(e.g., the, a, is, of, refer, etc.). Then we add
the symbol 〈TARGET〉 to F and replace in T the
terms being defined with 〈TARGET〉. We then use
the set of frequent words F to generalize words to
“word classes”.
We define a word class as either a word itself
or its part of speech. Given a sentence s =
w1, w2, . . . , w|s|, where wi is the i-th word of s,
we generalize its words wi to word classes ωi as
follows:

ωi =

{
wi if wi ∈ F
POS(wi) otherwise

that is, a word wi is left unchanged if it occurs fre-
quently in the training corpus (i.e., wi ∈ F ) or is
transformed to its part of speech tag (POS(wi))
otherwise. As a result, we obtain a generalized
sentence s′ = ω1, ω2, . . . , ω|s|. For instance,
given the first sentence in Table 1, we obtain the
corresponding generalized sentence: “In NN, a
〈TARGET〉 is a JJ NN”, where NN and JJ indicate
the noun and adjective classes, respectively.

2.2 Learning
The WCL learning algorithm consists of 3 steps:

• Star patterns: each sentence in the training
set is preprocessed and generalized to a star

pattern by replacing with * all the words wi 6∈
F , i.e., non-frequent words. For instance, “In
geography, a country is a political division”
is transformed to “In *, a 〈TARGET〉 is a *”;

• Sentence clustering: the training sentences
are then clustered based on the star patterns
they belong to;

• Word-Class Lattice construction: for each
sentence cluster, a WCL is created separately
for each DF, VF and GF field by means of a
greedy alignment algorithm. In Figure 1 we
show the resulting lattices for the DF and GF
fields built for the cluster of sentences of Ta-
ble 1. Note that during the construction of the
lattice the nodes associated with the hyper-
nym words in the learning sentences (i.e., di-
vision, certificate and measure) are marked as
hypernyms in order to determine the hyper-
nym of a test sentence at classification time
(see (Navigli and Velardi, 2010) for details).

2.3 Classification
Once the learning process is over, a set of WCLs
is produced for the DF, VF and GF fields. Given
a test sentence s, we consider all possible combi-
nations of definiendum, definitor and definiens lat-
tices and select the combination of the three WCLs
that best fits the sentence, if such a combination
exists. In fact, choosing the most appropriate
combination of lattices impacts the performance
of hypernym extraction. The best combination
of WCLs is selected by maximizing the follow-
ing confidence score: score(s, lDF , lV F , lGF ) =
coverage · log(support+1) where s is the candi-
date sentence, lDF , lV F and lGF are three lattices
one for each definition field, coverage is the frac-
tion of words of the input sentence covered by the
three lattices, and support is the sum of the num-
ber of sentences in the star patterns corresponding
to the GF lattice. Finally, when a sentence is clas-
sified as a definition, its hypernym is extracted by
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# Wikipedia pages # definitions extracted
English (EN) 3,904,360 1,552,493
French (FR) 1,617,359 447,772
Italian (IT) 1,008,044 291,259

Table 2: The number of Wikipedia pages and the
resulting automatically annotated definitions.

selecting the words in the input sentence that are
marked as hypernyms in the WCL selected for GF.

3 Multilingual Word-Class Lattices
In order to enable multilinguality, thereby extract-
ing definitions and hypernyms in many languages,
we provide here a heuristic method for the creation
of multilingual training datasets from Wikipedia,
that we apply to three languages: English, French
and Italian. As a result, we are able to fully au-
tomatize the definition and hypernym extraction
by utilizing collaboratively-curated encyclopedia
content.

3.1 Automatic Learning of Multilingual
WCLs

The method consists of four steps:

1. candidate definition extraction: we iterate
through the collection of Wikipedia pages for
the language of interest. For each article we
extract the first paragraph, which usually, but
not always, contains a definitional sentence
for the concept expressed by the page title.
We discard all those pages for which the title
corresponds to a special page (i.e., title in the
form “List of [. . . ]”, “Index of [. . . ]”, “[. . . ]
(disambiguation)” etc.).

2. part-of-speech tagging and phrase chunk-
ing: for each candidate definition we per-
form part-of-speech tagging and chunking,
thus automatically identifying noun, verb,
and prepositional phrases (we use TreeTag-
ger (Schmid, 1997)).

3. automatic annotation: we replace all the oc-
currences in the candidate definition of the
target term (i.e., the title of the page) with
the marker 〈TARGET〉, we then tag as hyper-
nym the words associated with the first hy-
perlink occurring to the right of 〈TARGET〉.
Then we tag as VF (i.e., definitor field,
see Section 2.1) the verb phrase found be-
tween 〈TARGET〉 and the hypernym, if such
a phrase exists. Next we tag as GF (i.e.,
definiens field) the phrase which contains the
hypernym and as DF (i.e., definiendum field)
the phrase which starts at the beginning of
the sentence and ends right before the start
of the VP tag. Finally we mark as REST the

remaining phrases after the phrase already
tagged as GF. For example, given the sen-
tence “Albert Einstein was a German-born
theoretical physicist.”, we produce the fol-
lowing sentence annotation: “[Albert Ein-
stein]DF [was]V F [a German-born theoreti-
cal physicist]GF .” (target term marked in
bold and hypernym in italics).

4. filtering: we finally discard all the candidate
definitions for which not all fields could be
found during the previous step (i.e., either the
〈TARGET〉, hypernym or any DF, VF, GF,
REST tag is missing).

We applied the above four steps to the En-
glish, French and Italian dumps of Wikipedia1.
The numbers are shown in Table 2: starting with
3,904,360 Wikipedia pages for English, 1,617,359
for French and 1,008,044 for Italian (first column),
we obtained 1,552,493, 447,772, and 291,259 au-
tomatically tagged sentences, respectively, for the
three languages (second column in the Table).
Since we next had to use these sentences for train-
ing our WCLs, we took out a random sample
of 1000 sentences for each language which we
used for testing purposes. We manually annotated
each of these sentences as definitional or non-
definitional2 and, in the case of the former, also
with the correct hypernym.

3.2 Evaluation
We tested the newly acquired training dataset
against two test datasets. The first dataset was
our random sampling of 1000 Wikipedia test sen-
tences which we had set aside for each language
(no intersection with the training set, see previous
section). The second dataset was the same one
used in Navigli and Velardi (2010), made up of
sentences from the ukWaC Web corpus (Ferraresi
et al., 2008) and used to estimate the definition and
hypernym extraction performance on an open text
corpus.

3.3 Results
Table 3 shows the results obtained on definition
(column 2-4) and hypernym extraction (column 5-
7) in terms of precision (P), recall (R) and accu-
racy (A) on our first dataset. Note that accuracy
also takes into account candidate definitions in
the test set which were tagged as non-definitional
(see Section 3.1). In the Table we compare the
performance of our English WCL trained from
Wikipedia sentences using our automatic proce-
dure against the original performance of WCL

1We used the 21-09-2012 (EN), 17-09-2012 (FR), 21-09-
2012 (IT) dumps.

2Note that the first sentence of a Wikipedia page might
seldom be non-definitional, such as “Basmo fortress is lo-
cated in the north-western part . . . ”.
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Definition Extraction Hypernym Extraction
P R A P R A

EN 98.5 78.3 81.0 98.5 77.4 80.0
FR 98.7 83.3 84.0 98.6 78.0 79.0
IT 98.8 87.3 87.0 98.7 83.2 83.0
EN (2010) 100.0 59.0 66.0 100.0 58.3 65.0

Table 3: Precision (P), recall (R) and accuracy
(A) of definition and hypernym extraction when
testing on our dataset of 1000 randomly sam-
pled Wikipedia first-paragraph sentences. EN
(2010) refers to the WCL learned from the origi-
nal manually-curated training set from Navigli and
Velardi (2010), while EN, FR and IT refer to WCL
trained, respectively, with one of the three training
sets automatically acquired from Wikipedia.

P R
EN 98.9 57.6
EN (2010) 94.8 56.5

Table 4: Estimated WCL definition extraction
precision (P) and recall (R), testing a sample of
ukWaC sentences.

trained on 1,908 manually-selected training sen-
tences3. It can be seen that the automatically ac-
quired training set considerably improves the per-
formance, as it covers higher variability. We note
that the recall in both definition and hypernym ex-
traction is higher for French and Italian. We at-
tribute this behavior to the higher complexity and,
again, variability of English Wikipedia pages, and
specifically first-sentence definitions. We remark
that the presented results were obtained without
any human effort, except for the independent col-
laborative editing and hyperlinking of Wikipedia
pages, and that the overall performances can be
improved by manually checking the automatically
annotated training datasets.

We also replicated the experiment carried out
by Navigli and Velardi (2010), testing WCLs with
a subset (over 300,000 sentences) of the ukWaC
Web corpus. As can be seen in Table 4, the
estimated precision and recall for WCL defini-
tion extraction with the 2010 training set were
94.8% and 56.5%, respectively, while with our au-
tomatically acquired English training set we ob-
tained a higher precision of 98.9% and a recall of
57.6%. This second experiment shows that learn-
ing WCLs from hundreds of thousands of defini-
tion candidates does not overfit to Wikipedia-style
definitional sentences.

After looking at the automatically acquired
training datasets, we noted some erroneous an-
notations mainly due to the following factors: i)
some Wikipedia pages do not start with defini-

3Available from http://lcl.uniroma1.it/wcl

1 // select the language of interest
2 Language targetLanguage = Language.EN;
3 // open the training set
4 Dataset ts = new AnnotatedDataset(
5 trainingDatasetFile,
6 targetLanguage);
7 // obtain an instance of the WCL classifier
8 WCLClassifier c = new WCLClassifier(targetLanguage);
9 c.train(ts);

10 // create a sentence to be tested
11 Sentence sentence = Sentence.createFromString(
12 "WCL",
13 "WCL is a kind of classifier.",
14 targetLanguage);
15 // test the sentence
16 SentenceAnnotation sa = c.test(sentence);
17 // print the hypernym
18 if (sa.isDefinition())
19 System.out.println(sa.getHyper());

Figure 2: An example of WCL API usage.

tional sentences; ii) they may contain more than
one verbal phrase between the defined term and
the hypernym; iii) the first link after the verbal
phrase does not cover, or partially covers, the
correct hypernym. The elimination of the above
wrongly acquired definitional patterns can be im-
plemented with some language-dependent heuris-
tics or can be done by human annotators. In any
case, given the presence of a high number of cor-
rect annotated sentences, these wrong definitional
patterns have a very low impact on the definition
and hypernym extraction precision as shown in the
above experiments (see Table 3 and Table 4).

4 Multilingual WCL API
Together with the training and test sets of the
above experiments, we also release here our im-
plementation of Word-Class Lattices, available as
a Java API. As a result the WCL classifier can eas-
ily be used programmatically in any Java project.
In Figure 2 we show an example of the API usage.
After the selection of the target language (line 2),
we load the training dataset for the target language
(line 4). Then an instance of WCLClassifier is
created (line 8) and the training phase is launched
on the input training corpora (line 9). Now the
classifier is ready to be tested on any given sen-
tence in the target language (lines 11-16). If the
classifier output is positive (line 18) we can print
the extracted hypernym (line 19). The output of
the presented code is the string “classifier” which
corresponds to the hypernym extracted by WCL
for the input sentence “WCL is a kind of classi-
fier”.

4.1 Web user interface
We also release a Web interface to enable online
usage of our WCLs for the English, French and
Italian languages. In Figure 3 we show a screen-
shot of our Web interface. The user can type the
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Figure 3: A screenshot of the WCL Web interface.

term of interest, the candidate definition, select
the language of interest and, after submission, in
the case of positive response from WCL, obtain
the corresponding hypernym and a graphical rep-
resentation of the lattices matching the given sen-
tence, as shown in the bottom part of the Figure.

The graphical representation shows the concate-
nation of the learned lattices which match the DF,
VF, GF parts of the given sentence (see Section
2). We also allow the user not to provide the term
of interest: in this case all the nouns in the sen-
tence are considered as candidate defined terms.
The Web user interface is part of a client-server ap-
plication, created with the JavaServer Pages tech-
nology. The server side produces an HTML page
(like the one shown in Figure 3), using the WCL
API (see Section 4) to process and test the submit-
ted definition candidate.

5 Related Work

A great deal of work is concerned with the lan-
guage independent extraction of definitions. Much
recent work uses symbolic methods that depend
on lexico-syntactic patterns or features, which are
manually created or semi-automatically learned as
recently done in (Zhang and Jiang, 2009; Wester-
hout, 2009). A fully automated method is, instead,
proposed by Borg et al. (2009), where higher
performance (around 60-70% F1-measure) is ob-
tained only for specific domains and patterns. Ve-
lardi et al. (2008), in order to improve precision
while keeping pattern generality, prune candidates
using more refined stylistic patterns and lexical fil-
ters. Cui et al. (2007) propose the use of prob-
abilistic lexico-semantic patterns, for definitional
question answering in the TREC contest4. How-
ever, the TREC evaluation datasets cannot be con-
sidered true definitions, but rather text fragments
providing some relevant fact about a target term.

4Text REtrieval Conferences: http://trec.nist.
gov

Hypernym extraction methods vary from simple
lexical patterns (Hearst, 1992; Oakes, 2005) to sta-
tistical and machine learning techniques (Agirre
et al., 2000; Caraballo, 1999; Dolan et al., 1993;
Sanfilippo and Poznanski, 1992; Ritter et al.,
2009). Extraction heuristics can be adopted in
many languages (De Benedictis et al., 2013),
where given a definitional sentence the hypernym
is identified as the first occuring noun after the
defined term. One of the highest-coverage meth-
ods is proposed by Snow et al. (2004). They first
search sentences that contain two terms which are
known to be in a taxonomic relation (term pairs are
taken from WordNet (Miller et al., 1990)); then
they parse the sentences, and automatically ex-
tract patterns from the parse trees. Finally, they
train a hypernym classifier based on these features.
Lexico-syntactic patterns are generated for each
sentence relating a term to its hypernym, and a de-
pendency parser is used to represent them.

6 Conclusion

In this demonstration we provide three main con-
tributions: 1) a general method for obtaining large
training sets of annotated definitional sentences
for many languages from Wikipedia, thanks to
which we can release three new training sets for
English, French and Italian; 2) an API to program-
matically use WCLs in Java projects; 3) a Web ap-
plication which enables online use of multilingual
WCLs: http://lcl.uniroma1.it/wcl/.
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Abstract

This paper offers a new way of represent-
ing the results of automatic clustering al-
gorithms by employing a Visual Analytics
system which maps members of a cluster
and their distance to each other onto a two-
dimensional space. A case study on Urdu
complex predicates shows that the system
allows for an appropriate investigation of
linguistically motivated data.

1 Motivation

In recent years, Visual Analytics systems have in-
creasingly been used for the investigation of lin-
guistic phenomena in a number of different areas,
starting from literary analysis (Keim and Oelke,
2007) to the cross-linguistic comparison of lan-
guage features (Mayer et al., 2010a; Mayer et al.,
2010b; Rohrdantz et al., 2012a) and lexical se-
mantic change (Rohrdantz et al., 2011; Heylen et
al., 2012; Rohrdantz et al., 2012b). Visualization
has also found its way into the field of computa-
tional linguistics by providing insights into meth-
ods such as machine translation (Collins et al.,
2007; Albrecht et al., 2009) or discourse parsing
(Zhao et al., 2012).

One issue in computational linguistics is the
interpretability of results coming from machine
learning algorithms and the lack of insight they
offer on the underlying data. This drawback of-
ten prevents theoretical linguists, who work with
computational models and need to see patterns on
large data sets, from drawing detailed conclusions.
The present paper shows that a Visual Analytics
system facilitates “analytical reasoning [...] by an
interactive visual interface” (Thomas and Cook,
2006) and helps resolving this issue by offering
a customizable, in-depth view on the statistically
generated result and simultaneously an at-a-glance
overview of the overall data set.

In particular, we focus on the visual representa-
tion of automatically generated clusters, in itself
not a novel idea as it has been applied in other
fields like the financial sector, biology or geogra-
phy (Schreck et al., 2009). But as far as the litera-
ture is concerned, interactive systems are still less
common, particularly in computational linguistics,
and they have not been designed for the specific
needs of theoretical linguists. This paper offers
a method of visually encoding clusters and their
internal coherence with an interactive user inter-
face, which allows users to adjust underlying pa-
rameters and their views on the data depending on
the particular research question. By this, we partly
open up the “black box” of machine learning.

The linguistic phenomenon under investigation,
for which the system has originally been designed,
is the varied behavior of nouns in N+V CP com-
plex predicates in Urdu (e.g., memory+do = ‘to
remember’) (Mohanan, 1994; Ahmed and Butt,
2011), where, depending on the lexical seman-
tics of the noun, a set of different light verbs is
chosen to form a complex predicate. The aim is
an automatic detection of the different groups of
nouns, based on their light verb distribution. Butt
et al. (2012) present a static visualization for the
phenomenon, whereas the present paper proposes
an interactive system which alleviates some of the
previous issues with respect to noise detection, fil-
tering, data interaction and cluster coherence. For
this, we proceed as follows: section 2 explains the
proposed Visual Analytics system, followed by the
linguistic case study in section 3. Section 4 con-
cludes the paper.

2 The system

The system requires a plain text file as input,
where each line corresponds to one data object.In
our case, each line corresponds to one Urdu noun
(data object) and contains its unique ID (the name
of the noun) and its bigram frequencies with the
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four light verbs under investigation, namely kar
‘do’, ho ‘be’, hu ‘become’ and rakH ‘put’; an ex-
emplary input file is shown in Figure 1.

From a data analysis perspective, we have four-
dimensional data objects, where each dimension
corresponds to a bigram frequency previously ex-
tracted from a corpus. Note that more than
four dimensions can be loaded and analyzed, but
for the sake of simplicity we focus on the four-
dimensional Urdu example for the remainder of
this paper. Moreover, it is possible to load files
containing absolute bigram frequencies and rela-
tive frequencies. When loading absolute frequen-
cies, the program will automatically calculate the
relative frequencies as they are the input for the
clustering. The absolute frequencies, however, are
still available and can be used for further process-
ing (e.g. filtering).

Figure 1: preview of appropriate file structures

2.1 Initial opening and processing of a file

It is necessary to define a metric distance function
between data objects for both clustering and vi-
sualization. Thus, each data object is represented
through a high dimensional (in our example four-
dimensional) numerical vector and we use the Eu-
clidean distance to calculate the distances between
pairs of data objects. The smaller the distance be-
tween two data objects, the more similar they are.

For visualization, the high dimensional data
is projected onto the two-dimensional space of
a computer screen using a principal component
analysis (PCA) algorithm1. In the 2D projection,
the distances between data objects in the high-
dimensional space, i.e. the dissimilarities of the
bigram distributions, are preserved as accurately
as possible. However, when projecting a high-
dimensional data space onto a lower dimension,
some distinctions necessarily level out: two data
objects may be far apart in the high-dimensional
space, but end up closely together in the 2D pro-
jection. It is important to bear in mind that the 2D
visualization is often quite insightful, but interpre-

1http://workshop.mkobos.com/2011/java-pca-
transformation-library/

tations have to be verified by interactively investi-
gating the data.

The initial clusters are calculated (in the high-
dimensional data space) using a default k-Means
algorithm2 with k being a user-defined parameter.
There is also the option of selecting another clus-
tering algorithm, called the Greedy Variance Min-
imization3 (GVM), and an extension to include fur-
ther algorithms is under development.

2.2 Configuration & Interaction

2.2.1 The main window
The main window in Figure 2 consists of three
areas, namely the configuration area (a), the vi-
sualization area (b) and the description area (c).
The visualization area is mainly built with the pic-
colo2d library4 and initially shows data objects
as colored circles with a variable diameter, where
color indicates cluster membership (four clusters
in this example). Hovering over a dot displays in-
formation on the particular noun, the cluster mem-
bership and the light verb distribution in the de-
scription area to the right. By using the mouse
wheel, the user can zoom in and out of the visual-
ization.

A very important feature for the task at hand is
the possibility to select multiple data objects for
further processing or for filtering, with a list of se-
lected data objects shown in the description area.
By right-clicking on these data objects, the user
can assign a unique class (and class color) to them.
Different clustering methods can be employed us-
ing the options item in the menu bar.

Another feature of the system is that the user
can fade in the cluster centroids (illustrated by a
larger dot in the respective cluster color in Fig-
ure 2), where the overall feature distribution of the
cluster can be examined in a tooltip hovering over
the corresponding centroid.

2.2.2 Visually representing data objects
To gain further insight into the data distribution
based on the 2D projection, the user can choose
between several ways to visualize the individual
data objects, all of which are shown in Figure 3.
The standard visualization type is shown on the
left and consists of a circle which encodes cluster
membership via color.

2http://java-ml.sourceforge.net/api/0.1.7/ (From the JML
library)

3http://www.tomgibara.com/clustering/fast-spatial/
4http://www.piccolo2d.org/
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Figure 2: Overview of the main window of the system, including the configuration area (a), the visual-
ization area (b) and the description area (c). Large circles are cluster centroids.

Figure 3: Different visualizations of data points

Alternatively, normal glyphs and star glyphs
can be displayed. The middle part of Figure 3

shows the data displayed
with normal glyphs. In
this view, the relative
frequency of each light
verb is mapped onto the
length of a line. The

lines start in north position and are positioned
clockwise around the center according to their
occurrence in the input file. This view has the
advantage that overall feature dominance in a
cluster can be seen at-a-glance.

The visualization type
on the right in Figure 3
is called the star glyph,
an extension to normal
glyphs. Here, the line
endings are connected,

forming a “star”. As in the representation with
the glyphs, this makes similar data objects easily
recognizable and comparable with each other.

2.2.3 Filtering options

Our systems offers options for filtering data ac-
cording to different criteria.

Filter by means of bigram occurrence By ac-
tivating the bigram occurrence filtering, it is pos-
sible to only show those nouns, which occur in bi-
grams with a certain selected subset of all features
(light verbs) only. This is especially useful when
examining possible commonalities.

Filter selected words Another opportunity of
showing only items of interest is to select and dis-
play them separately. The PCA is recalculated for
these data objects and the visualization is stretched
to the whole area.
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Filter selected cluster Additionally, the user
can visualize a specific cluster of interest. Again,
the PCA is recalculated and the visualization
stretched to the whole area. The cluster can then
be manually fine-tuned and cleaned, for instance
by removing wrongly assigned items.

2.2.4 Options to handle overplotting
Due to the nature of the data, much overplotting
occurs. For example, there are many words, which
only occur with one light verb. The PCA assigns
the same position to these words and, as a conse-
quence, only the top bigram can be viewed in the
visualization. In order to improve visual access to
overplotted data objects, several methods that al-
low for a more differentiated view of the data have
been included and are described in the following
paragraphs.

Change transparency of data objects By mod-
ifying the transparency with the given slider, areas
with a dense data population can be readily identi-
fied, as shown in the following example:

Repositioning of data objects To reduce the
overplotting in densely populated areas, data ob-
jects can be repositioned randomly having a fixed
deviation from their initial position. The degree of
deviation can be interactively determined by the
user employing the corresponding slider:

The user has the option to reposition either all
data objects or only those that are selected in ad-
vance.

Frequency filtering If the initial data contains
absolute bigram frequencies, the user can filter
the visualized words by frequency. For example,
many nouns occur only once and therefore have
an observed probability of 100% for co-occurring
with one of the light verbs. In most cases it is use-
ful to filter such data out.

Scaling data objects If the user zooms beyond
the maximum zoom factor, the data objects are
scaled down. This is especially useful, if data ob-
jects are only partly covered by many other ob-

jects. In this case, they become fully visible, as
shown in the following example:

2.3 Alternative views on the data

In order to enable a holistic analysis it is often
valuable to provide the user with different views
on the data. Consequently, we have integrated the
option to explore the data with further standard vi-
sualization methods.

2.3.1 Correlation matrix
The correlation matrix in Figure 4 shows the corre-
lations between features, which are visualized by
circles using the following encoding: The size of
a circle represents the correlation strength and the
color indicates whether the corresponding features
are negatively (white) or positively (black) corre-
lated.

Figure 4: example of a correlation matrix

2.3.2 Parallel coordinates
The parallel coordinates diagram shows the distri-
bution of the bigram frequencies over the differ-
ent dimensions (Figure 5). Every noun is repre-
sented with a line, and shows, when hovered over,
a tooltip with the most important information. To
filter the visualized words, the user has the option
of displaying previously selected data objects, or
s/he can restrict the value range for a feature and
show only the items which lie within this range.

2.3.3 Scatter plot matrix
To further examine the relation between pairs of
features, a scatter plot matrix can be used (Figure
6). The individual scatter plots give further insight
into the correlation details of pairs of features.
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Figure 5: Parallel coordinates diagram

Figure 6: Example showing a scatter plot matrix.

3 Case study

In principle, the Visual Analytics system presented
above can be used for any kind of cluster visu-
alization, but the built-in options and add-ons are
particularly designed for the type of work that lin-
guists tend to be interested in: on the one hand, the
user wants to get a quick overview of the overall
patterns in the phenomenon, but on the same time,
the system needs to allow for an in-depth data in-
spection. Both is given in the system: The overall
cluster result shown in Figure 2 depicts the coher-
ence of clusters and therefore the overall pattern
of the data set. The different glyph visualizations
in Figure 3 illustrate the properties of each clus-
ter. Single data points can be inspected in the de-
scription area. The randomization of overplotted
data points helps to see concentrated cluster pat-

terns where light verbs behave very similarly in
different noun+verb complex predicates.

The biggest advantage of the system lies in the
ability for interaction: Figure 7 shows an example
of the visualization used in Butt et al. (2012), the
input being the same text file as shown in Figure
1. In this system, the relative frequencies of each
noun with each light verb is correlated with color
saturation — the more saturated the color to the
right of the noun, the higher the relative frequency
of the light verb occurring with it. The number of
the cluster (here, 3) and the respective nouns (e.g.
kAm ‘work’) is shown to the left. The user does
not get information on the coherence of the clus-
ter, nor does the visualization show prototypical
cluster patterns.

Figure 7: Cluster visualization in Butt et al. (2012)

Moreover, the system in Figure 7 only has a
limited set of interaction choices, with the conse-
quence that the user is not able to adjust the un-
derlying data set, e.g. by filtering out noise. How-
ever, Butt et al. (2012) report that the Urdu data
is indeed very noisy and requires a manual clean-
ing of the data set before the actual clustering. In
the system presented here, the user simply marks
conspicuous regions in the visualization panel and
removes the respective data points from the origi-
nal data set. Other filtering mechanisms, e.g. the
removal of low frequency items which occur due
to data sparsity issues, can be removed from the
overall data set by adjusting the parameters.

A linguistically-relevant improvement lies in
the display of cluster centroids, in other words the
typical noun + light verb distribution of a cluster.
This is particularly helpful when the linguist wants
to pick out prototypical examples for the cluster
in order to stipulate generalizations over the other
cluster members.
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4 Conclusion

In this paper, we present a novel visual analyt-
ics system that helps to automatically analyze bi-
grams extracted from corpora. The main purpose
is to enable a more informed and steered clus-
ter analysis than currently possible with standard
methods. This includes rich options for interac-
tion, e.g. display configuration or data manipu-
lation. Initially, the approach was motivated by
a concrete research problem, but has much wider
applicability as any kind of high-dimensional nu-
merical data objects can be loaded and analyzed.
However, the system still requires some basic un-
derstanding about the algorithms applied for clus-
tering and projection in order to prevent the user to
draw wrong conclusions based on artifacts. Bear-
ing this potential pitfall in mind when performing
the analysis, the system enables a much more in-
sightful and informed analysis than standard non-
interactive methods.

In the future, we aim to conduct user experi-
ments in order to learn more about how the func-
tionality and usability could be further enhanced.
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Abstract

Developing sophisticated NLP pipelines
composed of multiple processing tools
and components available through differ-
ent providers may pose a challenge in
terms of their interoperability. The Un-
structured Information Management Ar-
chitecture (UIMA) is an industry stan-
dard whose aim is to ensure such in-
teroperability by defining common data
structures and interfaces. The architec-
ture has been gaining attention from in-
dustry and academia alike, resulting in a
large volume of UIMA-compliant process-
ing components. In this paper, we demon-
strate Argo, a Web-based workbench for
the development and processing of NLP
pipelines/workflows. The workbench is
based upon UIMA, and thus has the poten-
tial of using many of the existing UIMA
resources. We present features, and show
examples, of facilitating the distributed de-
velopment of components and the analysis
of processing results. The latter includes
annotation visualisers and editors, as well
as serialisation to RDF format, which en-
ables flexible querying in addition to data
manipulation thanks to the semantic query
language SPARQL. The distributed devel-
opment feature allows users to seamlessly
connect their tools to workflows running
in Argo, and thus take advantage of both
the available library of components (with-
out the need of installing them locally) and
the analytical tools.

1 Introduction

Building NLP applications usually involves a se-
ries of individual tasks. For instance, the ex-
traction of relationships between named entities

in text is preceded by text segmentation, part-of-
speech recognition, the recognition of named enti-
ties, and dependency parsing. Currently, the avail-
ability of such atomic processing components is
no longer an issue; the problem lies in ensur-
ing their compatibility, as combining components
coming from multiple repositories, written in dif-
ferent programming languages, requiring different
installation procedures, and having incompatible
input/output formats can be a source of frustration
and poses a real challenge for developers.

Unstructured Information Management Archi-
tecture (UIMA) (Ferrucci and Lally, 2004) is a
framework that tackles the problem of interoper-
ability of processing components. Originally de-
veloped by IBM, it is currently an Apache Soft-
ware Foundation open-source project1 that is also
registered at the Organization for the Advance-
ment of Structured Information Standards (OA-
SIS)2. UIMA has been gaining much interest from
industry and academia alike for the past decade.
Notable repositories of UIMA-compliant tools
include U-Compare component library3, DKPro
(Gurevych et al., 2007), cTAKES (Savova et
al., 2010), BioNLP-UIMA Component Reposi-
tory (Baumgartner et al., 2008), and JULIE Lab’s
UIMA Component Repository (JCoRe) (Hahn et
al., 2008).

In this work we demonstrate Argo4, a Web-
based (remotely-accessed) workbench for collabo-
rative development of text-processing workflows.
We focus primarily on the process of development
and analysis of both individual processing com-
ponents and workflows composed of such compo-
nents.

The next section demonstrates general features
of Argo and lays out several technical details about

1http://uima.apache.org
2http://www.oasis-open.org/committees/uima
3http://nactem.ac.uk/ucompare/
4http://argo.nactem.ac.uk
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UIMA that will ease the understanding of the re-
maining sections. Sections 3–5 discuss selected
features that are useful in the development and
analysis of components and workflows. Section 6
mentions related efforts, and Section 7 concludes
the paper.

2 Overview of Argo

Argo comes equipped with an ever-growing li-
brary of atomic processing components that can be
put together by users to form meaningful pipelines
or workflows. The processing components range
from simple data serialisers to complex text an-
alytics and include text segmentation, part-of-
speech tagging, parsing, named entity recognition,
and discourse analysis.

Users interact with the workbench through a
graphical user interface (GUI) that is accessible
entirely through a Web browser. Figure 1 shows
two views of the interface: the main, resource
management window (Figure 1(a)) and the work-
flow diagramming window (Figure 1(b)). The
main window provides access to emphdocuments,
workflows, and processes separated in easily ac-
cessible panels.

The Documents panel lists primarily user-
owned files that are uploaded (through the GUI)
by users into their respective personal spaces on
the remote host. Documents may also be gener-
ated as a result of executing workflows (e.g., XML
files containing annotations), in which case they
are available for users to download.

The Workflows panel lists users’ workflows,
i.e., the user-defined arrangements of processing
components together with their settings. Users
compose workflows through a flexible, graphi-
cal diagramming editor by connecting the com-
ponents (represented as blocks) with lines signi-
fying the flow of data between components (see
Figure 1(b)). The most common arrangement is to
form a pipeline, i.e., each participating component
has at most one incoming and at most one out-
going connection; however, the system also sup-
ports multiple branching and merging points in the
workflow. An example is shown in Figure 2 dis-
cussed farther in text. For ease of use, components
are categorized into readers, analytics, and con-
sumers, indicating what role they are set to play in
a workflow. Readers are responsible for delivering
data for processing and have only an outgoing port
(represented as a green triangle). The role of an-

(a) Workflow management view

(b) Worflow diagram editor view

Figure 1: Screenshots of Argo Web browser con-
tent.

alytics is to modify incoming data structures and
pass them onto following components in a work-
flow, and thus they have both incoming and outgo-
ing ports. Finally, the consumers are responsible
for serialising or visualising (selected or all) anno-
tations in the data structures without modification,
and so they have only an incoming port.

The Processes panel lists resources that are cre-
ated automatically when workflows are submit-
ted for execution by users. Users may follow the
progress of the executing workflows (processes) as
well as manage the execution from this panel. The
processing of workflows is carried out on remote
servers, and thus frees users from using their own
processing resources.

2.1 Argo and UIMA

Argo supports and is based upon UIMA and thus
can run any UIMA-compliant processing compo-
nent. Each such component defines or imports
type systems and modifies common annotation
structures (CAS). A type system is the represen-
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tation of a data model that is shared between com-
ponents, whereas a CAS is the container of data
whose structure complies with the type system. A
CAS stores feature structures, e.g., a token with
its text boundaries and a part-of-speech tag. Fea-
ture structures may, and often do, refer to a sub-
ject of annotation (Sofa), a structure that (in text-
processing applications) stores the text. UIMA
comes with built-in data types including primitive
types (boolean, integer, string, etc.), arrays, lists,
as well as several complex types, e.g., Annotation
that holds a reference to a Sofa the annotation is
asserted about, and two features, begin and end,
for marking boundaries of a span of text. A devel-
oper is free to extend any of the complex types.

2.2 Architecture

Although the Apache UIMA project provides an
implementation of the UIMA framework, Argo
incorporates home-grown solutions, especially in
terms of the management of workflow processing.
This includes features such as workflow branching
and merging points, user-interactive components
(see Section 4), as well as distributed processing.

The primary processing is carried out on a
multi-core server. Additionally, in order to in-
crease computing throughput, we have incorpo-
rated cloud computing capabilities into Argo,
which is designed to work with various cloud
computing providers. As a proof of concept,
the current implementation uses HTCondor, an
open-source, high-throughput computing software
framework. Currently, Argo is capable of switch-
ing the processing of workflows to a local cluster
of over 3,000 processor cores. Further extensions
to use the Microsoft Azure5 and Amazon EC26

cloud platforms are also planned.
The Argo platform is available entirely us-

ing RESTful Web services (Fielding and Taylor,
2002), and therefore it is possible to gain access
to all or selected features of Argo by implement-
ing a compliant client. In fact, the “native” Web
interface shown in Figure 1 is an example of such
a client.

3 Distributed Development

Argo includes a Generic Listener component that
permits execution of a UIMA component that is
running externally of the Argo system. It is pri-

5http://www.windowsazure.com
6http://aws.amazon.com/ec2

marily intended to be used during the develop-
ment of processing components, as it allows a de-
veloper to rapidly make any necessary changes,
whilst continuing to make use of the existing com-
ponents available within Argo, which may other-
wise be unavailable if developing on the devel-
oper’s local system. Any component that a user
wishes to deploy on the Argo system has to un-
dergo a verification process, which could lead to
a slower development lifecycle without the avail-
ability of this component.

Generic Listener operates in a reverse manner
to a traditional Web service; rather than Argo con-
necting to the developer’s component, the compo-
nent connects to Argo. This behaviour was de-
liberately chosen to avoid network-related issues,
such as firewall port blocking, which could be-
come a source of frustration to developers.

When a workflow, containing a Generic Lis-
tener, is executed within Argo, it will continue
as normal until the point at which the Generic
Listener receives its first CAS object. Argo will
prompt the user with a unique URL, which must
be supplied to the client component run by the
user, allowing it to connect to the Argo workflow
and continue its execution.

A skeleton Java project has been provided to as-
sist in the production of such components. It con-
tains a Maven structure, Eclipse IDE project files,
and required libraries, in addition to a number of
shell scripts to simplify the running of the compo-
nent. The project provides both a command-line
interface (CLI) and GUI runner applications that
take, as arguments, the name of the class of the lo-
cally developed component and the URL provided
by Argo, upon each run of a workflow containing
the remote component.

An example of a workflow with a Generic Lis-
tener is shown in Figure 2. The workflow is de-
signed for the analysis and evaluation of a solu-
tion (in this case, the automatic extraction of bio-
logical events) that is being developed locally by
the user. The reader (BioNLP ST Data Reader)
provides text documents together with gold (i.e.,
manually created) event annotations prepared for
the BioNLP Shared Task7. The annotations are
selectively removed with the Annotation Remover
and the remaining data is sent onto the Generic
Listener component, and consequently, onto the
developer’s machine. The developer’s task is to

7http://2013.bionlp-st.org/
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Figure 2: Example of a workflow for development,
analysis, and evaluation of a user-developed solu-
tion for the BioNLP Shared Task.

connect to Argo, retrieve CASes from the run-
ning workflow, and for each CAS recreate the re-
moved annotations as faithfully as possible. The
developer can then track the performance of their
solution by observing standard information ex-
traction measures (precision, recall, etc.) com-
puted by the Reference Evaluator component that
compares the original, gold annotations (coming
from the reader) against the developer’s annota-
tions (coming from the Generic Listener), and
saves these measures for each document/CAS into
a tabular-format file. Moreover, the differences
can be tracked visually though the interactive Brat
BioNLP ST Comparator component, discussed in
the next section.

4 Annotation Analysis and Manipulation

Traditionally, NLP pipelines (including existing
UIMA-supporting platforms), once set up, are
executed without human involvement. One of
the novelties in Argo is an introduction of user-
interactive components, a special type of analytic
that, if present in a workflow, cause the execu-
tion of the workflow to pause. Argo resumes the
execution only after receiving input from a user.
This feature allows for manual intervention in the
otherwise automatic processing by, e.g., manipu-
lating automatically created annotations. Exam-
ples of user-interactive components include Anno-
tation Editor and Brat BioNLP ST Comparator.

The Brat BioNLP ST Comparator component

Figure 3: Example of an annotated fragment of
a document visualised with the Brat BioNLP ST
Comparator component. The component high-
lights (in red and green) differences between two
sources of annotations.

Figure 4: Example of manual annotation with the
user-interactive Annotation Editor component.

expects two incoming connections from compo-
nents processing the same subject of annotation.
As a result, using brat visualisation (Stenetorp et
al., 2012), it will show annotation structures by
laying them out above text and mark differences
between the two inputs by colour-coding missing
or additional annotations in each input. A sam-
ple of visualisation coming from the workflow in
Figure 2 is shown in Figure 3. Since in this par-
ticular workflow the Brat BioNLP ST Comparator
receives gold annotations (from the BioNLP ST
Data Reader) as one of its inputs, the highlighted
differences are, in fact, false positives and false
negatives.

Annotation Editor is another example of a user-
interactive component that allows the user to add,
delete or modify annotations. Figure 4 shows the
editor in action. The user has an option to cre-
ate a span-of-text annotation by selecting a text
fragment and assigning an annotation type. More
complex annotation types, such as tokens with
part-of-speech tags or annotations that do not re-
fer to the text (meta-annotations) can be created
or modified using an expandable tree-like struc-
ture (shown on the right-hand side of the figure),
which makes it possible to create any annotation
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(a) Select query

neAText neACat neBText neBCat count
Ki-67 Protein p53 Protein 85
DC CellType p53 Protein 61
DC CellType KCOT Protein 47

(b) Results (fragment)

(c) Insert query

Figure 5: Example of (a) a SPARQL query that returns biological interactions; (b) a fragment of retrieved
results; and (c) a SPARQL query that creates new UIMA feature structures. Namespaces and data types
are omitted for brevity.

structure permissible by a given type system.

5 Querying Serialised Data

Argo comes with several (de)serialisation com-
ponents for reading and storing collections of
data, such as a generic reader of text (Document
Reader) or readers and writers of CASes in XMI
format (CAS Reader and CAS Writer). One of
the more useful in terms of annotation analysis
is, however, the RDF Writer component as well
as its counterpart, RDF Reader. RDF Writer se-
rialises data into RDF files and supports several
RDF formats such as RDF/XML, Turtle, and N-
Triple. A resulting RDF graph consists of both the
data model (type system) and the data itself (CAS)
and thus constitutes a self-contained knowledge
base. RDF Writer has an option to create a graph
for each CAS or a single graph for an entire collec-
tion. Such a knowledge base can be queried with

languages such as SPARQL8, an official W3C
Recommendation.

Figure 5 shows an example of a SPARQL query
that is performed on the output of an RDF Writer
in the workflow shown in Figure 1(b). This work-
flow results in several types of annotations in-
cluding the boundaries of sentences, tokens with
part-of-speech tags and lemmas, chunks, as well
as biological entities, such as DNA, RNA, cell
line and cell type. The SPARQL query is meant
to retrieve pairs of seemingly interacting biolog-
ical entities ranked according to their occurrence
in the entire collection. The interaction here is
(naı̈vely) defined as co-occurrence of two entities
in the same sentence. The query includes pat-
terns for retrieving the boundaries of sentences
(syn:Sentence) and two biological entities
(sem:NamedEntity) and then filters out the
crossproduct of those by ensuring that the two en-

8http://www.w3.org/TR/2013/REC-sparql11-overview-
20130321/
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tities are enclosed in a sentence. As a result, the
query returns a list of biological entity pairs ac-
companied by their categories and the number of
appearances, as shown in Figure 5(b). Note that
the query itself does not list the four biological cat-
egories; instead, it requests their common seman-
tic ancestor sem:NamedEntity. This is one of
the advantages of using semantically-enabled lan-
guages, such as SPARQL.

SPARQL also supports graph manipulation.
Suppose a user is interested in placing the re-
trieved biological entity interactions from our run-
ning example into the UIMA structure Relation-
ship that simply defines a pair of references to
other structures of any type. This can be accom-
plished, without resorting to programming, by is-
suing a SPARQL insert query shown in Figure
5(c). The query will create triple statements com-
pliant with the definition of Relationship. The re-
sulting modified RDF graph can then be read back
to Argo by the RDF Reader component that will
convert the new RDF graph back into a CAS.

6 Related Work

Other notable examples of NLP platforms that
provide graphical interfaces for managing work-
flows include GATE (Cunningham et al., 2002)
and U-Compare (Kano et al., 2010). GATE is
a standalone suite of text processing and annota-
tion tools and comes with its own programming
interface. In contrast, U-Compare—similarly to
Argo—uses UIMA as its base interoperability
framework. The key features of Argo that distin-
guish it from U-Compare are the Web availabil-
ity of the platform, primarily remote processing
of workflows, a multi-user, collaborative architec-
ture, and the availability of user-interactive com-
ponents.

7 Conclusions

Argo emerges as a one-stop solution for develop-
ing and processing NLP tasks. Moreover, the pre-
sented annotation viewer and editor, performance
evaluator, and lastly RDF (de)serialisers are in-
dispensable for the analysis of processing tasks
at hand. Together with the distributed develop-
ment support for developers wishing to create their
own components or run their own tools with the
help of resources available in Argo, the workbench
becomes a powerful development and analytical
NLP tool.
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Abstract

We present DKPro Similarity, an open
source framework for text similarity. Our
goal is to provide a comprehensive repos-
itory of text similarity measures which
are implemented using standardized inter-
faces. DKPro Similarity comprises a wide
variety of measures ranging from ones
based on simple n-grams and common
subsequences to high-dimensional vector
comparisons and structural, stylistic, and
phonetic measures. In order to promote
the reproducibility of experimental results
and to provide reliable, permanent ex-
perimental conditions for future studies,
DKPro Similarity additionally comes with
a set of full-featured experimental setups
which can be run out-of-the-box and be
used for future systems to built upon.

1 Introduction

Computing text similarity is key to several natu-
ral language processing applications such as au-
tomatic essay grading, paraphrase recognition, or
plagiarism detection. However, only a few text
similarity measures proposed in the literature are
released publicly, and those then typically do not
comply with any standardization. We are currently
not aware of any designated text similarity frame-
work which goes beyond simple lexical similarity
or contains more than a small number of measures,
even though related frameworks exist, which we
discuss in Section 6. This fact was also realized
by the organizers of the pilot Semantic Textual
Similarity Task at SemEval-2012 (see Section 5),
as they argue for the creation of an open source
framework for text similarity (Agirre et al., 2012).

In order to fill this gap, we present DKPro Sim-
ilarity, an open source framework for text simi-
larity. DKPro Similarity is designed to comple-

ment DKPro Core1, a collection of software com-
ponents for natural language processing based on
the Apache UIMA framework (Ferrucci and Lally,
2004). Our goal is to provide a comprehensive
repository of text similarity measures which are
implemented in a common framework using stan-
dardized interfaces. Besides the already available
measures, DKPro Similarity is easily extensible
and intended to allow for custom implementations,
for which it offers various templates and exam-
ples. The Java implementation is publicly avail-
able at Google Code2 under the Apache Software
License v2 and partly under GNU GPL v3.

2 Architecture

DKPro Similarity is designed to operate in ei-
ther of two modes: The stand-alone mode al-
lows to use text similarity measures as indepen-
dent components in any experimental setup, but
does not offer means for further language process-
ing, e.g. lemmatization. The UIMA-coupled mode
tightly integrates similarity computation with full-
fledged Apache UIMA-based language processing
pipelines. That way, it allows to perform any num-
ber of languge processing steps, e.g. coreference
or named-entitiy resolution, along with the text
similarity computation.

Stand-alone Mode In this mode, text similarity
measures can be used independently of any lan-
guage processing pipeline just by passing them a
pair of texts as (i) two strings, or (ii) two lists of
strings (e.g. already lemmatized texts). We there-
fore provide an API module, which contains Java
interfaces and abstract base classes for the mea-
sures. That way, DKPro Similarity allows for a
maximum flexibility in experimental design, as the
text similarity measures can easily be integrated
with any existing experimental setup:

1code.google.com/p/dkpro-core-asl
2code.google.com/p/dkpro-similarity-asl
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1 TextSimilarityMeasure m =
new GreedyStringTiling();

2 double similarity =
m.getSimilarity(text1, text2);

The above code snippet instantiates the Greedy
String Tiling measure (Wise, 1996) and then com-
putes the text similarity between the given pair of
texts. The resulting similarity score is normal-
ized into [0, 1] where 0 means not similar at all,
and 1 corresponds to perfectly similar.3 By us-
ing the common TextSimilarityMeasure
interface, it is easy to replace Greedy String Tiling
with any measure of choice, such as Latent Se-
mantic Analysis (Landauer et al., 1998) or Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2007). We give an overview of measures available
in DKPro Similarity in Section 3.

UIMA-coupled Mode In this mode, DKPro
Similarity allows text similarity computation to
be directly integrated with any UIMA-based lan-
guage processing pipeline. That way, it is easy to
use text similarity components in addition to other
UIMA-based components in the same pipeline.
For example, an experimental setup may require to
first compute text similarity scores and then to run
a classification algorithm on the resulting scores.

In Figure 1, we show a graphical overview of
the integration of text similarity measures (right)
with a UIMA-based pipeline (left). The pipeline
starts by reading a given dataset, then performs
any number of pre-processing steps such as to-
kenization, sentence splitting, lemmatization, or
stopword filtering, then runs the text similar-
ity computation, before executing any subsequent
post-processing steps and finally returning the pro-
cessed texts in a suitable format for evaluation or
manual inspection. As all text similarity measures
in DKPro Similarity conform to standardized in-
terfaces, they can be easily exchanged in the text
similarity computation step.

With DKPro Similarity, we offer various sub-
classes of the generic UIMA components which
are specifically tailored towards text similarity ex-
periments, e.g. corpus readers for standard eval-
uation datasets as well as evaluation components
for running typical evaluation metrics. By lever-
aging UIMA’s architecture, we also define an

3Some string distance measures such as the Levenshtein
distance (Levenshtein, 1966) return a raw distance score
where less distance corresponds to higher similarity. How-
ever, the score can easily be normalized, e.g. by text length.
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Figure 1: DKPro Similarity allows to integrate any
text similarity measure (right) which conforms to
standardized interfaces into a UIMA-based lan-
guage processing pipeline (left) by means of a
dedicated Similarity Scorer component (middle).

additional interface to text similarity measures:
The JCasTextSimilarityMeasure inherits
from TextSimilarityMeasure, and adds a
method for two JCas text representations:4

double getSimilarity
(JCas text1, JCas text2);

The additional interface allows to implement mea-
sures which have full access to UIMA’s document
structure. That way, it is possible to create text
similarity measures which can use any piece of in-
formation that has been annotated in the processed
documents, such as dependency trees or morpho-
logical information. We detail the new set of com-
ponents offered by DKPro Similarity in Section 4.

3 Text Similarity Measures

In this section, we give an overview of the text
similarity measures which are already available in
DKPro Similarity. While we provide new imple-
mentations for a multitude of measures, we rely on
specialized libraries such as the S-Space Package
(see Section 6) if available. Due to space limi-
tations and due to the fact that the framework is
actively under development, we do not provide an
exhaustive list here, but rather mention the most
interesting and most popular measures.

3.1 Simple String-based Measures
DKPro Similarity includes text similarity mea-
sures which operate on string sequences and
determine, for example, the longest common

4The JCas is an object-oriented Java interface to the
Common Analysis Structure (Ferrucci and Lally, 2004),
Apache UIMA’s internal document representation format.
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(non-)contiguous sequence of characters. It also
contains Greedy String Tiling (Wise, 1996), a mea-
sure which allows to compare strings if parts have
been reordered. The framework also offers mea-
sures which compute sets of character and word
n-grams and compare them using different overlap
coefficients, e.g. the Jaccard index. It further in-
cludes popular string distance metrics such as the
Jaro-Winkler (Winkler, 1990), Monge and Elkan
(1997) and Levenshtein (1966) distance measures.

3.2 Semantic Similarity Measures

DKPro Similarity also contains several measures
which go beyond simple character sequences and
compute text similarity on a semantic level.

Pairwise Word Similarity These measures are
based on pairwise word similarity computations
which are then aggregated for the complete texts.
The measures typically operate on a graph-based
representation of words and the semantic relations
among them within a lexical-semantic resource.
DKPro Similarity therefore contains adapters for
WordNet, Wiktionary5, and Wikipedia, while the
framework can easily be extended to other data
sources that conform to a common interface
(Garoufi et al., 2008). Pairwise similarity mea-
sures in DKPro Similarity include Jiang and Con-
rath (1997) or Resnik (1995). The aggregation for
the complete texts can for example be done using
the strategy by Mihalcea et al. (2006).

Vector Space Models These text similarity
measures project texts onto high-dimensional vec-
tors which are then compared. Cosine similar-
ity, a basic measure often used in information re-
trieval, weights words according to their term fre-
quencies or tf-idf scores, and computes the co-
sine between two text vectors. Latent Seman-
tic Analysis (Landauer et al., 1998) alleviates the
inherent sparseness of a high-dimensional term-
document matrix by reducing it to one of reduced
rank. Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007) constructs the vector space on
corpora where the documents are assumed to de-
scribe natural concepts such as cat or dog. Orig-
inally, Wikipedia was proposed as the document
collection of choice.

DKPro Similarity goes beyond a single im-
plementation of these measures and comes with
highly customizable code which allows to set var-

5http://www.wiktionary.org

ious parameters for the construction of the vector
space and the comparison of the document vectors,
and further allows to construct the vector space for
arbitrary collections, e.g. domain-specific corpora.

3.3 Further Measures

Previous research (Bär et al., 2012b) has shown
promising results for the inclusion of measures
which go beyond textual content and compute
similarity along other text characteristics. Thus,
DKPro Similarity also includes measures for
structural, stylistic, and phonetic similarity.

Structural Similarity Structural similarity be-
tween texts can be computed, for example, by
comparing sets of stopword n-grams (Stamatatos,
2011). The idea here is that similar texts may pre-
serve syntactic similarity while exchanging only
content words. Other measures in DKPro Simi-
larity allow to compare texts by part-of-speech n-
grams, and order and distance features for pairs of
words (Hatzivassiloglou et al., 1999).

Stylistic Similarity DKPro Similarity includes,
for example, a measure which compares function
word frequencies (Dinu and Popescu, 2009) be-
tween two texts. The framework also includes a
set of measures which capture statistical properties
of texts such as the type-token ratio (TTR) and the
sequential TTR (McCarthy and Jarvis, 2010).

Phonetic Similarity DKPro Similarity also al-
lows to compute text similarity based on pair-
wise phonetic comparisons of words. It therefore
contains implementations of well-known phonetic
algorithms such as Double Metaphone (Philips,
2000) and Soundex (Knuth, 1973), which also con-
form to the common text similarity interface.

4 UIMA Components

In addition to a rich set of text similarity mea-
sures as partly described above, DKPro Similar-
ity includes components which allow to integrate
text similarity measures with any UIMA-based
pipeline, as outlined in Figure 1. In the following,
we introduce these components along with their
resources.

Readers & Datasets DKPro Similarity includes
corpus readers specifically tailored towards com-
bining the input texts in a number of ways, e.g.
all possible combinations, or each text paired with
n others by random. Standard datasets for which
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readers come pre-packaged include, among oth-
ers, the SemEval-2012 STS data (Agirre et al.,
2012), the METER corpus (Clough et al., 2002),
or the RTE 1–5 data (Dagan et al., 2006). As far
as license terms allow redistribution, the datasets
themselves are integrated into the framework.

Similarity Scorer The Similarity Scorer allows
to integrate any text similarity measure (which is
decoupled from UIMA by default) into a UIMA-
based pipeline. It builds upon the standardized text
similarity interfaces and thus allows to easily ex-
change the text similarity measure as well as to
specify the data types the measure should operate
on, e.g. tokens or lemmas.

Machine Learning Previous research (Agirre et
al., 2012) has shown that different text similarity
measures can be combined using machine learning
classifiers. Such a combination shows improve-
ments over single measures due to the fact that dif-
ferent measures capture different text characteris-
tics. DKPro Similarity thus provides adapters for
the Weka framework (Hall et al., 2009) and allows
to first pre-compute sets of text similarity scores
which can then be used as features for various ma-
chine learning classifiers.

Evaluation Metrics In the final step of a UIMA
pipeline, the processed data is read by a dedicated
evaluation component. DKPro Similarity ships
with a set of components which for example com-
pute Pearson or Spearman correlation with human
judgments, or apply task-specific metrics such as
average precision as used in the RTE challenges.

5 Experimental Setups

DKPro Similarity further encourages the creation
and publication of complete experimental setups.
That way, we promote the reproducibility of ex-
perimental results, and provide reliable, perma-
nent experimental conditions which can benefit fu-
ture studies and help to stimulate the reuse of par-
ticular experimental steps and software modules.

The experimental setups are instantiations of
the generic UIMA-based language processing
pipeline depicted in Figure 1 and are designed to
precisely match the particular task at hand. They
thus come pre-configured with corpus readers for
the relevant input data, with a set of pre- and post-
processing as well as evaluation components, and
with a set of text similarity measures which are

well-suited for the particular task. The experimen-
tal setups are self-contained systems and can be
run out-of-the-box without further configuration.6

DKPro Similarity contains two major types of
experimental setups: (i) those for an intrinsic eval-
uation allow to evaluate the system performance in
an isolated setting by comparing the system results
with a human gold standard, and (ii) those for an
extrinsic evaluation allow to evaluate the system
with respect to a particular task at hand, where text
similarity is a means for solving a concrete prob-
lem, e.g. recognizing textual entailment.

Intrinsic Evaluation DKPro Similarity con-
tains the setup (Bär et al., 2012a) which partic-
ipated in the Semantic Textual Similarity (STS)
Task at SemEval-2012 (Agirre et al., 2012) and
which has become one of the recommended base-
line systems for the second task of this series.7

The system combines a multitude of text similar-
ity measures of varying complexity using a simple
log-linear regression model. The provided setup
allows to evaluate how well the system output re-
sembles human similarity judgments on short texts
which are taken from five different sources, e.g.
paraphrases of news texts or video descriptions.

Extrinsic Evaluation Our framework includes
two setups for an extrinsic evaluation: detecting
text reuse, and recognizing textual entailment.

For detecting text reuse (Clough et al., 2002),
the setup we provide (Bär et al., 2012b) combines
a multitude of text similarity measures along dif-
ferent text characteristics. Thereby, it not only
combines simple string-based and semantic sim-
ilarity measures (see Sections 3.1 and 3.2), but
makes extensive use of measures along structural
and stylistic text characteristics (see Section 3.3).
Across three standard evaluation datasets, the sys-
tem consistently outperforms all previous work.

For recognizing textual entailment, we provide
a setup which is similar in configuration to the one
described above, but contains corpus readers and
evaluation components precisely tailored towards
the RTE challenge series (Dagan et al., 2006). We
believe that our setup can be used for filtering
those text pairs which need further analysis by a
dedicated textual entailment system.

6A one-time setup of local lexical-semantic resources
such as WordNet may be necessary, though.

7In 2013, the STS Task is a shared task of the Second
Joint Conference on Lexical and Computational Semantics,
http://ixa2.si.ehu.es/sts
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6 Related Frameworks

To the best of our knowledge, only a few general-
ized similarity frameworks exist at all. In the fol-
lowing, we discuss them and give insights where
DKPro Similarity uses implementations of these
existing libraries. That way, DKPro Similarity
brings together the scattered efforts by offering ac-
cess to all measures through common interfaces. It
goes far beyond the functionality of the original li-
braries as it generalizes the resources used, allows
a tight integration with any UIMA-based pipeline,
and comes with full-featured experimental setups
which are pre-configured stand-alone text similar-
ity systems that can be run out-of-the-box.

S-Space Package Even though no designated
text similarity library, the S-Space Package (Jur-
gens and Stevens, 2010)8 contains some text sim-
ilarity measures such as Latent Semantic Analysis
(LSA) and Explicit Semantic Analysis (see Sec-
tion 3.2). However, it is primarily focused on
word space models which operate on word distri-
butions in text. Besides such algorithms, it offers
a variety of interfaces, data structures, evaluation
datasets and metrics, and global operation utili-
ties e.g. for dimension reduction using Singular
Value Decomposition or randomized projections,
which are particularly useful with such distribu-
tional word space models. DKPro Similarity inte-
grates LSA based on the S-Space Package.

Semantic Vectors The Semantic Vectors pack-
age is a package for distributional semantics (Wid-
dows and Cohen, 2010)9 that contains measures
such as LSA and allows for comparing documents
within a given vector space. The main focus lies
on word space models with a number of dimension
reduction techniques, and applications on word
spaces such as automatic thesaurus generation.

WordNet::Similarity The open source package
by Pedersen et al. (2004)10 is a popular Perl li-
brary for the similarity computation on WordNet.
It comprises six word similarity measures that op-
erate on WordNet, e.g. Jiang and Conrath (1997)
or Resnik (1995). Unfortunately, no strategies
have been added to the package yet which aggre-
gate the word similarity scores for complete texts
in a similar manner as described in Section 3.2.

8code.google.com/p/airhead-research
9code.google.com/p/semanticvectors

10sourceforge.net/projects/wn-similarity

In DKPro Similarity, we offer native Java imple-
mentations of all measures contained in Word-
Net::Similarity, and allow to go beyond WordNet
and use the measures with any lexical-semantic re-
source of choice, e.g. Wiktionary or Wikipedia.

SimMetrics Library The Java library by Chap-
man et al. (2005)11 exclusively comprises text sim-
ilarity measures which compute lexical similar-
ity on string sequences and compare texts with-
out any semantic processing. It contains mea-
sures such as the Levenshtein (1966) or Monge and
Elkan (1997) distance metrics. In DKPro Similar-
ity, some string-based measures (see Section 3.1)
are based on implementations from this library.

SecondString Toolkit The freely available li-
brary by Cohen et al. (2003)12 is similar to Sim-
Metrics, and also implemented in Java. It also con-
tains several well-known text similarity measures
on string sequences, and includes many of the
measures which are also part of the SimMetrics
Library. Some string-based measures in DKPro
Similarity are based on the SecondString Toolkit.

7 Conclusions

We presented DKPro Similarity, an open source
framework designed to streamline the develop-
ment of text similarity measures. All measures
conform to standardized interfaces and can either
be used as stand-alone components in any ex-
perimental setup (e.g. an already existing system
which is not based on Apache UIMA), or can be
tightly coupled with a full-featured UIMA-based
language processing pipeline in order to allow for
advanced processing capabilities.

We would like to encourage other researchers
to participate in our efforts and invite them to ex-
plore our existing experimental setups as outlined
in Section 5, run modified versions of our setups,
and contribute own text similarity measures to
the framework. For that, DKPro Similarity also
comes with an example module for getting started,
which guides first-time users through both the
stand-alone and the UIMA-coupled modes.
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Abstract

Fluid Construction Grammar (FCG) is an
open-source computational grammar for-
malism that is becoming increasingly pop-
ular for studying the history and evolution
of language. This demonstration shows
how FCG can be used to operationalise the
cultural processes and cognitive mecha-
nisms that underly language evolution and
change.

1 Introduction

Historical linguistics has been radically trans-
formed over the past two decades by the ad-
vent of corpus-based approaches. Ever increas-
ing datasets, both in size and richness of anno-
tation, are becoming available (Yuri et al., 2012;
Davies, 2011), and linguists now have more pow-
erful tools at their disposal for uncovering which
changes have taken place. In this demonstration,
we present Fluid Construction Grammar (Steels,
2011, FCG), an open-source grammar formalism
that makes it possible to also address the question
of how these changes happened by uncovering the
cognitive mechanisms and cultural processes that
drive language evolution.

FCG combines the expressive power of fea-
ture structures and unification with the adaptiv-
ity and robustnes of machine learners. In sum,
FCG aims to be an open instrument for de-
veloping robust and open-ended models of lan-
guage processing that can be used for both pars-
ing and production. FCG can be downloaded at
http://www.fcg-net.org.

2 Design Philosophy

Fluid Construction Grammar is rooted in a
cognitive-functional approach to language, which
is quite different from a generative grammar such

as HPSG (Pollard and Sag, 1994). A genera-
tive grammar is a model of language competence
that licenses well-formed structures and rejects ill-
formed utterances. Such grammars often decide
on the well- or ill-formedness of utterances by us-
ing a strong type system that defines a set of fea-
tures and possible values for those features. The
burden of efficient and robust language process-
ing with a generative grammar largely rests on the
shoulders of the language processor.

A cognitive-functional grammar, on the other
hand, functions more like a transducer between
meaning and form. In parsing, such a grammar
tries to uncover as much meaning as possible from
a given utterance rather than deciding on its gram-
maticality. In the other direction, the grammar
tries to produce intelligible utterances, which are
well-formed as a side-effect if the grammar ad-
equately captures the conventions of a particular
language. A cognitive-functional grammar can
best be implemented without a strong type system
because the set of possible features and values for
them is assumed to be open-ended. Efficient and
robust language processing also becomes a joint
responsibility of the grammar and the linguistic
processor.

3 Reversible Language Processing

As a construction grammar, FCG represents all
linguistic knowledge as pairings of function and
form (called constructions). This means that any
linguistic item, be it a concrete lexical item (see
Figure 1) or a schematic construction, shares the
same fundamental representation in FCG.

Each construction consists of two poles (a se-
mantic/functional one and a syntactic/form one),
each represented as a feature structure. By using a
separate semantic and syntactic pole, FCG allows
the same construction to be efficiently parsed and
produced by the same processing engine by sim-
ply changing the direction of application.
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Figure 1: Lexical construction for the proper
noun “Kim” as shown in the FCG web interface.
All constructions are mappings between semantic
(left) and syntactic feature structures (right).

FCG processing uses two different kinds of uni-
fication called match and merge. The match phase
is a conditional phase which checks for applicabil-
ity of the construction. The merge operation most
closely resembles classical (yet untyped) unifica-
tion. In production (i.e. going from meaning to
form), the processor will consider a construction’s
semantic pole as a set of conditions that need to be
satisfied, and the syntactic pole as additional infor-
mation that can be contributed by the construction.
In parsing (i.e. going from form to meaning), the
roles of the poles are reversed.

Since FCG pays a lot of attention to the inter-
action between linguistic knowledge and process-
ing, it makes it possible to investigate the conse-
quences of particular aspects of grammar with re-
gard to representation, production, parsing, learn-
ing and propagation (in a population of language
users). For example, a small case system may be
easier to represent and produce than a large sys-
tem, but it might also lead to increased ambigu-
ity in parsing and learning that the larger system
would avoid. Fluid Construction Grammar can
bring these differences to the surface for further
computational analysis.

It is exactly this ability to monitor the impact of
grammatical choices, that has sparked the interest
of an increasingly wide audience of historical and
evolutionary linguists. With FCG, different histor-
ical stages can be implemented (which addresses
questions about representation and processing) but
FCG also comes bundled with a reflective learn-
ing framework (Beuls et al., 2012) for learning the
key constructions of each stage. That same archi-
tecture has proven to be adequately powerful to
implement processes of grammaticalization so that

Linguistic system 1

Reconstruction

Individual Learning

Population 
Alignment

Grammaticalization

Linguistic system 2

Reconstruction

Individual Learning

Population 
Alignment

1.

2.

3.

1.

2.

3.

4.

Figure 2: Schematic overview of the experimental
methodology for historical and evolutionary lin-
guists. The example here shows only two linguis-
tic stages but there could be more.

actual linguistic change over time can be modeled
(van Trijp, 2010; Beuls and Steels, 2013; Wellens
and Loetzsch, 2012).

4 How to set up an evolutionary
linguistics experiment in FCG?

As the FCG processor can both produce and
parse utterances it is possible to instantiate not
one but a set or population of FCG processors
(or FCG agents) that can communicatively inter-
act with each other. Experiments in historical or
evolutionary linguistics make use of this multi-
agent approach where all agents engage in situated
pairwise interactions (language games) (Steels,
2012b).

In this systems demo we will focus on a re-
cent experiment in the emergence of grammatical
agreement (Beuls and Steels, 2013). The language
game consists of two agents in which one agent
(the speaker) has to describe one or more (max
three) objects in a scene to the other agent (the
hearer). Each object can be described by one or
more words. It follows that without any grammat-
ical marking it would be difficult (often impossi-
ble) for the hearer to figure out which words de-
scribe the same object and thus to arrive at a suc-
cessful interpretation. The hypothesis is that the
introduction of agreement markers helps solve this
ambiguity.

Next to setting up a language game script the
methodology consists of operationalizing the lin-
guistic strategies required for a population to boot-
strap and maintain a particular linguistic system (in
this case nominal agreement). Examples of lin-
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Figure 3: Reflective meta-layer architecture oper-
ating as part of an FCG agent/processor.

guistic systems already investigated include Ger-
man case (van Trijp, 2012a; van Trijp, 2013),
the grammatical expression of space (Spranger
and Steels, 2012), the emergence of quantifiers
(Pauw and Hilferty, 2012) and the expression of
aspect in Russian (Gerasymova et al., 2012) [for
an overview see (Steels, 2011; Steels, 2012a)].

An experiment generally investigates multi-
ple linguistic systems of increasing complexity
where each system can, but need not, map to a
stage along an attested grammaticalization path-
way. Most often a stage is introduced in order
to gradually increase the complexity of the emer-
gent dynamics. In this demo we posit four sys-
tems/strategies, (1) a baseline purely lexical strat-
egy, (2) a strategy to bootstrap and align formal
(meaningless) agreement markers, (3) a strategy to
bootstrap and align meaningful agreement mark-
ers, and finally (4) a strategy that allows re-use
of existing lexical constructions as markers (gram-
maticalization).

Implementing and linking together all the com-
ponents involved in a single system is a highly
non-trivial undertaking and our methodology pre-
scribes the following four steps to undertake for
each system (see also Figure 2).

Reconstruction: A full operationalization of all
the constructions (lexical and grammatical)
involved in the chosen linguistic phenom-
ena. When multiple agents are initialized
with these constructions they should be able
to communicate successfully with each other.
This stage serves primarily to test and verify
intuitions about the different linguistic sys-
tems.

Individual Learning: Implementation of learn-
ing algorithms (or re-use of existing ones)

Figure 4: Meaningful marker strategy.

so that one agent can learn the constructions
based on the input of another agent. These
learning operations are generally divided into
diagnostics and repair strategies (see Fig-
ure 3). Diagnostics continually monitor FCG
processing for errors or inefficiencies and
generate problems if they are found. Repair
strategies then act on these problems by al-
tering the linguistic inventory (e.g. adding,
removing or changing constructions).

Population Alignment: There exists a large gap
between the cognitive machinary needed for
learning an existing linguistic system (step 2)
and bootstrapping, aligning and maintaining
a complete linguistic system from scratch. In
this step individual learning operators are ex-
tended with alignment strategies.

Grammaticalization: Moving from one linguis-
tic system to another is the final step of the
experiment. The challenge is to find and im-
plement the mechanisms that drive grammat-
icalization (Heine and Kuteva, 2007) in line
with observed grammaticalization pathways.

As an example we’ll give a short sketch of one
possible game as played in the meaningful marker
strategy as schematically shown in Figure 4. The
sketch shows a context of four objects (O1 to O4),
each described by three features. The speaker
chooses topic O1 + O2 which, given his vocab-
ulary (shown top right), results in uttering “shuq-
fon sizhic zabu”. Words “shuqfon” and “sizhic”
both describe parts of O1 and “zabu” of O2. In
order to explicitly communicate this linking the
speaker attaches the markers “-ti” and “-ta” so that
their meaning is compatible with the objects they
are linking as shown in the Figure. This allows
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Figure 5: A network of constructions. Diamond shaped nodes represent lexical constructions, egg shaped
nodes represent grammatical constructions and rectangular nodes represent semantic categories. Arrows
can be read as “primes”. For example the preposition between [BETWEEN.PREP] primes the category
LOCATIVE RELATION which in turn primes both the [LOCATIVE RELATION] and [SPATIAL PHRASE]
constructions. Both of these constructions also require a semantic category [REFERENT].

the hearer to arrive at a single non-ambiguous in-
terpretation. For more details we refer the reader
to (Beuls and Steels, 2013) and the web demo at
http://ai.vub.ac.be/materials/plos-agreement/.

5 Features of FCG

A number of key features of FCG have already
been introduced. Reversible bidirectional process-
ing, a single data representation for all linguistic
knowledge, a reflective meta-layer architecture for
learning and a multi-agent component for manag-
ing multiple interacting FCG instances. Other fea-
tures, some of which are unique to FCG, include,
but are not limited to:

Web interface: FCG comes with a rich
HTML/AJAX based web interface (Loet-
zsch, 2012) where it can show fine-grained
information to the user in a user-friendly
manner through the use of expandable
elements. See Figure 6.

Customizable processing: Linguistic process-
ing is implemented as a search process
(Bleys et al., 2011). The user has easy
access to the most important parameters
influencing this process. Examples of these
are the heuristics and the tests that determine
whether a node represents an acceptable
solution. FCG comes bundled with a library
of heuristics and goal tests and with a bit
of programming skills users can add new
primitives easily.

Customizable construction inventory: By de-
fault, FCG stores all constructions in one
large set. FCG however supplies a num-
ber of different taxonomies, both for concep-
tual and efficiency reasons. One popular op-
tion is to organize constructions in smaller
subsets (Beuls, 2011) like lexical, morpho-
logical, functional, etc. Another option is
to use networks (Wellens, 2011) that can
learn co-occurrence relations between con-
structions and “prime” constructions when
they are likely to apply (see Figure 5).

Interfaces to external repositories: FCG
can connect to external repositories like
Framenet (Baker et al., 1998) and Wordnet
(Miller, 1995) to load thousands of lexical
entries (Micelli et al., 2009; Wellens and
Beule, 2010).

Robustness: FCG continues operation as far as
it can get even if some constructions do not
apply (Steels and van Trijp, 2011). Sup-
plied with appropriate diagnostics and repair
strategies FCG can even recover from errors
(van Trijp, 2012b).

Open source: Best of all, FCG is freely down-
loadable and open source (http://www.fcg-
net.org). It is written in Common Lisp
(CLOS) and compatible with most popu-
lar lisp implementations (SBCL, CCL, Lisp-
works, ...).
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Figure 6: An example of parsing the noun “Block” as shown in the FCG web interface. Users can click
on nearly every element to show an expanded version.

The reader is encouraged to take a look at
http://www.fcg-net.org/projects/design-patterns-
in-fluid-construction-grammar for a selection of
demonstrations of Fluid Construction Grammar.

6 Conclusion

Fluid Construction Grammar is a mature technol-
ogy that can be used by computational linguists
to complement more traditional corpus-based ap-
proaches. FCG builds on many existing and
proven technologies and adds new innovations to
the mix resulting in a user friendly, yet powerful
and extensible framework for in-depth investiga-
tions in natural language phenomena.
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Abstract

Recent research has shown progress in
achieving high-quality, very fine-grained
type classification in hierarchical tax-
onomies. Within such a multi-level type
hierarchy with several hundreds of types at
different levels, many entities naturally be-
long to multiple types. In order to achieve
high-precision in type classification, cur-
rent approaches are either limited to certain
domains or require time consuming multi-
stage computations. As a consequence, ex-
isting systems are incapable of performing
ad-hoc type classification on arbitrary input
texts. In this demo, we present a novel Web-
based tool that is able to perform domain
independent entity type classification under
real time conditions. Thanks to its efficient
implementation and compacted feature rep-
resentation, the system is able to process
text inputs on-the-fly while still achieving
equally high precision as leading state-of-
the-art implementations. Our system offers
an online interface where natural-language
text can be inserted, which returns seman-
tic type labels for entity mentions. Further
more, the user interface allows users to ex-
plore the assigned types by visualizing and
navigating along the type-hierarchy.

1 Introduction

Motivation
Web contents such as news, blogs and other so-
cial media are full of named entities. Each en-
tity belongs to one or more semantic types as-
sociated with it. For instance, an entity such as
Bob Dylan should be assigned the types Singer,
Musician, Poet, etc., and also the correspond-
ing supertype(s) (hypernyms) in a type hierarchy,
in this case Person. Such fine-grained typing of

entities in texts can be a great asset for various
NLP tasks including semantic role labeling, sense
disambiguation and named entity disambiguation
(NED). For instance, noun phrases such as “song-
writer Dylan”, “Google founder Page”, or “rock
legend Page” can be easily mapped to the entities
Bob Dylan, Larry Page, and Jimmy Page if their re-
spective types Singer, BusinessPerson, and
Guitarist are available (cf. Figure 1 for an il-
lustrative example).

with 100,000$, Google wasFunded" founded by Brin and Page "

his firstplayed on" guitar in 1952Page "

Business_people
Entrepreneur

Entertainer
Musician

Figure 1: Fine-grained entity type classification

Problem Statement
Type classification is not only be based on hier-
archical sub-type relationships (e.g. Musician
isA Person), but also has to do on multi-labeling.
Within a very fine-grained type hierarchy, many en-
tities naturally belong to multiple types. For exam-
ple, a guitarist is also a musician and a person, but
may also be a singer, an actor, or even a politician.
Consequently, entities should not only be assigned
the most (fine-grained) label associated to them,
but with all labels relevant to them. So we face
a hierarchical multi-label classification problem
(Tsoumakas et al., 2012).

Contribution
This paper introduces HYENA-live, which allows
an on-the-fly computation of semantic types for en-
tity mentions, based on a multi-level type hierarchy.
Our approach uses a suite of features for a given
entity mention, such as neighboring words and bi-
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grams, part-of-speech tags, and also phrases from a
large gazetteer derived from state-of-the-art knowl-
edge bases. In order to perform “live” entity type
classification based on ad-hoc text inputs, several
performance optimizations have been undertaken
to operate under real-time conditions.

2 Entity Type Classification Systems

State-of-the-art tools for named entity recognition
such as the Stanford NER Tagger (Finkel et al.,
2005) compute semantic tags only for a small set of
coarse-grained types: Person, Location, and
Organization (plus tags for non-entity phrases
of type time, money, percent, and date). However,
we are not aware of any online tool that performs
fine-grained typing of entity mentions. The most
common workaround to perform entity classifica-
tion is a two-stage process: in first applying an on-
line tool for Named-Entity Disambiguation (NED),
such as DBpedia Spotlight (Mendes et al., 2011)
or AIDA (Yosef et al., 2011; Hoffart et al., 2011),
in order to map the mentions onto canonical enti-
ties and subsequently query the knowledge base for
their types. In fact, (Ling and Weld, 2012) followed
this approach when comparing their entity classi-
fication system results against those obtained by
an adoption of the Illinois’ Named-Entity Linking
system (NEL) (Ratinov et al., 2011) and reached
the conclusion that while NEL performed decently
for prominent entities, it could not scale to cover
long tail ones. Specifically, entity typing via NED
has three major drawbacks:

1. NED is an inherently hard problem, especially
with highly ambiguous mentions. As a conse-
quence, accurate NED systems come at a high
computation costs.

2. NED only works for those mentions that cor-
respond to a canonical entity within a knowl-
edge base. However, this fails for all out-of-
knowledge-base entities like unregistered per-
sons, start-up companies, etc.

3. NED heavily depends on the quality of the un-
derlying knowledge base. Yet, only very few
knowledge bases have comprehensive class
labeling of entities. Even more, in the best
case, coverage drops sharply for relatively un-
common entities.

We decided to adopt one of the existing ap-
proaches to make it suitable for online querying.

We considered five systems. In the rest of this
section we will briefly describe each of them.

(Fleischman and Hovy, 2002) is one of the earli-
est approaches to perform entity classification into
subtypes of PERSON. They developed a decision-
tree classifier based on contextual features that can
be automatically extracted from the text. In order
to account for scarcity of labeled training data, they
tapped on WordNet synonyms to achieve higher
coverage. While their approach is fundamentally
suitable, their type system is very restricted. In or-
der to account for more fine-grained classes, more
features need to be added to their feature set.

(Ekbal et al., 2010) considered 141 subtypes of
WordNet class PERSON and developed a maximum
entropy classifier exploiting the words surrounding
the mentions together with their POS tags and other
contextual features. Their type hierarchy is fine-
grained, but still limited to sub classes of PERSON.
In addition, their experimental results have been
flagged as non-reproducible in the ACL Anthology.

(Altaf ur Rahman and Ng, 2010) considered a
two-level type hierarchy consisting of 29 top-level
classes and a total of 92 sub-classes. These include
many non-entity types such as date, time, percent,
money, quantity, ordinal, cardinal, etc. They in-
corporated a hierarchical classifier using a rich fea-
ture set and made use of WordNet sense tagging.
However, the latter requires human interception,
which is not suitable for ad-hoc processing of out-
of-domain texts.

(Ling and Weld, 2012) developed FIGER,
which classifies entity mentions onto a two-level
taxonomy based on the Freebase knowledge base
(Bollacker et al., 2008). This results in a two-level
hierarchy with top-level topics and 112 types. They
trained a CRF for the joint task of recognizing en-
tity mentions and inferring type tags. Although
they handle multi-label assignment, their test data
is sparse. Many classes are absent and plenty of
instances come with only a single label (e.g. 216
of the 562 entities were of type PERSON without
subtypes). Further, their results are instance based,
which does not guarantee that the quality of their
system will be reproducible for all the 112 types in
their taxonomy.

(Yosef et al., 2012) is the most recent work in
multi-label type classification. The HYENA sys-
tem incorporates a large hierarchy of 505 classes
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organized under 5 top level classes, with 100 de-
scendant classes under each of them. The hierarchy
reaches a depth of up to 9 levels in some parts.
The system is based on an SVM classifier using a
comprehensive set of features and provides results
for all classes of a large data set. In their exper-
iments the superiority of the system in terms of
precision and recall has been shown. However, the
main drawback of HYENA comes from its large
hierarchy and the extensive set of features extracted
from the fairly large training corpus it requires. As
a result, on-the-fly type classification with HYENA
is impossible in its current implementation.

We decided to build on top of HYENA sys-
tem by spotting the bottlenecks in the architec-
ture and modifying it accordingly to be suitable
for online querying. In Section 3 we explain in
details HYENA’s type taxonomy and their feature
portfolio. Later on, we explain the engineering
undertaken in order to develop the on-the-fly type
classification system HYENA-live (cf. Section 4).

3 Type Hierarchy and Feature Set

3.1 Fine-grained Taxonomy

The type system is an automatically gathered fine-
grained taxonomy of 505 classes. The classes are
organized under 5 top level classes, with 100 de-
scendant classes under each. The YAGO knowl-
edge base (Hoffart et al., 2013) is selected to de-
rive the taxonomy from because of its highly pre-
cise classification of entities into WordNet classes,
which is a result of the accurate mapping YAGO
has from Wikipedia Categories to WordNet synsets.

We start with five top classes namely PERSON,
LOCATION, ORGANIZATION, EVENT and
ARTIFACT. Under each top class, the most 100
prominent descendant classes are picked. Promi-
nence is estimated by the number of YAGO entities
tagged with this class. This results in a very-fine
grained taxonomy of 505 types, represented as a
directed acyclic graph with 9 levels in its deepest
parts. While the classes are picked from the YAGO
type system, the approach is generic and can be
applied to derive type taxonomies from other
knowledge bases such as Freebase or DBpedia
(Auer et al., 2007) as in (Ling and Weld, 2012).

3.2 Feature Set

For the sake of generality and applicability to ar-
bitrary text, we opted for features that can be au-
tomatically extracted from the input text without

any human interaction, or manual annotation. The
extracted features fall under five categories, which
we briefly explain in the rest of this section.

Mention String
We derive four features from the entity mention
string. The mention string itself, a noun phrase
consisting of one or more consecutive words. The
other three features are unigrams, bigrams, and
trigrams that overlap with the mention string.

Sentence Surrounding Mention
We also exploit a bounded-size window around the
mention to extract four features: all unigrams, bi-
grams, and trigrams. Two versions of those features
are extracted, one to account for the occurrence of
those tokens around the mention, and another to ac-
count for the position at which they occurred with
respect to the mention (before or after). In addition,
unigrams are also included with their absolute dis-
tance ignoring whether before of after the mention.
Our demo is using a conservative threshold for the
size of the window which is three tokens on each
side of the mention.

Mention Paragraph
We also leverage the entire paragraph of the men-
tion. This gives additional topical cues about the
mention type (e.g., if the paragraph is about a mu-
sic concert, this is a cue for mapping people names
to musician types). We create three features here:
unigrams, bigrams, and trigrams without including
any distance information. In our demo, we extract
those features from a bounded window of size 2000
characters before and after the mention.

Grammatical Features
We exploit the semantics of the text by extracting
four features. First, we use part-of-speech tags of
the tokens in a size-bounded window around the
mention in distance and absolute distance versions.
Second and third, we create a feature for the first
occurrence of a “he” or “she” pronoun in the same
sentence and in the subsequent sentence following
the mention, along with the distance to the mention.
Finally, we use the closest verb-preposition pair
preceding the mention as another feature.

Gazetteer Features
We leverage YAGO2 knowledge base even further
by building a type-specific gazetteer of words oc-
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# of articles 50,000
# of instances (all types) 1,613,340
# of location instances 489,003 (30%)
# of person instances 426,467 (26.4%)
# of organization instances 219,716 (13.6%)
# of artifact instances 204,802 (12.7%)
# of event instances 176,549 (10.9%)
# instances in 1 top-level class 1,131,994 (70.2%)
# instances in 2 top-level classes 182,508 (11.3%)
# instances in more than 2 top-level classes 6,492 (0.4%)
# instances not in any class 292,346 (18.1%)

Table 1: Properties of the labeled data used for training HYENA-live

curring in the names of the entities of that type.
YAGO2 knowledge base comes with an exten-
sive dictionary of name-entity pairs extracted from
Wikipedia redirects and link-anchor texts. We con-
struct, for each type, a binary feature that indicates
if the mention contains a word occurring in this
type’s gazetteer. Note that this is a fully automated
feature construction, and it does by no means de-
termine the mention type(s) already, as most words
occur in the gazetteers of many different types. For
example, “Alice” occurs in virtually every subclass
of Person but also in city names like “Alice Springs”
and other locations, as well as in songs, movies,
and other products or organizations.

4 System Implementation

4.1 Overview
As described in Section 3, HYENA classifies men-
tions of named entities onto a hierarchy of 505
types using large set of features. A random sub-
set of the English Wikipedia has been used for
training HYENA. By exploiting Wikipedia anchor
links, mentions of named entities are automati-
cally disambiguated to their correct entities. Each
Wikipedia named entity has a corresponding YAGO
entity labeled with an accurate set of types, and
hence we effortlessly obtain a huge training data
set (cf. data properties in Table 1).

We build type-specific classifiers using the SVM
software LIBLINEAR (cf. http://liblinear.

bwaldvogel.de/). Each model comes with a com-
prehensive feature set. While larger models (with
more features) improve the accuracy, they signifi-
cantly affect the applicability of the system. A sin-
gle model file occupies around 150MB disk space
leading to a total of 84.7GB for all models. As
a consequence, there is a substantial setup time

to load all models in memory and a high-memory
server (48 cores with 512GB of RAM) is required
for computation. An analysis showed that each sin-
gle feature contributes to the overall performance
of HYENA, but only a tiny subset of all features is
relevant for a single classifier. Therefore, most of
the models are extremely sparse.

4.2 Sparse Models Representation
There are several workarounds applicable to batch
mode operations, e.g. by performing classifications
per level only. However, this is not an option for
on-the-fly computations. For that reason we opted
for a sparse-model representation.

LIBLINEAR model files are normalized textual
files: a header (data about the model and the to-
tal number of features), followed by listing the
weights assigned to each feature (line number in-
dicates the feature ID). Each model file has been
post-processed to produce 2 files:

• A compacted model file containing only fea-
tures of non-zero weights. Its header reflects
the reduced number of features.

• A meta-data file. It maps the new features IDs
to the original feature IDs.

Due to the observed sparsity in the model files,
particularly at deeper levels, there is a significant
decrease in disk space consumption for the com-
pacted model files and hence in the memory re-
quirements.

4.3 Sparse Models Classification
By switching to the sparse model representation the
architecture of the whole system is affected. In par-
ticular, modified versions of feature vectors need
to be generated for each classifier; this is because
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Figure 2: Modified system architecture designed for handling sparse models

a lot of features have been omitted from specific
classifiers (those with zero weights). Consequently,
the feature IDs need to be mapped to the new fea-
ture space of each classifier. The conceptual design
of the new architecture is illustrated in Figure 4.2.

5 Demo Presentation

HYENA-live has been fully implemented as a Web
application. Figure 5 shows the user interface of
HYENA-live in a Web browser:

1) On top, there is a panel where a user can input
any text, e.g. by copy-and-paste from news ar-
ticles. We employ the Stanford NER Tagger to
identify noun phrases as candidates of entity
mentions. Alternatively, users can flag entity
mentions by double brackets (e.g. “Harry is
the opponent of [[you know who]]”). For the
sake of simplicity, detected entity mentions by
HYENA-live are highlighted in yellow. Each
mention is clickable to study its type classifi-
cation results.

2) The output of type classification is shown in-
side a tabbed widget. Each tab corresponds
to a detected mention by the system and tabs
are sorted by the order of occurrence in the
input text. To open a tab, the tab header or the
corresponding mention in the input area needs
to be clicked.

3) The type classification of a mention is shown
as a color-coded interactive tree. While the
original type hierarchy is a directed acyclic
graph, for the ease of navigation the classifi-
cation output has been converted into a tree.
In order to do so, nodes that belong to more
than a parent have been duplicated. There are
three different types of nodes:

• Green Nodes: referring to a class that has
been accepted by the classifier. These
nodes can be further expanded in order
to check which sub-classes have been
accepted or rejected by HYENA-live.
• Red Nodes: corresponding to a class that

was rejected by the classifier, and hence
HYENA-live did not traverse deeper to
test its sub-classes.
• White Nodes: matching classes that have

not been tested. These nodes are either
known upfront (e.g. ENTITY) or their
super class was rejected by the system.

It is worth noting that HYENA-live automati-
cally adjusts the layouting so that as much as
possible of the hierarchy is shown to the user.
For the sake of explorability, this is being dy-
namically adjusted once the user decides to
navigate along a certain (child-)node.

The system is available online at:
d5gate.ag5.mpi-sb.mpg.de/webhyena/.
The data transfer between the client and the server
is done via JSON objects. Hence, we also provide
HYENA-live as a JSON compliant entity classi-
fication Web-service. As a result, the back-end
becomes easily interchangeable (e.g. by a different
classification technique or a different type taxon-
omy) with minimum modifications required on the
user interface side.
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Figure 3: Interactively exploring the types of the “Battle of Waterloo” in the HYENA-live interface
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Abstract 

In this paper, we introduce a Web-scale lin-
guistics search engine, Linggle, that retrieves 
lexical bundles in response to a given query. 
The query might contain keywords, wildcards, 
wild parts of speech (PoS), synonyms, and ad-
ditional regular expression (RE) operators. In 
our approach, we incorporate inverted file in-
dexing, PoS information from BNC, and se-
mantic indexing based on Latent Dirichlet Al-
location with Google Web 1T. The method in-
volves parsing the query to transforming it in-
to several keyword retrieval commands. Word 
chunks are retrieved with counts, further filter-
ing the chunks with the query as a RE, and fi-
nally displaying the results according to the 
counts, similarities, and topics. Clusters of 
synonyms or conceptually related words are 
also provided.  In addition, Linggle provides 
example sentences from The New York Times 
on demand. The current implementation of 
Linggle is the most functionally comprehen-
sive, and is in principle language and dataset 
independent. We plan to extend Linggle to 
provide fast and convenient access to a wealth 
of linguistic information embodied in Web 
scale datasets including Google Web 1T and 
Google Books Ngram for many major lan-
guages in the world. 

1 Introduction 

As a non-native speaker writing in English, one 
encounters many problems. Doubts concerning 
the usage of a preposition, the mandatory presen-
ce of a determiner, the correctness of the associa-
tion of a verb with an object, or the need for syn-
onyms of a term in a given context are issues that 
arise frequently. Printed collocation dictionaries 
and reference tools based on compiled corpora 
offer limited coverage of word usage while 
knowledge of collocations is vital to acquire a 

good level of linguistic competency. We propose 
to address these limitations with a comprehen-
sive system aimed at helping the learners “know 
a word by the company it keeps” (Firth, 1957). 
Linggle (linggle.com). The system based on 
Web-scaled datasets is designed to be a broad 
coverage language reference tool for English 
Second Language learners (ESL). It is conceived 
to search information related to word usage in 
context under various conditions. 

First, we build an inverted file index for the 
Google Web 1T n-grams to support queries with 
RE-like patterns including PoS and synonym 
matches. For example, for the query “$V $D 
+important role”, Linggle retrieves 4-grams that 
start with a verb and a determiner followed by a 
synonym of important and the keyword role (e.g., 
play a significant role 202,800). A natural lan-
guage interface is also available for users who 
are less familiar with pattern-based searches. For 
example, the question “How can I describe a 
beach?” would retrieve two word chunks such as 
“sandy beach 413,300” and “rocky beach 
16,800”. The n-gram search implementation is 
achieved through filtering, re-indexing, populat-
ing an HBase database with the Web 1T n-grams 
and augmenting them with the most frequent PoS 
for words (without disambiguation) derived from 
the British National Corpus (BNC).  

 The n-grams returned for a query can then be 
linked to examples extracted from the New York 
Times Corpus (Sandhaus, 2008) in order to 
provide full sentential context for more effective 
learning. 
 In some situations, the user might need to search 
for words in a specific syntactic relation (e.g., 
Verb-Object collocation). The query absorb $N 
in n-grams display mode returns all the nouns 
that follow the verb ordered by decreasing n-
gram counts. Some of these nouns might not be 
objects of the verb absorb. In contrast, the same 
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query in cluster display mode will control that 
two words have been labeled verb-object by a 
parser. Moreover, n-grams grouped by object 
topic/domain give the learner an overview of the 
usage of the verb. For example the verb absorb 
takes clusters of objects related to the topics liq-
uid, energy, money, knowledge, and population. 

 

  
Figure 1. An example Linggle search for the que-
ry “absorb $N.” 
 

This tendency of predicates to prefer certain 
classes of arguments is defined by Wilks (1978) 
as selectional preferences and widely reported in 
the literature. Erk and Padó (2010) extend exper-
iments on selectional preference induction to in-
verse selectional preference, considering the re-
striction imposed on predicates. Inverse sectional 
preference is also implemented in linggle (e.g. 
“$V apple”). 

Linggle presents clusters of synonymous col-
locates (adjectives, nouns and verbs) of a query 
keyword. We obtained the clusters by building 
on Lin and Pantel’s (2002) large-scale repository 
of dependencies and word similarity scores. Us-
ing the method proposed by Ritter and Etzioni 
(2010) we induce selectional preference with a 
Latent Dirichlet Allocation (LDA) model to seed 
the clusters. 

The rest of the paper is organized as follows. 
We review the related work in the next section. 
Then we present the syntax of the queries and the 
functionalities of the system (Section 3). We de-
scribe the details of implementation including the 
indexing of the n-grams and the clustering algo-
rithm (Section 4) and draw perspective of devel-
opment of Web scale search engines (Section 5). 

2 Related work 

Web-scale Linguistic Search Engine (LSE) has 
been an area of active research. Recently, the 
state-of-the-art in LSE research has been re-

viewed in Fletcher (2012). We present in this 
paper a linguistic search engine that provides a 
more comprehensive and powerful set of query 
features.  

Kilgarriff et al. (2001) describe the implemen-
tation of the linguistic search engine Word 
Sketch (2001) that displays collocations and de-
pendencies acquired from a large corpus such as 
the BNC. Word Sketch is not as flexible as typi-
cal search engines, only supporting a fixed set of 
queries.  

Recently, researchers have been attempting to 
go one step further and work with Web scale da-
tasets, but it is difficult for an academic institute 
to crawl a dataset that is on par with the datasets 
built by search engine companies. In 2006, 
Google released the Web 1T for several major 
languages of the world (trillion-word n-gram da-
tasets for English, Japanese, Chinese, and ten 
European languages), to stimulate NLP research 
in many areas.  In 2008, Chang described a pro-
totype that enhances Google Web 1T bigrams 
with PoS tags and supports search in the dataset 
by wildcards (wild-PoS), to identify recurring 
collocations. Wu, Witten and Franken (2010) 
describe a more comprehensive system (FLAX) 
that combines filtered Google data with text ex-
amples from the BNC for several learning activi-
ties.  

In a way similar to Chang (2008) and Wu, 
Witten and Franken (2010), Stein, Potthast, and 
Trenkmann (2010) describe the implementation 
and application of NetSpeak, a system that pro-
vides quick access to the Google Web 1T n-gram 
with RE-like queries (alternator “|”, one arbitrary 
word “*”, arbitrary number of words between 
two specified words “…”). In contrast to Linggle, 
NetSpeak does not support PoS wildcard or con-
ceptual clustering. 

An important function in both Linggle and 
NetSpeak is synonym query. NetSpeak uses 
WordNet (Fellbaum 2010) synsets to support 
synonym match. But WordNet synsets tend to 
contain very little synonyms, leading to poor 
coverage. Alternatively, one can use the distribu-
tional approach to similarity based on a very 
large corpus. Lin and Pantel (2002) report efforts 
to build a large repository of dependencies ex-
tracted from large corpora such as Wikipedia, 
and provide similarity between words 
(demo.patrickpantel.com). We use these results 
both for handling synonym queries and to or-
ganize the n-grams into semantic classes.  

More recently, Ritter and Etzioni (2010) pro-
pose to apply an LDA model (Blei et al. 2003) to 
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the problem of inducing selectional preference. 
The idea is to consider the verbs in a corpus as 
the documents of a traditional LDA model. The 
arguments of the verb that are encountered in the 
corpus are treated as the words composing a 
document in the traditional model. The model 
seems to successfully infer the semantic classes 
that correspond to the preferred arguments of a 
verb. The topics are semi-automatically labeled 
with WordNet classes to produce a repository of 
human interpretable class-based selectional pref-
erence. This choice might be due to the fact that 
if most LDA topic heads are usually reasonable 
upon human inspection, some topics are also in-
coherent (Newman 2010) and lower frequency 
words are not handled as successfully. We con-
trol the coherence of the topics and rearrange 
them into human interpretable clusters using a 
distributional similarity measure.  

Microsoft Sempute Project (Sempute Team 
2013) also explores core technologies and appli-
cations of semantic computing. As part of 
Sempute project, NeedleSeek is aimed at auto-
matically extracting data to support general se-
mantic Web searches. While Linggle focuses on 
n-gram information for language learning, 
NeedleSeek also uses LDA to support question 
answering (e.g., What were the Capitals of an-
cient China?) . 

In contrast to the previous research in Web 
scale linguistic search engines, we present a sys-
tem that supports queries with keywords, wild-
card words, POS, synonyms, and additional 
regular expression (RE) operators and displays 
the results according the count, similarity, and 
topic with clusters of synonyms or conceptually 
related words. We exploit and combine the 
power of both LDA analysis and distributional 
similarity to provide meaningful semantic classes 
that are constrained with members of high simi-
larity. Distributional similarity (Lin 1998) and 
LDA topics become two angles of attack to view 
language usage and corpus patterns. 

3 Linggle Functionalities 

The syntax of Linggle queries involves basic 
regular expression of keywords enriched with 
wildcard PoS and synonyms. Linggle queries can 
be either pattern-based commands or natural lan-
guage questions. The natural language queries 
are currently handled by simple string matching 
based on a limited set of questions and command 
pairs provided by a native speaker informant.  

3.1 Natural language queries 

The handling of queries formulated in natural 
language has been implemented with handcrafted 
patterns refined from a corpus of questions found 
on various websites. Additionally, we asked both 
native and non-native speakers to use the system 
for text edition and to write down all the ques-
tions that arise during the exercise.  

Linggle transforms a question into commands 
for further processing based on a set of canned 
texts (e.g., “How to describe a beach?” will be 
converted to “$A beach”). We are in the process 
of gathering more examples of language-related 
question and answer pairs from Answers.com to 
improve the precision, versatility, and coverage. 

3.2 Syntax of queries 

The syntax of the patterns for n-grams is shown 
in Table 1. The syntax supports two types of que-
ry functions: basic keyword search with regular 
expression capability and semantic search.  

Basic search operators enable the users to que-
ry zero, one or more arbitrary words up to five 
words. For example, the query “set off … $N” is 
intended to search for all nouns in the right con-
text of set off, within a maximum distance of 
three words.  

In addition, the “?” operator in front of a word 
represents a search for n-grams with or without 
the word. For example, a user wanting to deter-
mine whether to use the word to between listen 
and music can formulate the query “listen ?to 
music.” 

Yet another operation “|” is provided to search 
for information related to word choice. For ex-
ample the query “build | construct ... dream” can 
be used to reveal that people build a dream much 
more often than they construct a dream. 

A set of PoS symbols (shown in Table 2) is 
defined to support queries that need more preci-
sion than the symbol *. More work might be 
needed to resolve PoS ambiguity for n-grams. 
Currently, any word that has been labeled with 
the requested PoS in the BNC more than 5% of 
the time is displayed.  

The “+” operator is provided to support se-
mantic queries. Placed in front of a word, it is 
intended to search for synonyms in the context. 
For example the query “+sandy beach” would 
generate rocky beach, stony beach, barren beach 
in the top three results. The query “+abandoned 
beach” generates deserted, destroyed and empty 
beach at the top of the list. To support conceptual 
clustering of collocational n-grams, we need to 
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identify synonyms related to different senses of a 
given word. Table 3 shows an example of the 
result obtained for the ambiguous word bank as a 
unigram query. We can see the two main senses 
of the word (river bank and institution) as clus-
ters. 

 
Operators  Description 

* Any Word 
? With/without the word 

… Zero or more words 
| Alternator 
$ Part of speech 
+ Synonyms 

Table 1: Operators in the Linggle queries  
 

Part of speech  Description 
N Noun 
V Verb 
A Adjective 
R Adverb 
PP Preposition 
NP Proper Noun 
PR Pronoun 
D Determiner 

Table 2: Part-of-speech in the Linggle queries  
 
A cluster button on the interface activates or 

cancels conceptual clustering. When Linggle is 
switched into a cluster display mode, adjective-
nouns, verb-objects and subject-verb relations 
can be browsed based on the induced conceptual 
clusters (see Figure 1). 

The New York Times Example Base 

In order to display complete sentence examples 
for users, the New York Times Corpus sentences 
are indexed by word. When the user searches for 
words in a specific syntactic relation, morpho-
logical query expansion is performed and pat-
terns are used to increase both the coverage and 
the precision of the provided examples. For ex-
ample, the bi-gram kill bacteria will be associat-
ed with the example sentence “The bacteria are 
killed by high temperatures.”. 

3.3 Semantic Clusters 

Two types of semantic clusters are provided in 
Linggle: selectional preference and clusters of 
synonyms. Selectional preference expresses for 
example that an apple is more likely to be eaten 
or cooked than to be killed or hanged. Different 
classes of arguments for a predicate (or of predi-
cates for an argument) can be found automatical-
ly. The favorite class of objects for the verb drink 

is LIQUID with the noun water ranked at the top. 
Less frequent objects belonging to the same class 
include liquor in the tail of the list. We aim at 
grouping arguments and predicates into semantic 
clusters for better readability. 

 
valley mountain river lake hill bay plain north ridge 
coast city district town area community municipality 
country village land region 

route highway road railway bridge crossing canal 
railroad junction 

stream creek tributary 
 
organization business institution company industry 
organisation agency school department university 
government court board 
channel network affiliate outlet 

supplier manufacturer distributor vendor retailer in-
vestor broker provider lender owner creditor share-
holder customer employer 
Table 3: First two level-one clusters of synonyms for 
the word “bank” 

We produce clusters with a two-layer structure. 
Level one represents loose topical relatedness 
roughly corresponding to broad domains, while 
level two is aimed at grouping together closely 
similar words. For example, among the objects 
of the verb cultivate, the nouns tie and contact 
belong to the same level-two cluster. Attitude and 
spirit belong to another level-two cluster but 
both pairs are in the same level-one cluster. The 
nouns fruit and vegetable are clustered together 
in another level-one cluster. This double-layer 
representation is a solution to express at once 
close synonymy and topic relatedness. The clus-
ters of symonyms displayed in Table 3 follow the 
same representation. 

4 Implementation of the system 

In this section, we describe the implementation 
of Linggle, including how to index and store n-
grams for a fast access (Section 4.1) and 
construction of the LDA models (Section 4.2). 
We will describe the clustering method in more 
details in section 5.  

4.1 N-grams preprocessing 

The n-grams are first filtered keeping only the 
words that are in WordNet and in the British Na-
tional Corpus, and then indexed by word and 
position in the n-gram, in a way similar to the 
rotated n-gram approach proposed by Lin et. al. 
(2010). The files are then stored in an Apache 
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HBase NoSQL base. The major advantages of 
using a NoSQL database is the excellent perfor-
mance in querying the ability of storing large 
amounts of data across several servers and the 
capability to scale up when we have additional 
entries in the dataset, or additional datasets to 
add to the system. 

4.2 LDA models computations 

Two types of LDA models are calculated for 
Linggle. The first type is a selectional preference 
model between heads and modifiers. Six models 
are calculated in total for the subject-verb, the 
verb-object and the adjective-noun relations done 
in a similar way to Ritter and Etzioni’s (2010) 
model with binary relations instead of triples. 
The second is a word/synonyms model in which 
a word is considered as a document in LDA and 
its synonyms as the words of the document. This 
second model has the effect of splitting the syno-
nyms of a word into different topics, as shown in 
Table 3. 

 
Seeds                                             parameter: s1 
1. Consider the m first topics for a verb v ac-

cording to the LDA per document-topic dis-
tribution (𝜃) 

2. Consider S = o1,…,on, a set of n objects of v.  
3. Split S into m classes C1,..,Cm according to 

their LDA per topic-word probability: oi  is 
assigned to the topic in which it has the 
highest probability. 

4. For each class Ci, move every object oj that 
is not similar to any other ok of Ci , according 
to a similarity threshold s1 into a new created 
class. 

Level 2                                           parameter: s2 
 While (Argmaxci ,cj Sim( ci , cj ) > s2): 
           Merge Argmaxci ,cj Sim( ci , cj ) into one 
class. 
Level 1                                           parameter: s3 
 While (Argmaxci ,cj Sim(ci , cj ) > s3): 
           Group Argmaxci ,cj Sim( ci ,cj ) under the  
           same level 1 cluster. 

Table 4:  Clustering Algorithm for the object of a giv-
en verb 

 
The hyperparameters alpha, eta, that affect 

the sparsity of the document-topic (theta) and the 
topic-word (lambda) distributions are both set to 
0.5 and the number of topics is set to 300. More 
research would be necessary to optimize the val-
ue for the parameters in the perspective of the 
clustering algorithm, as quickly discussed in the 
next section. 

 

 
Sim (ci, cj): 

1. Build the Cartesian product C = ci × cj 
2. Get P the set of the similarity between all word pairs 

in C 
3. Return Sim(ci,cj) the mean of the scores in P 
 
Table 5:  Similarity between two classes ti and tj 

5 Clustering algorithm 

The clustering algorithm combines topic model-
ing results and a semantic similarity measure. 
We use Pantel’s dependencies repository to 
compute LDA models for subject-verbs, verbs-
objects and adjective-nouns relations in both di-
rections. Currently, we also use Pantel’s similari-
ty measure. It has a reasonable precision partly 
because it relies on parser information instead of 
bag of words windows. However the coverage of 
the available scores is lower than what would be 
needed for Linggle. We will address this issue in 
the near future by extending it with similarity 
scores computed from the n-grams. 

We combine the two distributional semantics 
approaches in a simple manner inspired by clus-
tering by committee algorithm  (CBC). The simi-
larity measure is used to refine the LDA topics 
and to generate finer grain clusters. Conversely, 
LDA topics can also be seen as the seeds of our 
clustering algorithm. 

This algorithm intends to constrain the words 
that belong to a final cluster more strictly than 
LDA does in order to obtain clearly interpretable 
clusters. The exact same algorithm is applied to 
synonym models, for synonyms of nouns, adjec-
tives and verbs (shown in Table 3). 

Table 4 shows the algorithm for constructing 
double layer clusters for a set S of objects of a 
verb v. The objects are first roughly split into 
classes, attributing a single topic to every object 
oi. The topic of a word oi is determined accord-
ing to its per topic-word probability. More exper-
iments could be done using the product of the per 
document-topic and the per topic-word LDA 
probabilities instead, in order to take into account 
the specific verb when assigning a topic to the 
object. Such a way of assigning topics should 
also be more sensitive to the LDA hyperparame-
ters.  

At this stage, some classes are incoherent and 
that low frequency words that do not appear in 
the head of any topic are often misclassified. 
Words are rearranged between the classes and 
create new classes if necessary using the simi-
larity measure. If any word of a class is not simi-
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lar to any other word in this class (the threshold 
is set to s1 = 0.09), a new class is created for it. 

Any two classes are then merged if their simi-
larity (computer accordingly to Table 5) is above 
s2=0.06, forming the level 2 clusters. Classes are 
then grouped together if the similarity between 
them is above s3 = 0.02 forming the level 1 clus-
ters. 

Finally, the classes that contain less than three 
words are not displayed in Linggle and the predi-
cate-arguments counts in the Web 1T are re-
trieved using a few hand crafted RE and morpho-
logical expansion of the nouns and the verbs. 

 This algorithm appears to generate interpreta-
ble semantic classes and to be quite robust re-
garding the threshold parameters. More tests and 
rigorous evaluation are left to future work.   

6 Conclusion 

There are many different directions in which 
Linggle will be improved. The first one is to al-
low users to work with word forms and with 
multiword expressions. The second one concerns 
the extension of the coverage of the example 
base with several large corpora such as Wikipe-
dia and the extension of the coverage of the simi-
larity measure. The third direction concerns the 
development of automatic suggestions for text 
edition, such as suggesting a better adjective or a 
different preposition in the context of a sentence. 
Finally, Linggle is currently being extended to 
Chinese. 

We presented a prototype that gives access 
to Web Scale collocations. Linggle displays both 
word usage and word similarity information. 
Depending on the type of the input query, the 
results are displayed under the form of lists or 
clusters of n-grams. The system is designed to 
become a multilingual platform for text edition 
and can also become a valuable resource for 
natural language processing research. 
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Abstract
Pivoting on bilingual parallel corpora is a
popular approach for paraphrase acquisi-
tion. Although such pivoted paraphrase
collections have been successfully used to
improve the performance of several dif-
ferent NLP applications, it is still difficult
to get an intrinsic estimate of the qual-
ity and coverage of the paraphrases con-
tained in these collections. We present
ParaQuery, a tool that helps a user inter-
actively explore and characterize a given
pivoted paraphrase collection, analyze its
utility for a particular domain, and com-
pare it to other popular lexical similarity
resources – all within a single interface.

1 Introduction

Paraphrases are widely used in many Natural Lan-
guage Processing (NLP) tasks, such as informa-
tion retrieval, question answering, recognizing
textual entailment, text simplification etc. For ex-
ample, a question answering system facing a ques-
tion “Who invented bifocals and lightning rods?”
could retrieve the correct answer from the text
“Benjamin Franklin invented strike termination
devices and bifocal reading glasses” given the in-
formation that “bifocal reading glasses” is a para-
phrase of “bifocals” and “strike termination de-
vices” is a paraphrase of “lightning rods”.

There are numerous approaches for automati-
cally extracting paraphrases from text (Madnani
and Dorr, 2010). We focus on generating para-
phrases by pivoting on bilingual parallel corpora
as originally suggested by Bannard and Callison-
Burch (2005). This technique operates by attempt-
ing to infer semantic equivalence between phrases
in the same language by using a second language
as a bridge. It builds on one of the initial steps used
to train a phrase-based statistical machine transla-
tion system. Such systems rely on phrase tables –

a tabulation of correspondences between phrases
in the source language and phrases in the target
language. These tables are usually extracted by in-
ducing word alignments between sentence pairs in
a parallel training corpus and then incrementally
building longer phrasal correspondences from in-
dividual words and shorter phrases. Once such a
tabulation of bilingual correspondences is avail-
able, correspondences between phrases in one lan-
guage may be inferred simply by using the phrases
in the other language as pivots, e.g., if both “man”
and “person” correspond to “personne” in French,
then they can be considered paraphrases. Each
paraphrase pair (rule) in a pivoted paraphrase col-
lection is defined by a source phrase e1, the target
phrase e2 that has been inferred as its paraphrase,
and a probability score p(e2|e1) obtained from the
probability values in the bilingual phrase table.1

Pivoted paraphrase collections have been suc-
cessfully used in different NLP tasks including
automated document summarization (Zhou et al.,
2006), question answering (Riezler et al., 2007),
and machine translation (Madnani, 2010). Yet, it
is still difficult to get an estimate of the intrinsic
quality and coverage of the paraphrases contained
in these collections. To remedy this, we propose
ParaQuery – a tool that can help explore and ana-
lyze pivoted paraphrase collections.

2 ParaQuery

In this section we first briefly describe how to set
up ParaQuery (§2.1) and then demonstrate its use
in detail for interactively exploring and character-
izing a paraphrase collection, analyzing its util-
ity for a particular domain, and comparing it with
other word-similarity resources (§2.2). Detailed
documentation will be included in the tool.

1There may be other values associated with each pair, but
we ignore them for the purposes of this paper.
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2.1 Setting up
ParaQuery operates on pivoted paraphrase collec-
tions and can accept collections generated using
any set of tools that are preferred by the user, as
long as the collection is stored in a pre-defined
plain-text format containing the source and target
phrases, the probability values, as well as informa-
tion on pivots (optional but useful for pivot-driven
analysis, as shown later). This format is com-
monly used in the machine translation and para-
phrase generation community. In this paper, we
adapt the Thrax and Joshua (Ganitkevitch et al.,
2012) toolkits to generate a pivoted paraphrase
collection using the English-French EuroParl par-
allel corpus, which we use as our example col-
lection for demonstrating ParaQuery. Once a piv-
oted collection is generated, ParaQuery needs to
convert it into an SQLite database against which
queries can be run. This is done by issuing the
index command at the ParaQuery command-line
interface (described in §2.2.1).

2.2 Exploration and Analysis
In order to provide meaningful exploration and
analysis, we studied various scenarios in which
paraphrase collections are used, and found that the
following issues typically interest the developers
and users of such collections:

1. Semantic relations between the paraphrases
in the collection (e.g. synonymy, hyponymy)
and their frequency.

2. The frequency of inaccurate paraphrases,
possible ways of de-noising the collection,
and the meaningfulness of scores (better
paraphrases should be scored higher).

3. The utility of the collection for a specific do-
main, i.e. whether domain terms of interest
are present in the collection.

4. Comparison of different collections based on
the above dimensions.

We note that paraphrase collections are used in
many tasks with different acceptability thresholds
for semantic relations, noisy paraphrases etc. We
do not intend to provide an exhaustive judgment
of paraphrase quality, but instead allow users to
characterize a collection, enabling an analysis of
the aforesaid issues and providing information for
them to decide whether a given collection is suit-
able for their specific task and/or domain.

2.2.1 Command line interface
ParaQuery allows interactive exploration and
analysis via a simple command line interface, by
processing user issued queries such as:

show <query>: display the rules which satisfy
the conditions of the given query.

show count <query>: display the number of
such rules.

explain <query>: display information about the
pivots which yielded each of these rules.

analyze <query>: display statistics about these
rules and save a report to an output file.

The following information is stored in the
SQLite database for each paraphrase rule:2

• The source and the target phrases, and the
probability score of the rule.

• Are the source and the target identical?

• Do the source and the target have the same
part of speech?3

• Length of the source and the target, and the
difference in their lengths.

• Number of pivots and the list of pivots.

• Are both the source and the target found in
WordNet (WN)? If yes, the WN relation be-
tween them (synonym, derivation, hypernym,
hyponym, co-hyponym, antonym, meronym,
holonym, pertainym) or the minimal dis-
tance, if they are not connected directly.

Therefore, all of the above can be used, alone or
in combination, to constrain the queries and de-
fine the rule(s) of interest. Figure 1 presents sim-
ple queries processed by the show command: the
first query displays top-scoring rules with “man”
as their source phrase, while the second adds re-
striction on the rules’ score. By default, the tool
displays the 10 best-scoring rules per query, but
this limit can be changed as shown. For each
rule, the corresponding score and semantic rela-
tion/distance is displayed.

2Although some of this information is available in the
paraphrase collection that was indexed, the remaining is auto-
matically computed and injected into the database during the
indexing process. Indexing the French-pivoted paraphrase
collection (containing 3,633,015 paraphrase rules) used in
this paper took about 6 hours.

3We use the simple parts of speech provided by WordNet
(nouns, verbs, adjectives and adverbs).
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The queries provide a flexible way to define and
work with the rule set of interest, starting from fil-
tering low-scoring rules till extracting specific se-
mantic relations or constraining on the number of
pivots. Figure 2 presents additional examples of
queries. The tool also enables filtering out target
terms with a recurrent lemma, as illustrated in the
same figure. Note that ParaQuery also contains a
batch mode (in addition to the interactive mode il-
lustrated so far) to automatically extract the output
for a set of queries contained in a batch script.

Figure 1: Examples of the show command and the
probability constraint.

2.2.2 Analyzing pivot information
It is well known that pivoted paraphrase collec-
tions contain a lot of noisy rules. To understand
the origins of such rules, an explain query can be
used, which displays the pivots that yielded each
paraphrase rule, and the probability share of each
pivot in the final probability score. Figure 3 shows
an example of this command.

We see that noisy rules can originate from stop-
word pivots, e.g. “l”. It is common to filter rules
containing stop-words, yet perhaps it is also im-
portant to exclude stop-word pivots, which was
never considered in the past. We can use Para-
Query to further explore whether discarding stop-
word pivots is a good idea. Figure 4 presents
a more complex query showing paraphrase rules
that were extracted via a single pivot “l”. We see
that the top 5 such rules are indeed noisy, indicat-
ing that perhaps all of the 5,360 rules satisfying
the query can be filtered out.

2.2.3 Analysis of rule sets
In order to provide an overall analysis of a rule set
or a complete collection, ParaQuery includes the

Figure 2: Restricting the output of the show com-
mand using WordNet relations and distance, and
the unique lemma constraint.

Figure 3: An example of the explain command.

analyze command. Figure 5 shows the typical in-
formation provided by this command. In addition,
a report is generated to a file, including the anal-
ysis information for the whole rule set and for its
three parts: top, middle and bottom, as defined by
the scores of the rules in the set. The output to the
file is more detailed and expands on the informa-
tion presented in Figure 5. For example, it also
includes, for each part, rule samples and score dis-
tributions for each semantic relation and different
WordNet distances.

The information contained in the report can be
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Figure 4: Exploring French stop-word pivots using the pivots condition of the show command.

Figure 5: An example of the analyze command (full output not shown for space reasons).
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TOP BOTTOM
finest ⇒ better approach ⇒ el

outdoors ⇒ external effect ⇒ parliament

unsettled ⇒ unstable comment ⇒ speak up

intelligentsia ⇒ intelligence propose ⇒ allotted

caretaker ⇒ provisional prevent ⇒ aimed

luckily ⇒ happily energy ⇒ subject matter

Table 1: A random sample of undefined relation
rules from our collection’s top and bottom parts.

easily used for generating graphs and tables. For
example, Figure 6 shows the distribution of se-
mantic relations in the three parts of our exam-
ple paraphrase collection. The figure character-
izes the collection in terms of semantic relations
it contains and illustrates the fact that the scores
agree with their desired behavior: (1) the collec-
tion’s top-scoring part contains significantly more
synonyms than its middle and bottom parts, (2)
similar trends hold for derivations and hypernyms,
which are more suitable for paraphrasing than co-
hyponyms and other relations not defined in Word-
Net (we refer to these relations as undefined rela-
tions), (3) such undefined relations have the high-
est frequency in the collection’s bottom part, and
are least frequent in its top part. Among other
conclusions, the figure shows, that discarding the
lower-scoring middle and bottom parts of the col-
lection would allow retaining almost all the syn-
onyms and derivations, while filtering out most of
the co-hyponyms and a considerable number of
undefined relations.

Yet from Figure 6 we see that undefined rela-
tions constitute the majority of the rules in the col-
lection. To better understand this, random rule
samples provided in the analysis output can be
used, as shown in Table 1. From this table, we see
that the top-part rules are indeed mostly valid for
paraphrasing, unlike the noisy bottom-part rules.
The score distributions reported as part of the anal-
ysis can be used to further explore the collec-
tion and set sound thresholds suitable for different
tasks and needs.

2.2.4 Analysis of domain utility
One of the frequent questions of interest is
whether a given collection is suitable for a specific
domain. To answer this question, ParaQuery al-
lows the user to run the analysis from §2.2.3 over
rules whose source phrases belong to a specific
domain, by means of the analyze <query> us-

ing <file> command. The file can hold either a
list of domain terms or a representative domain
text, from which frequent terms and term collo-
cations will be automatically extracted, presented
to the user, and utilized for analysis. The analysis
includes the coverage of the domain terms in the
paraphrase collection, and can also be restricted to
top-K rules per source term, a common practice in
many NLP applications. We do not show an exam-
ple of this command due to space considerations.

2.2.5 Comparison with other collections
The output of the analyze command can also be
used to compare different collections, either in
general or for a given domain. Although Para-
Query is designed for pivoted paraphrase collec-
tions, it allows comparing them to non-pivoted
paraphrase collections as well. Next we present an
example of such a comparative study, performed
using ParaQuery via several analyze commands.

Table 2 compares three different collections:
the French pivoted paraphrase collection, a dis-
tributional similarity resource (Kotlerman et al.,
2010) and a Wikipedia-based resource (Shnarch et
al., 2009). The table shows the collection sizes,
as well as the number of different (unique) source
phrases in them and, correspondingly, the average
number of target phrases per source. From the
table we can see that the distributional similarity
resource contains a lot of general language terms
found in WordNet, while the Wikipedia resource
includes only a small amount of such terms. A
sample of rules from the Wikipedia collection ex-
plains this behavior, e.g. ‘Yamaha SR500 ⇒ mo-
torcycle’. The table provides helpful information
to decide which collection is (more) suitable for
specific tasks, such as paraphrase recognition and
generation, query expansion, automatic generation
of training data for different supervised tasks, etc.

3 Conclusions and Future Work

We presented ParaQuery—a tool for interactive
exploration and analysis of pivoted paraphrase
collections—and showed that it can be used to
estimate the intrinsic quality and coverage of the
paraphrases contained in these collections, a task
that is still somewhat difficult. ParaQuery can also
be used to answer the questions that users of such
collections are most interested in. We plan to re-
lease ParaQuery under an open-source license, in-
cluding our code for generating paraphrase col-
lections that can then be indexed and analyzed by
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Figure 6: Distribution of semantic relations in the top, middle and bottom parts of the example collection.
The parts are defined by binning the scores of the rules in the collection.

Collection Size (rules) In WordNet Unique Src Avg. Tgts per Src davg for UR
Pivoted (FR) 3,633,015 757,994 (21%) 188,898 16.064 2.567
Dist.Sim. 7,298,321 3,252,967 (45%) 113,444 64.334 6.043
Wikipedia 7,880,962 295,161 (4%) 2,727,362 2.890 8.556

Table 2: Comparing the French-pivoted paraphrase collection to distributional-similarity based and
Wikipedia-based similarity collections, in terms of total size, percentage of rules in WordNet, number
of unique source phrases, average number of target phrases per source phrase, and the average WordNet
distance between the two sides of the undefined relation (UR) rules.

ParaQuery. We also plan to include pre-generated
paraphrase collections in the release so that users
of ParaQuery can use it immediately.

In the future, we plan to use this tool for analyz-
ing the nature of pivoted paraphrases. The quality
and coverage of these paraphrases is known to de-
pend on several factors, including (a) the genre of
the bilingual corpus, (b) the word-alignment algo-
rithm used during bilingual training, and (c) the
pivot language itself. However, there have been
no explicit studies designed to measure such vari-
ations. We believe that ParaQuery is perfectly
suited to conducting such studies and moving the
field of automated paraphrase generation forward.
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Abstract

This paper describes a system for navigat-
ing large collections of information about
cultural heritage which is applied to Eu-
ropeana, the European Library. Euro-
peana contains over 20 million artefacts
with meta-data in a wide range of Euro-
pean languages. The system currently pro-
vides access to Europeana content with
meta-data in English and Spanish. The pa-
per describes how Natural Language Pro-
cessing is used to enrich and organise this
meta-data to assist navigation through Eu-
ropeana and shows how this information is
used within the system.

1 Introduction

Significant amounts of information about cultural
heritage has been digitised in recent years and is
now easily available through online portals. How-
ever, this vast amount of material can also be over-
whelming for many users since they are provided
with little or no guidance on how to find and inter-
pret this information. Potentially useful and rel-
evant content is hidden from the users who are
typically offered simple keyword-based searching
functionality as the entry point into a cultural her-
itage collection. The situation is very different
within traditional mechanisms for viewing cultural
heritage (e.g. museums) where artefacts are or-
ganised thematically and users guided through the
collection.

This paper describes a system that allows users
to explore large cultural heritage collections. Nav-
igation is based around the metaphor of pathways
(or trails) through the collection, an approach that
has been widely explored as an alternative to stan-
dard keyword-based search (Furuta et al., 1997;
Reich et al., 1999; Shipman et al., 2000; White and
Huang, 2010). Pathways are sets of artefacts or-

ganised around a theme which form access points
to the collection.

Pathways are a useful way to access informa-
tion about cultural heritage. Users accessing these
collections are often unfamiliar with their content,
making keyword-based search unsuitable since
they are unable to formulate appropriate queries
(Wilson et al., 2010). Non-keyword-based search
interfaces have been shown to be suitable for ex-
ploratory search (Marchionini, 2006). Pathways
support this exploration by echoing the organised
galleries and guided tours found in museums.

2 Related Work

Heitzman et al. (1997) describe the ILEX system
which acts as a guide through the jewellery col-
lection of the National Museum of Scotland. The
user explores the collection through a set of web
pages which provide descriptions of each artefact
that are personalised for each user. The system
makes use of information about the artefacts the
user has viewed to build up a model of their in-
terests and uses this to customise the descriptions
of each artefact and provide recommendations for
further artefacts in which they may be interested.

Grieser et al. (2007) also explore providing rec-
ommendations based on the artefacts a user has
viewed so far. They make use of a range of tech-
niques including language modelling, geospatial
modelling and analysis of previous visitors’ be-
haviour to provide recommendations to visitors to
the Melbourne Museum.

Grieser et al. (2011) explore methods for de-
termining the similarity between museum arte-
facts, commenting that this is useful for navigation
through these collections and important for per-
sonalisation (Bowen and Filippini-Fantoni, 2004;
O’Donnell et al., 2001), recommendation (Bohn-
ert et al., 2009; Trant, 2009) and automatic tour
generation (Finkelstein et al., 2002; Roes et al.,
2009). They also use exhibits from Melbourne
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Museum and apply a range of approaches to deter-
mine the similarity between them, including com-
paring descriptions and measuring physical dis-
tance between them in the museum.

These approaches, like many of the systems
that have been developed for online access to cul-
tural heritage (e.g. (Hage et al., 2010)), are based
around virtual access to a concrete physical space
(i.e. a museum). They often provide tours which
are constrained by the physical layout of the mu-
seum, such as virtual museum visits. However,
these approaches are less suitable for unstructured
collections such as databases of cultural heritage
artefacts collected from multiple institutions or
artefacts not connected with existing physical pre-
sentation (e.g. in a museum). The PATHS sys-
tem is designed for these types of collections and
makes use of natural language analysis to sup-
port navigation. In particular, similarity between
artefacts is computed automatically (see Section
4.1), background information automatically added
to artefact descriptions (see Section 4.2) and a hi-
erarchy of artefacts generated (see Section 4.3).

3 Cultural Heritage Data

The PATHS system has been applied to data from
Europeana1. This is a web-portal to collections
of cultural heritage artefacts provided by a wide
range of European institutions. Europeana cur-
rently provides access to over 20 million artefacts
including paintings, films, books, archival records
and museum objects. The artefacts are provided
by around 1,500 institutions which range from
major institutions, including the Rijksmuseum in
Amsterdam, the British Library and the Louvre,
to smaller organisations such as local museums.
It therefore contains an aggregation of digital con-
tent from several sources and is not connected with
any one physical museum.

The PATHS system makes use of three collec-
tions from Europeana. The first of these con-
tains artefacts from content providers in the United
Kingdom which has meta-data in English. The
artefacts in the remaining two collections come
from institutions in Spain and have meta-data in
Spanish.

CultureGrid Culture Grid2 is a digital content
provider service from the Collection Trust3.

1http://www.europeana.eu
2http://www.culturegrid.org.uk
3http://www.collectionstrust.org.uk

It contains information about over one mil-
lion artefacts from 40 different UK content
providers such as national and regional mu-
seums and libraries.

Cervantes Biblioteca Virtual Miguel De Cer-
vantes4 contains digitalised Spanish text in
various formats. In total, the online library
contains about 75,000 works from a range of
periods in Spanish history.

Hispana The Biblioteca Nacional de España5

contains information about a diverse set of
content including text and drawings. The ma-
terial is collected from different providers in
Spain including museums and libraries.

Europeana stores metadata for each artefact in
an XML-based format which includes information
such as its title, the digital format, the collection,
the year of creation and also a short description of
each artefact. However, this meta-data is created
by the content providers and varies significantly
across artefacts. Many of the artefacts have only
limited information associated with them, for ex-
ample a single word title. In addition, the content
providers that contribute to Europeana use differ-
ent hierarchical structures to organise their collec-
tions (e.g. Library of Congress Subject Headings6

and the Art and Architecture Thesaurus7), or do
not organise their content into any structure. Con-
sequently the various hierarchies that are used in
Europeana only cover some of the artefacts and
are not compatible with each other.

3.1 Filtering Data

Analysis of the artefacts in these three collections
revealed that many have short and uninformative
titles or lack a description. This forms a challenge
to language processing techniques since the arte-
fact’s meta-data does not contain enough informa-
tion to model it accurately.

The collections were filtered by removing any
artefacts that have no description and have either
fewer than four words in their title or have a title
that is repeated more than 100 times in the col-
lection. Table 1 shows the number of artefacts
in each of the Europeana collections before and

4http://www.cervantesvirtual.com
5http://www.bne.es
6http://authorities.loc.gov/
7http://www.getty.edu/research/tools/

vocabularies/aat/
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after this filter has been applied. Applying the
heuristic leads to the removal of around 31% of the
artefacts, although the number varies significantly
across the collections with 61% of the artefacts in
CultureGrid being removed and only 1% of those
in Hispana.

Collection Lang. Total Filtered
CultureGrid Eng. 1,207,781 466,958

Hispana Sp. 1,235,133 1,219,731
Cervantes Sp. 19,278 14,983

2,462,192 1,701,672

Table 1: Number of artefacts in Europeana collec-
tions before and after filtering

4 Data Processing

A range of pre-preprocessing steps were carried
out on these collections to provide additional in-
formation to support navigation in the PATHS sys-
tem.

4.1 Artefact Similarity
We begin by computing the similarity between
the various artefacts in the Europeana collections.
This information is useful for navigation and rec-
ommendation but is not available in the Europeana
collections since they are drawn from a diverse
range of sources.

Similarity is computed using an approach de-
scribed by Aletras et al. (2012). in which the top-
ics generated from each artefact’s metadata using
a topic model are compared. Latent Dirichlet Al-
location (LDA) (Blei et al., 2003) is a widely used
type of topic model in which documents can be
viewed as probability distributions over topics, θ.
The similarity between a pair of documents can be
estimated by comparing their topic distributions.
This is achieved by viewing each distribution as
a vector of probabilities and then computing the
cosine of the angle between them:

sim(a, b) =
~θa.~θb

|~θa| × | ~θb|
(1)

where ~θa is the vector created from the probability
distribution generated by LDA for document a.

This approach is evaluated using a set of 295
pairs of artefacts for which human judgements
of similarity were obtained using crowdsourcing
(Aletras et al., 2012). Pearson correlation between
the similarity scores and human judgements was
0.53.

The similarity between all the artefacts in the
collection is computed in a pairwise fashion. The
25 artefacts with the highest score are retained for
each artefact.

4.2 Background Links
The metadata associated with Europeana artefacts
is often very limited. Consequently links to rele-
vant articles in Wikipedia were added to each the
meta-data of each artefact using Wikipedia Miner
(Milne and Witten, 2008) to provide background
information. In addition to the link, Wikipedia
Miner returns a confidence value between 0 and
1 for each link based on the context of the item.

The accuracy of the links added by Wikipedia
Miner were evaluated using the meta-data associ-
ated with 21 randomly selected artefacts. Three
annotators analysed the links added and found that
a confidence value of 0.5 represented a good bal-
ance between accuracy and coverage. See Fer-
nando and Stevenson (2012) for further details.

4.3 Hierarchies
The range of hierarchies used by the various col-
lections that comprise the Europeana collection
make navigation difficult (see Section 3). Con-
sequently, the Wikipedia links added to the arte-
fact meta-data were used to automatically gener-
ate hierarchies that the cover the entire collection.
These hierarchies are used by the PATHS system
to assist browsing and exploration.

Two approaches are used to generate hierarchies
of Europeana artefacts (WikiFreq and WikiTax).
These are combined to generate the WikiMerge hi-
erarchy which is used in the PATHS system.

WikiFreq uses link frequencies across the en-
tire collection to organise the artefacts. The first
stage in the hierarchy generation process is to
compute the frequency with which each linked
Wikipedia article appears in the collection. The
links in each artefact are these analysed to con-
struct a hierarchy consisting of Wikipedia articles.
The links in the meta-data associated with each
artefact are ordered based on their frequency in the
entire collection and that set of links then inserted
into the hierarchy. For example, if the set of or-
dered links for an artefact is a1, a2, a3 · · · an then
the artefact is then inserted into the hierarchy un-
der the branch a1 → a2 → a3 · · · → an, with
a1 at the top level in the tree and the artefact ap-
pearing under the node an. If this branch does not
already exist in the tree then it is created.
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The hierarchy is pruned to removing nodes with
fewer than 20 artefacts in them. In addition, if a
node has more than 20 child nodes, only the 20
most frequent are used.

WikiTax uses the Wikipedia Taxonomy
(Ponzetto and Strube, 2011), a taxonomy derived
from Wikipedia categories. Europeana artefacts
are inserted into this taxonomy using the links
added by Wikipedia Miner with each artefact
being added to the taxonomy for all categories
listed in the links. This leads to a taxonomy in
which artefacts can occur in multiple locations.

Each approach was used to generate hierarchies
from the Europeana collections. The resulting hi-
erarchies were evaluated via online surveys, see
Fernando et al. (2012) for further details. It was
found that WikiFreq performed well at placing
items into the correct location in the taxonomy and
grouping together similar items under the same
node. However, the overall structure of WikiTax
was judged to be more coherent and comprehensi-
ble.

WikiMerge combines combines WikiFreq and
WikiTax. WikiFreq is used to link each artefact
to Wikipedia articles a1 . . . an, but only the link
to the most specific article, an, is retained. The
an articles are linked to their parent WikiTax top-
ics based on the Wikipedia categories the articles
belong to. The resulting hierarchy is pruned re-
moving all WikiTax topics that do not have a Wik-
iFreq child or have only one child topic. Finally
top-level topics in the combined hierarchy are then
linked to their respective Wikipedia root node.

The resulting WikiMerge hierarchy has Wik-
iFreq topics as its leaves and WikiTax topics as
its interior and root nodes. Experiments showed
that this approach was successful in combining
the strengths of the two methods (Fernando et al.,
2012).

5 The PATHS System

The PATHS system provides access to the Euro-
peana collections described in Section 3 by mak-
ing use of the additional information generated us-
ing the approaches described in Section 4. The in-
terface of the PATHS system has three main areas:

Paths enables users to navigate via pathways (see
Section 5.1).

Search supports discovery of both collection arte-
facts and pathways through keyword search
(see Section 5.2).

Explore enables users to explore the collections
using a variety of types of overview (see Sec-
tion 5.3).

5.1 Paths Area
This area provides users with access to Europeana
through pathways or trails. These are manually
generated sets of artefacts organised into a tree
structure which are designed to showcase the con-
tent available to the user in an organised way.
These can be created by users and can be pub-
lished for others to follow. An example path-
way on the topic “railways” is shown in Figure
1. A short description of the pathway’s content is
shown towards the top of the figure and a graphical
overview of its contents at the bottom.

Figure 1: Example pathway on the topic “rail-
ways”

Figure 2 shows as example artefact as displayed
in the system. The example artefact is a portrait
of Catherine the Great. The left side of the figure
shows information extracted directly from the Eu-
ropeana meta-data for this artefact. The title and
textual description are shown towards the top left
together with a thumbnail image of the artefact.
Other information from the meta-data is shown be-
neath the “About this item” heading. The right
side of the figure shows additional information

Figure 2: Example artefact displayed in system in-
terface. Related artefacts and background links are
displayed on right hand side
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Figure 3: Example visualisations of hierarchy: thesaurus view (top left), tag cloud (top right), map views
(bottom)

about the artefact generated using the approaches
described in Sections 4.1 and 4.2. Related arte-
facts are shown to the user one at a time, click-
ing on the thumbnail image leads to the equivalent
page for the related artefact. Below this are links
to the Wikipedia articles that are identified in the
text of the article’s title and description.

5.2 Search Area
This area allows users to search for artefacts and
pathways using standard keyword search imple-
mented using Lucene (McCandless et al., 2010).

5.3 Explore Area
The system provides a variety of ways to view
the hierarchies generated using the approach de-
scribed in Section 4.3. Figure 3 shows how these
are displayed for a section of the hierarchy with
the label “Society”. The simplest view (shown in
the top left of Figure 3) is a thesaurus type view
in which levels of the hierarchy are represented by
indentation. The system also allows levels of the
hierarchy to be viewed as a tag cloud (top right of
Figure 3). The final representation of the hierar-
chy is as a map, shown in the bottom of Figure 3.

In this visualisation categories in the hierarchy are
represented as “islands” on the map. Zooming in
on the map provides more detail about that area of
the hierarchy.

6 Summary and Future Developments

This paper describes a system for navigating Eu-
ropeana, an aggregation of collections of cultural
heritage artefacts. NLP analysis is used to organ-
ise the collection and provide additional informa-
tion. The results of this analysis are provided to
the user through an online interface which pro-
vides access to English and Spanish content in Eu-
ropeana.

Planned future development of this system in-
cludes providing recommendations and more per-
sonalised access. Similarity information (Sec-
tion 4.1) can be used to provide information from
which the recommendations can be made. Person-
alised access will make use of information about
individual users (e.g. from their browsing be-
haviour or information they provide about their
preferences) to generate individual views of Eu-
ropeana.
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Online Demo

The PATHS system is available at
http://explorer.paths-project.eu/
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Abstract
The use of deep syntactic information such
as typed dependencies has been shown
to be very effective in Information Ex-
traction. Despite this potential, the pro-
cess of manually creating rule-based in-
formation extractors that operate on de-
pendency trees is not intuitive for persons
without an extensive NLP background. In
this system demonstration, we present a
tool and a workflow designed to enable
initiate users to interactively explore the
effect and expressivity of creating Infor-
mation Extraction rules over dependency
trees. We introduce the proposed five step
workflow for creating information extrac-
tors, the graph query based rule language,
as well as the core features of the PROP-
MINER tool.

1 Introduction

Information Extraction (IE) is the task of gener-
ating structured information, often in the form of
subject-predicate-object relation triples, from un-
structured information such as natural language
text. Although there are well-established methods
for automatically training extractors from anno-
tated data (Mintz et al., 2009), recent years have
seen a renewed interest in manually created and
maintained rule-based IE systems (Doan et al.,
2009; Chiticariu et al., 2010). Advantages of such
systems include a better transparency and explain-
ability of extraction rules, and the resulting main-
tainability and customizability of rule sets.

Another trend in IE is to make increasing
use of deep syntactic information in extrac-
tors (Bunescu and Mooney, 2005), as dependency
parsers become faster and more robust on irregular
text (Bohnet, 2010).

Bringing both trends together are recent works
in the field of Open Information Extraction (OIE).

The systems KRAKEN (Akbik and Löser, 2012)
and CLAUSIE (Del Corro and Gemulla, ) use
a set of hand crafted rules on dependency trees
to outperform previous classification based ap-
proaches. The latter system outperforms even OL-
LIE (Mausam et al., 2012), the machine learning
based state-of-the art OIE system on dependency
parses. Not only does CLAUSIE report significant
precision gains over OLLIE, but also finds 2.5 to
3.5 times more relations.

These results indicate a strong potential for
manually creating rule-based Information Extrac-
tion systems using dependency trees. The higher
level syntactic representation, we argue, may even
facilitate rule writing, as - unlike in shallow lexico-
syntactic rules - much linguistic variation such
as inserted clauses and expressions must not be
specifically addressed. This enables the creation
of more succinct IE rules, leading to better ex-
plainability and easier maintenance.

However, despite these advantages, experience
has shown that deep syntactic information is diffi-
cult to read and understand for non NLP-experts.

In this system demonstration, we propose a
workflow designed to tap into this potential, and
present the PROPMINER tool that allows users to
execute this workflow. It is specifically designed
to help persons familiarize themselves with de-
pendency trees and enable exploration and extrac-
tion of relations from parsed document collec-
tions. Core features of PROPMINER are:

Rule generation and modification. Initiate
users are guided by a workflow in which they first
enter and annotate an archetypical sentence with
the desired relation. A rule generation process
then pre-generates an overspecified rule that users
modify along lines suggested by the tool. Our pre-
liminary experiments show that this workflow of
generating and modifying rules eases the learn-
ing curve for non NLP-experts to concepts such
as part-of-speech tags and typed dependencies.
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Figure 1: Sentence view of PROPMINER, where steps one and two of the workflow are executed. Users
enter (or select) a sentence in the top input field and annotate subject, predicate and object for the desired
relation. A rule is generated and displayed in the upper right panel. The lower right panel is the repository
of already created rules. The parse of the input sentence is displayed in the center panel.

Interactivity and feedback. Each modifica-
tion of a rule is immediately queried against a
large collection of parsed sentences stored in a dis-
tributed graph database. The extraction results of
the current state of the rule are presented at all
times to the user, thereby explaining the rule by
showing its effect.

Intuitive query language. Extraction rules are
formulated as queries against a graph database.
Our query language allows users to formulate sub-
tree queries as path expressions, a concept bor-
rowed from the SerQL query language (Broekstra
and Kampman, 2003) because of its intuitive prop-
erties. We show a visualization of the parse tree of
the current sentence next to the generated rule to
ease users into understanding the query language
(see Figure 1).

Guided workflow. All structured information
generated by the user, such as extraction rules,
sentence annotations and evaluation results, are
stored to build up a repository of structured infor-
mation. This information is used to suggest appro-
priate actions to the user.

A preliminary study shows that users with-
out any NLP background are quickly able to
use PROPMINER to create Information Extraction
rules. We noted that users at first stay true to the

workflow and limit manual effort to generalizing
rules, but tend to more directly modify extraction
rules as they grow more experienced. Further-
more, PROPMINER’s interactive nature eases the
process of understanding typed dependencies and
enables the interactive exploration of parsed doc-
ument collections.

2 Workflow and Query Language

PROPMINER implements a workflow that con-
sists of five steps (Annotate, Generate, General-
ize, Evaluate and Store). It is designed to allow
users that are unfamiliar with syntactic annotation
to create rule-based extractors. In the following
subsections, we explain the five steps in detail. As
a running example, we use the task of creating an
extractor for the PERSONBIRTHPLACE relation.

2.1 Annotate

Users begin the process by constructing an
archetypical sentence for the desired information
type. This sentence constitutes an example that
expresses the desired relation. For instance, a
user interested in the PERSONBIRTHPLACE rela-
tion can choose a sentence such as “Albert Ein-
stein was born in Germany.”.

In this sentence, the user annotates the words
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belonging to the relation triple, assigning the roles
of subject, predicate and object. Subject and ob-
ject are the entities in the example between which
the relation holds. The predicate are the words
in the sentence that express the relationship. Ac-
cordingly, the user marks “Albert Einstein” and
“Germany” as subject and object, and “born in”
as predicate in the example sentence.

Figure 1 shows the sentence view of PROP-
MINER, with the example sentence entered and an-
notated in the top input fields, and the parsed sen-
tence shown in the center panel.

2.2 Generate

PROPMINER generates a rule from the annotated
sentence by determining the minimal subtree in
the sentence’s dependency tree that connects all
words labeled as subject, predicate and object.
The rule consists of this minimal subtree, as well
as constraints in the part-of-speech (POS) tags and
lexical values of all involved words.

Rules are formulated as queries against a
database in which parsed sentences are stored as
graphs: Nodes represent words and edges repre-
sent typed dependencies. At each node, the POS
tag and the lexical value of the word are stored as
attributes.

A PROPMINER rule (or query) consists mainly
of three parts: A SELECT clause, a FROM clause
and a WHERE clause. The generated rule for the
running example is displayed in Figure 1. Its indi-
vidual parts are discussed in the following subsec-
tions.

2.2.1 SELECT and FROM
The SELECT clause determines the fields of tu-
ple to be returned by the query. Typically, this
consists of a subject-predicate-object triple, but
queries with fewer or more fields are possible.

The FROM clause is a path expression that
specifies the subgraph in the dependency tree the
rule must match, and defines which nodes in the
subgraph correspond to the fields in the SELECT
clause. A path expression is a set of node-edge-
node triples. Each of these triples defines one edge
(typed dependency) that must hold between two
nodes (words). The nodes are denoted in curly
brackets, where the text inside curly brackets as-
signs a variable name to the node.

Consider the SELECT and FROM clauses for
the rule generated for the running example, illus-
trated in the following:

SELECT subject, predicate, object
FROM

{_7_}  nsubj {subject}
{_7_}  cop {predicate}
{_7_}  amod {object}

SELECT subject, predicate, object
FROM
      {predicate.3}   nsubjpass {subject},
      {predicate.3}   prep {predicate.4},
      {predicate.4}   pobj {object}

WHERE
AND subject POS “NNS”

AND predicate.3 POS
“VBN”

AND predicate.4 POS “IN”
AND object POS “NNP”
AND subject TEXT “A. Einstein”
AND predicate.3 TEXT “born”
AND predicate.4 TEXT “in”
AND object TEXT “Ulm”
AND subject FULL_ENTITY

Here, the SELECT statement defines the de-
sired result of this query, namely a tuple with a
“subject”, “object” and a “predicate” field: The
path expression in this example is specified in the
three lines in the FROM statement. It defines a
subtree that consists of four nodes connected by
three typed dependencies.

The nodes are assigned the variable names
“subject”, “object”, “predicate.3” and “predi-
cate.4”. The node “subject” is defined to be a
passive subject (typed dependency “nsubjpass”) of
the node “predicate.3”. The node “predicate.3” is
also connected via the dependency “prep” to the
node “predicate.4”, which in turn is connected to
“object” with the dependency “pobj”.

If this rule matches, the lexical values of the
matching nodes are returned. Because the predi-
cate in this example consists of two words (“born”
and “in”), two nodes are assigned the “predicate”
value, subtyped per convention with a dot and a
number (“predicate.3” and “predicate.4”).

2.2.2 WHERE
In the WHERE-clause, the attributes of words
in the subtree can be further restricted. Auto-
generated rules are maximally restricted. The rule
for the running example is initially restricted as
follows:

SELECT subject, predicate, object
FROM

{_7_}  nsubj {subject}
{_7_}  cop {predicate}
{_7_}  amod {object}

WHERE
AND subject POS “NNP”
AND predicate.3 POS “VBN”
AND predicate.4 POS “IN”
AND object POS “NNP”
AND subject TEXT “Einstein”
AND predicate.3 TEXT “born”
AND predicate.4 TEXT “in”
AND object TEXT “Germany”
AND subject FULL_ENTITY

Word attributes are restricted by naming the
variable followed either by “POS” or “TEXT” and
the restricting value. Here, for instance, the POS
tag of the “object” node is restricted to “NNP” (a
proper noun), and its lexical value is restricted to
“Germany”.
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a) Generated rule b) Generalize subject text c) Generalize subject and object

SELECT subject, predicate, object
FROM

{_7_}  nsubj {subject}
{_7_}  cop {predicate}
{_7_}  amod {object}

SELECT subject, predicate, object
FROM { collapsed }
WHERE

subject POS “NNP”
AND predicate.3 POS “VBZ”
AND predicate.4 POS “IN”
AND object POS “NNP”
AND subject TEXT “Einstein”
AND predicate.3 TEXT “born”
AND predicate.4 TEXT “in”
AND object TEXT “Germany”
AND subject ALLCHILDREN

Subject Predicate Object

A. Einstein born in Germany

Subject Predicate Object

A. Einstein born in Germany

C. F. Gauss born in Germany

A. Humboldt born in Germany

... ... ...

Subject Predicate Object

A. Einstein born in Germany

J. Lagrange born in Italy

I. Newton born in England

... ... ...

SELECT subject, predicate, object
FROM { collapsed }
WHERE

subject POS “NNP”
AND predicate.3 POS “VBZ”
AND predicate.4 POS “IN”
AND object POS “NNP”
AND subject TEXT “Einstein”
AND predicate.3 TEXT “born”
AND predicate.4 TEXT “in”
AND object TEXT “Germany”
AND subject ALLCHILDREN

SELECT subject, predicate, object
FROM { collapsed }
WHERE

subject POS “NNP”
AND predicate.3 POS “VBZ”
AND predicate.4 POS “IN”
AND object POS “NNP”
AND subject TEXT “Einstein”
AND predicate.3 TEXT “born”
AND predicate.4 TEXT “in”
AND object TEXT “Germany”
AND subject ALLCHILDREN

Figure 2: Conceptual example of rule modification through generalization. Below are example relation
triples found for each rule. Rule a) is generated from the annotated sentence in the running example,
and finds only one triple. Rule b) is the same rule without the restriction in the subject text. The rule
now finds a number of relation triples in the document collection, representing different entities born in
Germany. In Rule c) both subject and object text restrictions are removed. This yields a rule that finds
different entities born in any entity.

Additionally, a number of subtree gathering
mechanisms can be specified in the WHERE
clause. For example, the keyword FULL ENTITY
causes the variable binding for the subject to ex-
pand to all children nodes expected to be part of a
named entity.

2.3 Generalize

The rule generated in step two of the workflow is
strongly overspecified to the annotated sentence;
all features, including the shallow syntactic and
lexical values of all words in the subtree, are con-
strained. The resulting rule only finds exact in-
stances of the relations as seen in the archetypical
sentence. Refer to Figure 2 a) for an example.

In step three of the workflow, the user general-
izes the auto-generated rule with the help of sug-
gestions. Common lines of generalizing rules fo-
cus on the WHERE clause; here, users can remove
or modify constraints on the attributes of words.
For example, by removing the restriction on the
lexical value of the subject, the rule is generalized
to finding all entities that were born in “Germany”,
instead of only entities with the lexical value “Ein-
stein”. This example is illustrated in Figure 2 b).

The rule can then be further generalized by re-
moving the lexical constraint on the object, yield-
ing the (desired) rule that finds all entities that
were born in any location with an entity name.

Figure 2 c) shows an example of this rule, as well
as example results.

Further options of generalization include re-
moving the lexical constraints in one or both of the
predicate words, or modifying the POS tag con-
straints. At each modification, extraction results
for the current state of the rule are displayed to as-
sist the user. When the results match the desired
relation, the user can proceed to the next step in
the workflow.

2.4 Evaluate

Each rule created by the user is evaluated in the
corpus view of PROPMINER, displayed in Fig-
ure 3. This view shows a sample of extraction
results of the rule in a table. The user can scroll
through the table and in each row see the extracted
information as well as the sentence the informa-
tion was extracted from. If the extracted informa-
tion matches the statement in the sentence, the user
can mark this fact as correct.

2.5 Store

If the user is satisfied with the extraction rule, he
can assign it to a relation and store it in the rule
repository. He can repeat the process with another
sentence to find more patterns for the desired rela-
tion. As the workflow is repeated, the rule reposi-
tory will build up, along with a repository of evalu-
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Figure 3: Corpus view of PROPMINER, where extraction rules are modified and evaluated. The center
panel is a table that holds the extraction results for the current rule. Users can inspect each extracted
triple by clicking on the row. This will display the sentence in which the triple was found.

ation results. This enables additional functionality
in subsequent executions of the workflow:

Sentence suggestions. Evaluation results are
used to assist the user in finding new sentences
that might be relevant to the relation. For exam-
ple, a user might mark a triple with the subject “C.
F. Gauss” and object “Germany” as a correct in-
stance of the PERSONBIRTHPLACE relation dur-
ing evaluation. PROPMINER uses this informa-
tion to retrieve all sentences that contain these two
entities from its database. These sentences are
treated as probable candidates for containing the
PERSONBIRTHPLACE relation, because they con-
tain two entities known to be in this relationship.
Accordingly, they are suggested to the user upon
request.

Conflict resolution. In order to prevent con-
flicts with existing rules, the entire rule set in the
repository is applied to each sentence the work-
flow is started with. If any existing information
extraction rule can be applied, the results of the
extraction are presented to the user as annotations
in the sentence. If this extraction result is already
complete from the point of view of the user, he
can proceed to a new sentence. If not, the user can
proceed to generate a new rule, or modify existing
ones.

3 Previous Work

Previous work on improving the rule creation pro-
cess for IE systems has mainly focused on assist-
ing users with machine learning techniques, such
as pre-generation of regular expressions (Brauer et
al., 2011) or pattern suggestions (Li et al., 2011).
To improve usability, (Li et al., 2012) present a
tool with a wizard-like environment to guide ex-
tractor development. While previous work focuses
on shallow patterns, the focus of PROPMINER is to
help create rules over dependency trees and aid in
the exploration of parsed document collections.

4 Evaluation and Outlook

We conducted a preliminary study in which we
asked 5 computer scientists unfamiliar with com-
putational linguistics to use the tool to cre-
ate extractors for the relations PERSONBIRTH-
PLACE, PERSONMARRIEDTOPERSON and PER-
SONWONPRIZE. The participants were given a
two hour introduction explaining information ex-
traction and subject-predicate-object triples. We
introduced them to the five step workflow using
the PERSONBIRTHPLACE example also used as
running example in this paper, as well as other,
more complex examples. The participants were
given one hour for each relation and asked to cre-
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ate a rule set for each relation. After the con-
clusion we interviewed the participants and asked
them to rate the usability both for information ex-
traction, as well as for the exploration of depen-
dency tree information.

In the latter category, participants generally
gave positive feedback. Participants stated that the
interactive nature of the tool helped understanding
extraction rules and facilitated exploring informa-
tion stated in the document collection. 4 out of
5 participants deviated from the suggested work-
flow and more directly edited rules as they be-
came more comfortable with the tool. All par-
ticipants consulted information on POS tags and
typed dependencies during the process, in order to
better understand the rules and query results. Par-
ticipants suggested adding an explanation function
for individual syntactic elements to the tool.

While all users were generally able to create
rule sets for each of the relations, two main prob-
lems were cited for the creation of extraction rules.
The first is a problem in conflict resolution; in
some cases, users were not able to discern why
a rule gave imperfect extraction results. We re-
viewed some rules and found that many of these
cases stem from faulty dependency parses, which
non NLP-experts cannot recognize. At present, we
are searching for ways to address this problem.

A second problem were limitations of the rule
language: Participants expressed the need for
named entity types such as PERSON and LOCA-
TION, which in the prototype were not included at
the time of evaluation. However, because of the
design of the query language and the underlying
graph database, such additional operators can be
incorporated easily.

Consequently, current work focuses on extend-
ing the range of user studies to gather more sug-
gestions for the query language and the feature set,
and integrating additional operators into the sys-
tem.

5 Demonstration

In this demonstration we show how PROPMINER

can be used for creating extractors or exploring
the parsed document collection. The hands-on
demonstration allows initiate users to execute the
workflow presented in this paper, but also enables
persons more familiar with syntactic annotation to
more directly query the graph database using our
query language and feature set.
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Alan Akbik and Alexander Löser. 2012. Kraken: N-ary facts

in open information extraction. In AKBC-WEKEX, pages
52–56. Association for Computational Linguistics.

Bernd Bohnet. 2010. Very high accuracy and fast depen-
dency parsing is not a contradiction. In COLING, pages
89–97. Association for Computational Linguistics.

Falk Brauer, Robert Rieger, Adrian Mocan, and Wojciech M
Barczynski. 2011. Enabling information extraction by
inference of regular expressions from sample entities. In
CIKM, pages 1285–1294. ACM.

Jeen Broekstra and Arjohn Kampman. 2003. Serql: a second
generation rdf query language. In Proc. SWAD-Europe
Workshop on Semantic Web Storage and Retrieval, pages
13–14.

Razvan C Bunescu and Raymond J Mooney. 2005. A short-
est path dependency kernel for relation extraction. In
EMNLP, pages 724–731. Association for Computational
Linguistics.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li,
Sriram Raghavan, Frederick R Reiss, and Shivakumar
Vaithyanathan. 2010. Systemt: an algebraic approach to
declarative information extraction. In ACL, pages 128–
137. Association for Computational Linguistics.

Luciano Del Corro and Rainer Gemulla. Clausie: Clause-
based open information extraction. In WWW (to appear
in 2013).

AnHai Doan, Jeffrey F Naughton, Raghu Ramakrishnan,
Akanksha Baid, Xiaoyong Chai, Fei Chen, Ting Chen,
Eric Chu, Pedro DeRose, Byron Gao, et al. 2009. In-
formation extraction challenges in managing unstructured
data. ACM SIGMOD Record, 37(4):14–20.

Yunyao Li, Vivian Chu, Sebastian Blohm, Huaiyu Zhu, and
Howard Ho. 2011. Facilitating pattern discovery for rela-
tion extraction with semantic-signature-based clustering.
In CIKM, pages 1415–1424. ACM.

Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick R
Reiss, and Arnaldo Carreno-fuentes. 2012. Wizie: a best
practices guided development environment for informa-
tion extraction. In Proceedings of the ACL 2012 System
Demonstrations, pages 109–114. Association for Compu-
tational Linguistics.

Mausam, Michael Schmitz, Stephen Soderland, Robert Bart,
and Oren Etzioni. 2012. Open language learning for in-
formation extraction. In EMNLP-CoNLL, pages 523–534.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction without
labeled data. In ACL/IJCNLP. Volume 2-Volume 2, pages
1003–1011. Association for Computational Linguistics.

162



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 163–168,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

SEMILAR: The Semantic Similarity Toolkit 

 

Vasile Rus, Mihai Lintean, Rajendra Banjade, Nobal Niraula, and Dan Stefanescu 

Department of Computer Science 

The University of Memphis 

Memphis, TN 38152 

{vrus,rbanjade,mclinten,nbnraula,dstfnscu}@memphis.edu 

 

 

Abstract 

We present in this paper SEMILAR, the SE-

Mantic simILARity toolkit. SEMILAR im-

plements a number of algorithms for assessing 

the semantic similarity between two texts. It is 

available as a Java library and as a Java 

standalone ap-plication offering GUI-based 

access to the implemented semantic similarity 

methods. Furthermore, it offers facilities for 

manual se-mantic similarity annotation by ex-

perts through its component SEMILAT (a 

SEMantic simILarity Annotation Tool). 

1 Introduction 

We present in this paper the design and im-

plementation of SEMILAR, the SEMantic 

simILARity toolkit. SEMILAR 

(www.semanticsimilarity.org) includes im-

plementations of a number of algorithms pro-

posed over the last decade or so to address 

various instances of the general problem of 

text-to-text semantic similarity. Semantic sim-

ilarity is an approach to language understand-

ing that is widely used in real applications. It 

is a practical alternative to the true under-

standing approach, which is intractable as it 

requires world knowledge, a yet to-be-solved 

problem in Artificial Intelligence. 

Text A: York had no problem with MTA’s in-

sisting the decision to shift funds had been within 

its legal rights. 

Text B: York had no problem with MTA’s say-

ing the decision to shift funds was within its 

powers. 

 

Given such two texts, the paraphrase identifi-

cation task is about automatically assessing 

whether Text A is a paraphrase of, i.e. has the 

same meaning as, Text B. The example above is 

a positive instance, meaning that Text A is a par-

aphrase of Text B and vice versa. 

The importance of semantic similarity in Nat-

ural Language Processing (NLP) is highlighted 

by the diversity of datasets and shared task eval-

uation campaigns (STECs) that have been pro-

posed over the last decade (Dolan, Quirk, and 

Brockett, 2004; McCarthy & McNamara, 2008; 

Agirre et al., 2012). These datasets include in-

stances from various applications.  Indeed, there 

is a need to identify and quantify semantic rela-

tions between texts in many applications. For 

instance, paraphrase identification, an instance of 

the semantic similarity problem, is an important 

step in a number of applications including Natu-

ral Language Generation, Question Answering, 

and dialogue-based Intelligent Tutoring Systems. 

In Natural Language Generation, paraphrases are 

a method to increase diversity of generated text 

(Iordanskaja et al. 1991). In Question Answer-

ing, multiple answers that are paraphrases of 

each other could be considered as evidence for 

the correctness of the answer (Ibrahim et al. 

2003). In Intelligent Tutoring Sys-tems (Rus et 

al., 2009; Lintean et al., 2010; Lintean, 2011), 

paraphrase identification is useful to assess 

whether students’ articulated answers to deep 

questions (e.g. conceptual physics questions) are 

similar-to/paraphrases-of ideal answers. 

Generally, the problem of semantic similarity 

between two texts, denoted text A and text B, is 

defined as quantifying and identifying the pres-

ence of semantic relations between the two texts, 

e.g. to what extent text A has the same meaning 

as or is a paraphrase of text B (paraphrase rela-

tion; Dolan, Quirk, and Brockett, 2004). Other 

semantic relations that have been investigated 

systematically in the recent past are entailment, 

i.e. to what extent text A entails or logically in-

fers text B (Dagan, Glickman, & Magnini, 2004), 

and elaboration, i.e. is text B is an elaboration of 

text A? (McCarthy & McNamara, 2008). 
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Semantic similarity can be broadly construed 

between texts of any size. Depending on the 

granularity of the texts, we can talk about the 

following fundamental text-to-text similarity 

problems: word-to-word similarity, phrase-to-

phrase similarity, sentence-to-sentence similari-

ty, paragraph-to-paragraph similarity, or docu-

ment-to-document similarity. Mixed combina-

tions are also possible such as assessing the simi-

larity of a word to a sentence or a sentence to a 

paragraph. For instance, in summarization it 

might be useful to assess how well a sentence 

summarizes an entire paragraph. 

2 Motivation 

The problem of word-to-word similarity has been 

extensively studied over the past decades and a 

word-to-word similarity library (WordNet Simi-

larity) has been developed by Pedersen and col-

leagues (Pedersen, Patwardhan, & Michelizzi, 

2004). 

Methods to assess the semantic similarity of 

larger texts, in particular sentences, have been 

proposed over the last decade (Corley and 

Mihalcea, 2005; Fernando & Stevenson, 2008; 

Rus, Lintean, Graesser, & McNamara 2009). 

Androutsopoulos & Malakasiotis (2010) com-

piled a survey of methods for paraphrasing and 

entailment semantic relation identification at sen-

tence level. Despite all the proposed methods to 

assess semantic similarity between two texts, no 

semantic similarity library or toolkit, similar to 

the WordNet library for word-to-word similarity, 

exists for larger texts. Given the importance of 

semantic similarity, there is an acute need for 

such a library and toolkit. The developed SEMI-

LAR library and toolkit presented here fulfill this 

need. 

In particular, the development of the semantic 

similarity toolkit SEMILAR has been motivated 

by the need for an integrated environment that 

would provide:  

 

 easy access to implementations of various 

semantic similarity approaches from the 

same user-friendly interface and/or library. 

 easy access to semantic similarity methods 

that work at different levels of text granulari-

ty: word-to-word, sentence-to-sentence, par-

agraph-to-paragraph, document-to-

document, or a combination (SEMILAR in-

tegrates word-to-word similarity measures). 

 authoring methods for semantic similarity. 

 a common environment for that allows sys-

tematic and fair comparison of semantic sim-

ilarity methods. 

 facilities to manually annotate texts with se-

mantic similarity relations using a graphical 

user interface that make such annotations 

easier for experts (this component is called 

SEMILAT component - a SEMantic similari-

ty Annotation Tool). 

 

SEMILAR is thus a one-stop-shop for investi-

gating, annotating, and authoring methods for the 

semantic similarity of texts of any level of granu-

larity. 

3 SEMILAR: The Semantic Similarity 

Toolkit 

The authors of the SEMILAR toolkit (see Figure 

1) have been involved in assessing the semantic 

Figure 1. Snapshot of SEMILAR. The Data View tab is shown. 
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similarity of texts for more than a decade. During 

this time, they have conducted a careful require-

ments analysis for an integrated software toolkit 

that would integrate various methods for seman-

tic similarity assessment. The result of this effort 

is the prototype presented here. We briefly pre-

sent the components of SEMILAR next and then 

describe in more detail the core component of 

SEMILAR, i.e. the set of semantic similarity 

methods that are currently available. It should be 

noted that we are continuously adding new se-

mantic similarity methods and features to SEMI-

LAR. 

The SEMILAR toolkit includes the following 

components: project management; data view-

browsing-visualization; preprocessing (e.g., col-

location identification, part-of-speech tagging, 

phrase or dependency parsing, etc.), semantic 

similarity methods (word-level and sentence-

level), classification components for qualitative 

decision making with respect to textual semantic 

relations (naïve Bayes, Decision Trees, Support 

Vector Machines, and Neural Network), kernel-

based methods (sequence kernels, word sequence 

kernels, and tree kernels; as of this writing, we 

are still implementing several other tree kernel 

methods); debugging and testing facilities for 

model selection; and annotation components (al-

lows domain expert to manually annotate texts 

with semantic relations using GUI-based facili-

ties; Rus et al., 2012). For space reasons, we only 

detail next the main algorithms in the core com-

ponent, i.e. the major text-to-text similarity algo-

rithms currently available in SEMILAR. 

4 The Semantic Similarity Methods 

Available in SEMILAR 

The core component of SEMILAR is a set of 

text-to-text semantic similarity methods. We 

have implemented methods that handle both uni-

directional similarity measures as well as bidirec-

tional similarity measures. For instance, the se-

mantic relation of entailment between two texts 

is unidirectional (a text T logically entails a hy-

pothesis text H but H does not entail T) while the 

paraphrase relation is bidirectional (text A has 

same meaning as text B and vice versa). 

Lexical Overlap. Given two texts, the sim-

plest method to assess their semantic similarity is 

to compute lexical overlap, i.e. how many words 

they have in common. There are many lexical 

overlap variations. Indeed, a closer look at lexi-

cal overlap reveals a number of parameters that 

turns the simple lexical overlap problem into a 

large space of possibilities. The parameters in-

clude preprocessing options (collocation detec-

tion, punctuation, stopword removal, etc.), filter-

ing options (all words, content words, etc.), 

weighting schemes (global vs. local weighting, 

binary weighting, etc.), and normalization factors 

(largest text, weighted average, etc.). A total of 

3,456 variants of lexical overlap can be generat-

ed by different parameter settings in SEMILAR. 

Lintean (2011) has shown that performance on 

lexical overlap methods on the tasks of para-

phrase identification and textual entailment tasks 

can vary significantly depending on the selected 

parameters. Some lexical overlap variations lead 

to performance results rivaling more sophisticat-

ed, state-of-the-art methods. 

It should be noted that the overlap category of 

methods can be extended to include N-gram 

overlap methods (see the N-gram overlap meth-

ods proposed by the Machine Translation com-

munity such as BLEU and METEOR). SEMI-

LAR offers bigram and unigram overlap methods 

including the BLEU and METEOR scores. 

A natural approach to text-to-text similarity 

methods is to rely on word-to-word similarity 

measures. Many of the methods presented next 

compute the similarity of larger texts using indi-

vidual word similarities. 

Mihalcea, Corley, & Strappavara (2006; 

MCS) proposed a greedy method based on word-

to-word similarity measures. For each word in 

text A (or B) the maximum similarity score to 

any word in the other text B (or A) is used. An 

idf-weighted average is then computed as shown 

in the equation below. 
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The word-to-word similarity function sim(w, 

T) in the equation above can be instantiated to 

any word-to-word similarity measure (e.g. 

WordNet similarities or Latent Semantic Analy-

sis). The vast majority of word-to-word similari-

ty measures that rely on WordNet are concept-to-

concept measures and to be able to use them one 

must map words in the input texts onto concepts 

in WordNet, i.e. word sense disambiguation 

(WSD) is needed. As of this writing, SEMILAR 

addresses the issue in two simple ways: (1) se-
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lecting the most frequent sense for each word, 

which is sense #1 in WordNet, and (2) using all 

the senses for each word and then take the max-

imum (or average) of the relatedness scores for 

each pair of word senses. We label the former 

method as ONE (sense one), whereas the latter is 

labeled as ALL-MAX or ALL-AVG (all senses 

maximum score or all senses average score, re-

spectively). Furthermore, most WordNet-based 

measures only work within a part-of-speech cat-

egory, e.g. only between nouns. 

Other types of word-to-word measures, such 

as those based on Latent Semantic Analysis or 

Latent Dirichlet Allocation, do not have a word-

sense disambiguation challenge.  

Rus and Lintean (2012; Rus-Lintean-

Optimal Matching or ROM) proposed an opti-

mal solution for text-to-text similarity based on 

word-to-word similarity measures. The optimal 

lexical matching is based on the optimal assign-

ment problem, a fundamental combinatorial op-

timization problem which consists of finding a 

maximum weight matching in a weighted bipar-

tite graph.  

Given a weighted complete bipartite graph 

, where edge  has weight 

, the optimal assignment problem is to 

find a matching M from X to Y with maximum 

weight. 

A typical application is about assigning a 

group of workers, e.g. words in text A in our 

case, to a set of jobs (words in text B in our case) 

based on the expertise level, measured by 

, of each worker at each job. By adding 

dummy workers or jobs we may assume that X 

and Y have the same size, n, and can be viewed 

as   and Y = . 

In the semantic similarity case, the weight  

is the word-to-word similarity between a word x 

in text A and a word y in text B.  

The assignment problem can also be stated as 

finding a permutation  of {1, 2, 3, … , n} for 

which  is maximum. Such an 

assignment is called optimum assignment. The 

Kuhn-Munkres algorithm (Kuhn, 1955) can find 

a solution to the optimum assignment problem in 

polynomial time. 

Rus and colleagues (Rus et al., 2009; Rus & 

Graesser, 2006; Rus-Syntax-Negation or RSN) 
used a lexical overlap component combined with 

syntactic overlap and negation handling to com-

pute an unidirectional subsumption score be-

tween two sentences, T (Text) and H (Hypothe-

sis), in entailment recognition and student input 

assessment in Intelligent Tutoring Systems. Each 

text is regarded as a graph with words as 

nodes/vertices and syntactic dependencies as 

edges. The subsumption score reflects how much 

a text is subsumed or contained by another. The 

equation below provides the overall subsumption 

score, which can be averaged both ways to com-

pute a similarity score, as opposed to just the 

subsumption score, between the two texts.  
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The lexical component can be used by itself 

(given a weight of 1 with the syntactic compo-

nent given a weight of 0) in which case the simi-

larity between the two texts is just a composi-

tional extension of word-to-word similarity 

measures. The match function in the equation 

can be any word-to-word similarity measure in-

cluding simple word match, WordNet similarity 

measures, LSA, or LDA-based similarity 

measures. 

Fernando and Stevenson (FST; 2008) pro-

posed a method in which similarities among all 

pairs of words are taken into account for compu-

ting the similarity of two texts. Each text is rep-

resented as a binary vector (1 – the word occurs 

in the text; 0 – the word does not occur in the 

text). They use a similarity matrix operator W 

that contains word-to-word similarities between 

any two words. 
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Each element wij represents the word-level 

semantic similarity between word ai in text A 

and word bj in text B. Any word-to-word seman-

tic similarity measure can be used. 

Lintean and Rus (2010; weighted-LSA or 

wLSA) extensively studied methods for semantic 

similarity based on Latent Semantic Analysis 

(LSA; Landauer et al., 2006). LSA represents 

words as vectors in a 300-500 dimensional LSA 

space. An LSA vector for larger texts can be de-

rived by vector algebra, e.g. by summing up the 

individual words’ vectors. The similarity of two 

texts A and B can be computed using the cosine 

(normalized dot product) of their LSA vectors. 

Alternatively, the individual word vectors can be 
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combined through weighted sums. Lintean and 

Rus (2010) experimented with a combination of 

3 local weights and 3 global weights. All these 

versions of LSA-based text-to-text similarity 

measures are available in SEMILAR. 

SEMILAR also includes a set of similarity 

measures based on the unsupervised method La-

tent Dirichlet Allocation (LDA; Blei, Ng, & 

Jordnan, 2003; Rus, Banjade, & Niraula, 

2013). LDA is a probabilistic generative model 

in which documents are viewed as distributions 

over a set of topics (θd - text d’s distribution over 

topics) and topics are distributions over words (φt 

– topic t’s distribution over words). That is, each 

word in a document is generated from a distribu-

tion over words that is specific to each topic. 

A first LDA-based semantic similarity meas-

ure among words would then be defined as a dot-

product between the corresponding vectors rep-

resenting the contributions of each word to a top-

ic (φt(w) – represents the probability of word w 

in topic t). It should be noted that the contribu-

tions of each word to the topics does not consti-

tute a distribution, i.e. the sum of contributions is 

not 1. Assuming the number of topics T, then a 

simple word-to-word measure is defined by the 

formula below. 

 

  
 

 

 

More global text-to-text similarity measures could 

be defined in several ways as detailed next.  
Because in LDA a document is a distribution 

over topics, the similarity of two texts needs to 

be computed in terms of similarity of distribu-

tions. The Kullback-Leibler (KL) divergence 

defines a distance, or how dissimilar, two distri-

butions p and q are as in the formula below. 

 

 

 

 

 

If we replace p with θd (text/document d’s dis-

tribution over topics) and q with θc 

(text/document c’s distribution over topics) we 

obtain the KL distance between two documents 

(documents d and c in our example). The KL 

distance has two major problems. In case qi is 

zero KL is not defined. Then, KL is not symmet-

ric. The Information Radius measure (IR) solves 

these problems by considering the average of pi 

and qi as below. Also, the IR can be transformed 

into a symmetric similarity measure as in the fol-

lowing (Dagan, Lee, & Pereira, 1997): 

 
 
 
The Hellinger and Manhattan distances be-

tween two distributions are two other options 
that avoid the shortcomings of the KL distance. 
Both are options are implemented in SEMILAR. 

LDA similarity measures between two docu-

ments or texts c and d can also include similarity 

of topics. That is, the text-to-text similarity is 

obtained multiplying the similarities between the 

distribution over topics (θd and θc) and distribu-

tion over words (φt1 and φt2). The similarity of 

topics can be computed using the same methods 

illustrated above as the topics are distributions 

over words (for all the details see Rus, Banjade, 

& Niraula, 2013). 

The last semantic similarity method presented 

in this paper is based on the Quadratic Assign-

ment Problem (QAP). The QAP method aims at 

finding an optimal assignment from words in text 

A to words in text B, based on individual word-

to-word similarity measures, while simultaneous-

ly maximizing the match between the syntactic 

dependencies of the words. 

The Koopmans-Beckmann (1957) formulation 

of the QAP problem best fits this purpose. The 

goal of the original QAP formulation, in the do-

main of economic activity, was to minimize the 

objective function QAP shown below where ma-

trix F describes the flow between any two facili-

ties, matrix D indicates the distances between 

locations, and matrix B provides the cost of lo-

cating facilities to specific locations. F, D, and B 

are symmetric and non-negative. 
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The fi,j term denotes the flow between facili-

ties i and j which are placed at locations π(i) and 

π(j), respectively. The distance between these 

locations is dπ(i)π(j). In our case, F and D describe 

dependencies between words in one sentence 

while B captures the word-to-word similarity 

between words in opposite sentences. Also, we 

have weighted each term in the above formula-

tion and instead of minimizing the sum we are 

maximizing it resulting in the formulation below.  
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5 Discussion and Conclusions 

The above methods were experimented with on 
various datasets for paraphrase, entailment, and 
elaboration. For paraphrase identification, the 
QAP method provides best accuracy results 
(=77.6%) on the test subset of the Microsoft Re-
search Paraphrase corpus, one of the largest par-
aphrase datasets. 
 Due to space constraints, we have not de-
scribed all the features available in SEMILAR. 
For a complete list of features, latest news, refer-
ences, and updates of the SEMILAR toolkit 
along with downloadable resources including 
software and data files, the reader can visit this 
link: www.semanticsimilarity.org. 
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Abstract
The aim of the Tag2Blog system is to
bring satellite tagged wild animals “to
life” through narratives that place their
movements in an ecological context. Our
motivation is to use such automatically
generated texts to enhance public engage-
ment with a specific species reintroduction
programme, although the protocols devel-
oped here can be applied to any animal or
other movement study that involves signal
data from tags. We are working with one
of the largest nature conservation chari-
ties in Europe in this regard, focusing on
a single species, the red kite. We de-
scribe a system that interprets a sequence
of locational fixes obtained from a satellite
tagged individual, and constructs a story
around its use of the landscape.

1 Introduction

We present a system, Tag2Blog, that uses Natu-
ral Language Generation (NLG) in bringing up-to-
date information about wild animals in their nat-
ural environment to nature enthusiasts. We fo-
cus on the reintroduction of the red kite to the
UK. The red kite, a member of the raptor fam-
ily, has been persecuted to near extinction in the
UK. Since 1989, efforts have been underway to
reintroduce the species across the UK with mixed
success. Where less successful, illegal activities of
humans are partly responsible (Smart et al., 2010).

We are working with the RSPB1, one of the
largest nature conservation charities in Europe,
around a reintroduction site where the species
struggles to get re-established. We propose to use
NLG for public engagement around a small num-
ber of satellite tagged individuals. The nature con-
servation goal is to create a positive perception of

1http://www.rspb.org.uk

the species through informative blogs based on the
movements of individual birds. The NLG goal is
the generation of these blogs; specifically, to put
individual locations of a bird into an ecological
context. This paper describes the design and im-
plementation of the system. We are also carrying
out concurrent ecological research on red kites that
will further inform the NLG component.

2 Related work

There is increasing realisation of the potential of
digital approaches, including the use of websites
and social media, to increase public engagement
with nature conservation issues. For instance, in
the UK, the Open Air Laboratories (OPAL) net-
work2 is a large initiative led by Imperial Col-
lege, which aims to create and inspire a new gen-
eration of nature-lovers by getting people to ex-
plore their local environment (Silvertown, 2009).
Such initiatives are typically labour and time in-
tensive, and require continual effort to maintain in-
terest through the creation of new content. To date,
initiatives such as OPAL have largely focused on
biological recording as a public engagement tool,
thereby using - for example - standard social net-
working sites to prompt the collection of species
distributional data (Stafford et al., 2010), or web
interfaces that use NLG to provide feedback to cit-
izen scientists (Blake et al., 2012).

We propose something altogether different: the
use of sensor data as a starting point for public en-
gagement through the delivery of self-updating au-
tomatically generated blogs. This application pro-
vides fresh challenges for the field of NLG, where
typically systems are designed to offer decision
support in the workplace (Goldberg et al., 1994;
Portet et al., 2009). Decision support requires ac-
curacy and clarity first and foremost. We, on the
other hand, aim to generate texts that are suffi-

2http://www.opalexplorenature.org
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Figure 1: Screenshot of the Tag2Blog system.

ciently fluent and engaging for the general public
to be attracted and informed by.

This does not mean that there is no precedent
to our work. There are a handful of NLG sys-
tems that offer “info-tainment”, such as Dial Your
Disc (Van Deemter and Odijk, 1997) and Ilex
(O’Donnell et al., 2001). Systems that gener-
ate sports commentary are particularly relevant, as
they contextualise objects spatially and temporally
and track the movement of objects as part of the
game analysis (André et al., 2000). Rhodes et al.
(2010) further explore dramatic narrative genera-
tion, to bring emotional content into the texts.

We subscribe to the same goals, adding to these
the requirement that texts should be easy to read.
For instance, ecological concepts (such as site fi-
delity) could be communicated by explicitly defin-
ing them. However, we would prefer these to be
inferred from more engaging narratives, such as
that in Fig. 1, which is a screenshot showing sam-
ple text generated by our system.

3 System architecture
The aim of the Tag2Blog system is to bring satel-
lite tagged individuals of a species (e.g., the red
kite) “to life” by constructing narratives describ-
ing their movements. In this regard, we need to
interpret a sequence of locational fixes obtained
from a tagged bird, and construct a story around
its use of the landscape. To facilitate ecologi-
cal interpretations, it is important to first supple-
ment the locational data with other spatially rel-
evant data; for example, landscape features and

Figure 2: Architecture of the Tag2Blog system

weather. The Tag2Blog system therefore consists
of two modules: Data Acquisition and Contextual-
isation (DAC), described in §3.1 and Natural Lan-
guage Generation (NLG), described in §3.2.

3.1 Data acquisition and contextualisation
This module is composed of a spatial database
and a set of services for updating and access-
ing data. We start with the information obtained
from the satellite tags on the birds, which provide
time-stamped locational information. This is aug-
mented with data of associated habitat types, ter-
rain features, place names and weather conditions.
Our database thus stores rich information about
the locations visited, acquired from a variety of
sources summarised below:

Habitats: Land cover maps3 are used to as-
sociate different habitat types (e.g., coniferous
woodland, moorland, improved grassland, etc.) to

3http://www.ceh.ac.uk
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locational fixes.
Terrain features: Ordnance Survey Vector Map
data4 are used to identify features (e.g., lochs,
rivers, roads, etc.) in the vicinity of the fixes.
Names: Ordnance Survey Gazetteer data is used
to obtain place and feature names.
Weather: The closest weather station to the fix
is queried for historical weather data from the time
of the fix, using an external web service.

The following services were implemented to
update and enrich red kite location fixes:

Data update service: The satellite tags on the
red kites have been programmed to transmit up to
5 GPS fixes per day, usually every two hours be-
tween 8am and 6pm5. The satellite data provider
sends a daily email, using which we update the
spatial database with red kite locations automat-
ically. We also provide the conservation charity
with a user interface, to allow them to censor eco-
logically sensitive locations (such as nesting sites),
as and when required.
Data analysis service: Location data of each
individual bird is periodically clustered (i.e.,
weekly) to identify their temporary home ranges.
These clusters are spatially represented as ellipses
and are stored in the database so that new fixes can
be compared against known locational patterns.
Weather web service client: Weather data rele-
vant to the time and location of each red kite loca-
tional fix is obtained on demand from a met office
web service by providing the date, time, and the
closest weather station.
Data access service: Each satellite fix is asso-
ciated with a Java object (GeoLocation), which
encapsulates the enriched data (habitats, place
names, features, weather, etc.) for that loca-
tion. Apart from individual locations, overall
fight parameters such as distance from geographic
features, displacement from or presence within
known home ranges, are also computed and en-
capsulated into a Java object. These objects are
generated on demand and passed onto the NLG
module, described next.

3.2 Natural language generation module
The Tag2Blog system follows the NLG architec-
ture proposed by Reiter and Dale (2000) and is

4http://www.ordnancesurvey.co.uk
5The satellite tags are solar powered, and only have power

to provide a single fix per day in the winter months.

composed of three components: a document plan-
ner (§3.2.2), a microplanner (§3.2.3) and a surface
realiser (§3.2.4). The document planner utilises a
domain model (§3.2.1) to populate and order mes-
sage definitions, which are in turn passed on to the
microplanner for creating sentence specifications.
The surface realiser then generates text from these
sentence.specifications.

3.2.1 Domain model and data analysis
The enriched data, as described above, be used
as such to generate narratives of journeys. How-
ever in order to make these narratives insightful,
an ecological interpretation is needed, and kite
behaviours must also be included in the domain
model. Siddharthan et al. (2012) has identified
key behaviours that can be fruitfully communi-
cated through such narratives. We broadly cate-
gorise these behaviours into:

• Site fidelity and exploratory behaviour

• Feeding and roosting behaviour

• Social behaviour (associations with other red kites)

A domain model was developed to infer likely
kite behaviours from the enriched data. To build
the domain model, we used explicit and implicit
knowledge elicitation methods, such as data anal-
ysis and interviews, annotations of NLG produced
blogs by ecologists, and analysis of hand-written
blogs by ecologists from source data.

Site fidelity and exploratory behaviour: His-
torical location data is used to identify clusters
(temporary home ranges) for each bird using the
ADEHABITATHR6 package (Calenge, 2006). In
order to describe the overall movement pattern
during the period, spatial data analysis is carried
out and parameters, such as total distance trav-
elled, displacement from clusters, percentage of
fixes within each cluster, are calculated. These
parameters are then used to identify the overall
movement pattern. Fig. 3 shows three such pat-
terns: Stationary, Short circular trip and Long dis-
tance movement.

Feeding and roosting behaviours: After con-
ducting structured interviews with ecologists and
analysing blogs written by ecologists, a set of
rules were created to identify different feeding
and roosting behaviours. Likely foraging patterns
were defined on the basis of habitat type, season,

6http://cran.rstudio.com/web/packages/adehabitatHR
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(a) (b) (c)

Figure 3: Movement patterns demonstrated in different weeks by different birds: (a) Stationary, staying
within the temporary home range, (b) Short circular trip, moving out and returning to the temporary
home range, and (c) Long distance movement, ending in a different location. The orange areas represent
clusters of locations of the red kite from historical data that model temporary home ranges for the bird.

time of the day and weather conditions. The fol-
lowing extract from a blog written by an ecolo-
gist shows how experts can infer a behaviour from
data. Note that it is acceptable in our application
for such behaviours to be speculative, as long as
they have a basis in kite ecology, and are plausible
given the data.

“Early that evening she was seen in farmland

near Torness. Here, the rain must have brought

up earthworms to the surface snacks well worth

catching!”

From this text, we inferred the following rule:

Rule: Feeding on Earthworms
IF it previously rained AND habitat is farm land,

THEN it is likely that the red kite is feeding on

earthworms.

We have expressed a range of such behaviours as
JBoss7 rules.

Social behaviours: Red kites being social birds,
there are many social interactions that could be in-
ferred from the type of data we brought together.
Associations between red kites are typically in-
ferred by analysing relative locations of differ-
ent red kites. However, there is one specific be-
haviour, communal roosting, where a large group
of red kites sleeps together in woodland during
the winter months, for which we make use of our

7http://www.jboss.org/drools

knowledge of known communal roost locations;
i.e., local knowledge provided by ecologists.

3.2.2 Document planner
The document planner carries out content determi-
nation and document structuring.

Content determination: There are several
types of message definitions, implemented as
Java classes, that correspond to different narrative
descriptions (flying, feeding, etc.). The message
generator infers possible behaviours (feeding,
roosting, exploring, etc.) using the domain model
and then selects one or more based on content
determination rules. For example, the message
generator might infer possible behaviours such
as feeding and exploring from the analyses
described above in §3.2.1. However, the content
determination rules would prioritise exploring
behaviours over feeding (due to their rarity) and
hence generate a EXPLORINGMESSAGE, which
contains the information required to generate a
description of the exploration journey. Similarly,
corresponding messages would be generated for
other flying, feeding, and social behaviours.

Document structuring: Our weekly blogs con-
tain an introductory paragraph, which captures the
overall movement pattern for the week, followed
by a more detailed paragraph, which describes in-
teresting behaviours during that week. Each para-
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graph is internally represented as a schema, which
also orders the messages into a document plan.

3.2.3 Microplanner
The document plan generated at the previous stage
is passed on to the microplanner for creating text
specifications. This includes phrase specifications
and their aggregation into sentences. Clauses are
combined using discourse cues to express different
discourse relations, such as concession, compari-
son and explanation.

3.2.4 Surface realiser
The role of the surface realiser is to convert the
text specification received from the microplanner
into text that the user can read and understand.
This includes linguistic realisation (converting the
sentence specifications into sentences) and struc-
tural realisation (structuring the sentences inside
the document). Both the linguistic and structural
realisations are performed by using functionali-
ties provided by the SIMPLENLG realiser library
(Gatt and Reiter, 2009).

4 Utility of blogs in this domain

Until recently, our partner charity was publishing
hand-written blogs based on the journeys of these
satellite tagged red kites. They have had to close
down the site due to resource constraints: Such
blogs are difficult, monotonous and time consum-
ing to produce by hand. Tag2Blog will allow the
charity to restart this form of public engagement.

We have earlier studied the use of ecological
blogs based on satellite tag data (Siddharthan et
al., 2012). Using hand-written blogs in a toy do-
main, we found that readers were willing to an-
thromorphise the bird, and generally formed a pos-
itive perception of it. Additionally, users were able
to recall ecological insights communicated in the
blog, demonstrating that such blogs are informa-
tive as well.

In this paper, we restrict ourselves to reporting
a very preliminary evaluation of the quality of the
computer generated blogs. We compared three
blogs produced from the same data (the move-
ments of one individual red kite during one week):

a) A computer generated blog of a journey, produced
without using any domain knowledge as described in
§3.2.1, and merely describing spatial movements of the
red kite over time.

b) A computer generated blog of a journey with ecological
insights, as described in §3.2.1. This is the production
version used in Fig. 1.

c) Version (a), which has been post-edited by an ecologist
to introduce ecological insights into the narrative. The
ecologist was give access to a table containing habitat,
terrain and weather information for each satellite fix.

Tab. 1 shows samples from the three versions.
All three versions were shown to five human
judges, without indication of provenance. They
were asked to rate each blog on a scale of 1 (low)
to 5 (high) for how readable, informative, engag-
ing and ecologically sound they considered the
texts. They were also asked to rate the relevance of
each blog to different age groups (primary school
children, secondary school children and adults).

We used as judges, a social scientist specialised
in human–nature interactions, a public engage-
ment officer at our University who interacts with
local schools on a regular basis, a secondary
school English teacher, and two school students,
aged 14 and 16. Our goal was to obtain a diversity
of opinion to inform system design.

Tab. 2 shows the ratings of our five evalua-
tors for different aspects of each blog. The av-
erages show that in most aspects, version (b) is
rated higher than version (a) and, rather expect-
edly, the human edited/annotated version (c) is
rated the highest. But, note that the two school
students rated the automatically generated blogs
highly, and that both felt that version (b) was the
best suited for secondary schools. The public en-
gagement officer rated (b) as less readable, and
less relevant to schools. She specifically high-
lighted the use of terminology without introduc-
tion (e.g., “roost” and “foraging”) as an issue.

Our focus will now be on improving the lan-
guage, to address some of the readability and en-
gagingness concerns.

5 Conclusions and Future Work
We have presented an NLG system that can gen-
erate ecologically informative and engaging narra-
tives of animal (red kite) movements. Our initial
evaluations have shown encouraging results and
further evaluations are now planned. The system
can be accessed through http://redkite.abdn.ac.uk/blog/.
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Text First four sentences from each blog
(a) This week, Millie did not travel far, but was actively exploring a small area. During this week, Millie has been

observed on various habitats. However, except Thursday she chose to spend the night at the same woodland near
Torness. No doubt Millie was not alone this week as kites Moray and Beauly were also observed often in the
vicinity.

(b) This week, Millie did not travel far, but was actively exploring a small area mainly within her home range. During
this week, Millie’s foraging patterns have been varied. However, except Thursday she chose to roost in the same
woodland near Torness. No doubt Millie had a quite social week as kites Moray and Beauly were also observed
often in the vicinity.

(c) This week Millie did not travel far but was actively exploring a small area north-east of Loch Ness. Friday morning
Millie left the woodland where she spend the night to fly to Loch Ruthven amid heavy rain. The poor visibility
may have driven her to fly low when searching for food along the water sides. Early that evening she was seen in
farmland near Torness.

Table 1: Excerpts of texts in each experimental condition

Sociologist Pub. Eng. Teacher 16yo 14yo Average
Blog a b c a b c a b c a b c a b c a b c
Readability 3 3 5 4 3 5 3 2 4 3 4 4 3 4 4 3.2 3.2 4.4
Informativeness 3 4 5 5 5 5 2 1 2 3 4 5 3 3 4 3.2 3.4 4.4
Engagingness 2 4 5 3 3 4 2 1 3 3 4 5 2 4 4 2.4 3.2 4.2
Ecological soundness 4 3 3 4 4 4 5 5 5 3 4 4 3 4 3 3.8 4.0 3.8
Relevance to:

Primary Schools 3 4 5 3 2 4 4 4 4 4 4 3 3 2 3 3.4 3.2 3.8
Secondary Schools 3 4 5 4 3 4 2 2 2 4 5 3 3 4 3 3.2 3.6 3.4
Adults 3 4 5 4 4 4 3 1 3 3 4 5 3 4 4 3.2 3.4 4.2

Table 2: Evaluation of Blogs by Experts
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Abstract

Large amount of parallel corpora is re-
quired for building Statistical Machine
Translation (SMT) systems. We describe
the TransDoop system for gathering trans-
lations to create parallel corpora from on-
line crowd workforce who have familiar-
ity with multiple languages but are not
expert translators. Our system uses a
Map-Reduce-like approach to translation
crowdsourcing where sentence translation
is decomposed into the following smaller
tasks: (a) translation of constituent phrases
of the sentence; (b) validation of qual-
ity of the phrase translations; and (c)
composition of complete sentence trans-
lations from phrase translations. Trans-
Doop incorporates quality control mech-
anisms and easy-to-use worker user in-
terfaces designed to address issues with
translation crowdsourcing. We have eval-
uated the crowd’s output using the ME-
TEOR metric. For a complex domain like
judicial proceedings, the higher scores ob-
tained by the map-reduce based approach
compared to complete sentence translation
establishes the efficacy of our work.

1 Introduction

Crowdsourcing is no longer a new term in the do-
main of Computational Linguistics and Machine
Translation research (Callison-Burch and Dredze,
2010; Snow et al., 2008; Callison-Burch, 2009).
Crowdsourcing - basically where task outsourcing
is delegated to a largely unknown Internet audi-
ence - is emerging as a new paradigm of human
in the loop approaches for developing sophisti-
cated techniques for understanding and generat-
ing natural language content. Amazon Mechanical

Turk(AMT) and CrowdFlower 1 are representative
general purpose crowdsourcing platforms where
as Lingotek and Gengo2 are companies targeted
at localization and translation of content typically
leveraging freelancers.

Our interest is towards developing a crowd-
sourcing based system to enable general, non-
expert crowd-workers generate natural language
content equivalent in quality to that of expert lin-
guists. Realization of the potential of attaining
great scalability and cost-benefit of crowdsourcing
for natural language tasks is limited by the abil-
ity of novice multi-lingual workers generate high
quality translations. We have specific interest in
Indian languages due to the large linguistic diver-
sity as well as the scarcity of linguistic resources in
these languages when compared to European lan-
guages. Crowdsourcing is a promising approach
as many Indian languages are spoken by hundreds
of Millions of people (approximately, Hindi-Urdu
by 500M, Bangla by 200M, Punjabi by over 100M
3) coupled with the fact that representation of In-
dian workers in online crowdsourcing platforms is
very high (close to 40% in Amazon Mechanical
Turk (AMT)).

However, this is a non-trivial task owing to lack
of expertise of novice crowd workers in transla-
tion of content. It is well understood that famil-
iarity with multiple languages might not be good
enough for people to generate high quality transla-
tions. This is compounded by lack of sincerity and
in certain cases, dishonest intention of earning re-
wards disproportionate to the effort and time spent
for online tasks. Common techniques for quality
control like gold data based validation and worker
reputation are not effective for a subjective task

1http://www.mturk.com,http://www.
crowdflower.com

2http://www.lingotek.com,http:///www.
gengo.com

3http://en.wikipedia.org/wiki/List_of_
languages_by_total_number_of_speakers
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like translation which does not have any task spe-
cific measurements. Having expert linguists man-
ually validate crowd generated content defies the
purpose of deploying crowdsourcing on a large
scale.

In this work, we propose a technique, based
on the Divide-and-Conquer principle. The tech-
nique can be considered similar to a Map-Reduce
task run on crowd processors, where the transla-
tion task is split into simpler tasks distributed to
the crowd (the map stage) and the results are later
combined in a reduce stage to generate complete
translations. The attempt is to make translation
tasks easy and intuitive for novice crowd-workers
by providing translations aids to help them gen-
erate high quality of translations. Our contribu-
tion in this work is a end-to-end, crowdsourcing-
platform-independent, translation crowdsourcing
system that completely automates the translation
crowdsourcing task by (i) managing the transla-
tion pipeline through software components and the
crowd; (ii) performing quality control on work-
ers’ output; and (iii) interfacing with crowdsourc-
ing service providers. The multi-stage, Map-
reduce approach simplifies the translation task for
crowd workers, while novel design of user inter-
face makes the task convenient for the worker and
discourages spamming. The system thus offers the
potential to generate high quality parallel corpora
on a large scale.

We discuss related work in Section 2 and the
multi-staged approach which is central to our sys-
tem in Section 3. Section 4 describes the sys-
tem architecture and workflow, while Section 5
presents important aspects of the user interfaces
in the system. We present our preliminary exper-
iments and observations in Section 6. Section 7
concludes the paper, pointing to future directions.

2 Related Work

Lately, crowdsourcing has been explored as a
source for generating data for NLP tasks (Snow
et al., 2008; Callison-Burch and Dredze, 2010).
Specifically, it has been explored as a channel for
collecting different resources for SMT - evalua-
tions of MT output (Callison-Burch, 2009), word
alignments in parallel sentences (Gao et al., 2010)
and post-edited versions of MT output (Aikawa et
al., 2012). Ambati and Vogel (2010), Kunchukut-
tan et al. (2012) have shown the feasibility of
crowdsourcing for collecting parallel corpora and

pointed out that quality assurance is a major issue
for successful translation crowdsourcing.

The most popular methods for quality control
of crowdsourced tasks are based on sampling and
redundancy. For translation crowdsourcing, Am-
bati et al. (2010) use inter-translator agreement for
selection of a good translation from multiple, re-
dundant worker translations. Zaidan and Callison-
Burch (2011) score translations using a feature
based model comprising sentence level, worker
level and crowd ranking based features. However,
automatic evaluation of translation quality is diffi-
cult, such automatic methods being either inaccu-
rate or expensive. Post et al. (2012) have collected
Indic language corpora data utilizing the crowd for
collecting translations as well as validations. The
quality of the validations is ensured using gold-
standard sentence translations. Our approach to
quality control is similar to Post et al. (2012), but
we work at the level of phrases.

While most crowdsourcing activities for data
gathering has been concerned with collecting sim-
ple annotations like relevance judgments, there has
been work to explore the use of crowdsourcing
for more complex tasks, of which translation is
a good example. Little et al. (2010) propose that
many complex tasks can be modeled either as iter-
ative workflows (where workers iteratively build
on each other’s works) or as parallel workflows
(where workers solve the tasks in parallel, with the
best result voted upon later). Kittur et al. (2011)
suggest a map-and-reduce approach to solve com-
plex problems, where a problem is decomposed
into smaller problems, which are solved in the map
stage and the results are combined in the reduce
stage. Our method can be seen as an instance
of the map-reduce approach applied to translation
crowdsourcing, with two map stages (phrase trans-
lation and translation validation) and one reduce
stage (sentence combination).

3 Multi-Stage Crowdsourcing Pipeline

Our system is based on a multi-stage pipeline,
whose central idea is to simplify the translation
task into smaller tasks. The high level block di-
agram of the system is shown in Figure 1. Source
language documents are sentencified using stan-
dard NLP tokenizers and sentence splitters. Ex-
tracted sentences are then split into phrases us-
ing a standard chunker and rule-based merging
of small chunks. This step creates small phrases
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Figure 1: Multistage crowdsourced translation

from complex sentences which can be easily and
independently translated. This leads to a crowd-
sourcing pipeline, with three stages of tasks for the
crowd: Phrase Translation (PT), Phrase Transla-
tion Validation (PV), Sentence Composition (SC).
A group of crowd workers translate source lan-
guage phrases, the translations are validated by a
different group of workers and finally a third group
of workers put the phrase translation together to
create target language sentences. The validation
is done by workers by providing ratings on a k-
point scale. This kind of divide and conquer ap-
proach helps to tackle the complexity of crowd-
sourcing translations since: (1) the tasks are sim-
pler for workers; (2) uniformity of smaller tasks
brings about efficiency as in any industrial assem-
bly line; (3) pricing can be controlled for each
stage depending on the complexity; and (4) quality
control can be performed better for smaller tasks.

4 System Architecture

Figure 2 shows the architecture of TransDoop,
which implements the 3-stage pipeline. The major
design considerations were: (i) translation crowd-
sourcing pipeline should be independent of spe-
cific crowdsourcing platforms; (ii) support multi-
ple crowdsourcing platforms; (iii) customize job
parameters like pricing, quality control method
and task design; and (iv) support multiple lan-
guages and domains.

The core component in the system is the
Crowdsourcing Engine. The engine manages the
execution of the crowdsourcing pipeline, lifecycle
of jobs and quality control of submitted tasks. The
Engine exposes its capabilities through the Re-
quester API, which can be used by clients for
setting up, customizing and monitoring transla-
tion crowdsourcing jobs and controlling their exe-
cution. These capabilities are made available to

requesters via the Requester Portal. In order
to make the crowdsourcing engine independent
of any specific crowdsourcing platform, platform
specific Connectors are developed. The Crowd-
sourcing system makes the tasks to be crowd-
sourced available through the Connector API.
The connectors are responsible for polling the en-
gine for tasks to be crowdsourced, pushing the
tasks to crowdsourcing platforms, hosting worker
interfaces for the tasks and pushing the results
back to the engine after they have been completed
by workers on the crowdsourcing platform. Cur-
rently the system supports the AMT crowdsourc-
ing platform.

Figure 3 depicts the lifecycle of a translation
crowdsourcing job. The requester initiates a trans-
lation job for a document (a set of sentences). The
Crowdsourcing Engine schedules the job for exe-
cution. It first splits each sentence into phrases.
For the job, PT tasks are created and made avail-
able through the Connector API. The connector
for the specified platform periodically polls the
Crowdsourcing Engine via the Connector API.
Once the connector has new PT tasks for crowd-
sourcing, it interacts with the crowdsourcing plat-
form to request crowdsourcing services. The con-
nector monitors the progress of the tasks and on
completion provides the results and execution sta-
tus to the Crowdsourcing Engine. Once all the PT
tasks for the job are completed, the crowdsourcing
Engine initiates the PV task to obtain validations
for the translations. The Quality Control system
kicks in when all the PV tasks for the job have
been completed.

The quality control (QC) relies on a combina-
tion of sampling and redundancy. Each PV task
has a few gold-standard phrase translation pairs,
which is used to ensure that the validators are hon-
estly doing their tasks. The judgments from the
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Figure 2: Architecture of TransDoop

Figure 3: Lifecycle of a Translation Job

good validators are used to determine the quality
of the phrase translation, based on majority voting,
average rating, etc. using multiple judgments col-
lected for each phrase translation. If any phrase
validations or translations are incorrect, then the
corresponding phrases/translations are again sent
to the PT/PV stage as the case may be. This will
continue until all phrase translations in the job are
correctly translated or a pre-configured number of
iterations are done.

Once phrase translations are obtained for all
phrases in a sentence, the Crowdsourcing Engine
creates SC tasks, where the workers are asked
to compose a single correct, coherent translation
from the phrase translation obtained in the previ-
ous stages.

5 User Interfaces

5.1 Worker User Interfaces

This section describes the worker user interfaces
for each stage in the pipeline. These are man-
aged by the Connector and have been designed to
make the task convenient for the worker and pre-
vent spam submissions. In the rest of the section,
we describe the salient features of the PT and SC

UI’s. PV UI is similar to k-scale voting tasks com-
monly found in crowdsourcing platforms.

• Translation UI: Figure 4a shows the trans-
lation UI for the PT stage. The user in-
terface discourages spamming by: (a) dis-
playing source text as images; and (b) alert-
ing workers if they don’t provide a transla-
tion or spend very little time on a task. The
UI also provides transliteration support for
non-Latin scripts (especially helpful for Indic
scripts). A Vocabulary Support, which shows
translation suggestions for word sequences
appearing in the source phrase, is also avail-
able. Suggested translations can be copied to
the input area with ease and speed.

• Sentence Translation Composition UI: The
sentence translation composition UI (shown
in Figure 4b) facilitates composition of sen-
tence translations from phrase translations.
First, the worker can drag and rearrange the
translated phrases into the right order, fol-
lowed by reordering of individual words.
This is important because many Indian lan-
guages have different constituent order ( S-O-
V) with respect to English (S-V-O). Finally,
the synthesized language sentence can be
post-edited to correct spelling, case marking,
inflectional errors, etc. The system also cap-
tures the reordering performed by the worker,
an important byproduct, which can be used
for training reordering models for SMT.

5.2 Requester UI

The system provides a Requester Portal through
which the requester can create, control and mon-
itor jobs and retrieve results. The portal allows
the requester to customize the job during creation
by configuring various parameters: (a) domain
and language pair (b) entire sentence vs multi-
stage translation (c) price for task at each stage
(d) task design (number of tasks in a task group,
etc.) (e) translation redundancy (f) validation qual-
ity parameters. Translation redundancy refers to
the number of translations requested for a source
phrase. Validation redundancy refers to the num-
ber of validations collected for each phrase trans-
lation pair and the redundancy based acceptance
criteria for phrase translations (majority, consen-
sus, threshold, etc.)
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(a) Phrase Translation UI (b) Sentence Composition UI

Figure 4: Worker User Interfaces

6 Experiments and Observations

Using TransDoop, we conducted a set of small-
scale, preliminary translation experiments. We ob-
tained translations for English-Hindi and English-
Marathi language pairs for the Judicial and
Tourism domains. For each experiment, 15 sen-
tences were given as input to the pipeline. For
evaluation, we chose METEOR, a well-known
translation evaluation metric (Banerjee and Lavie,
2005). We compared the results obtained from the
crowdsourcing system with a expert human trans-
lation and the output of Google Translate. We also
compared two expert translations using METEOR
to establish a skyline for the translation accuracy.
Table 1 summarizes the results of our experiments.

The translations with Quality Control and mul-
tistage pipeline are better than Google translations
and translations obtained from the crowd without
any quality control, as evaluated by METEOR.
Multi-stage translation yields better than complete
sentence translation. Moreover, the translation
quality is comparable to that of expert human
translation. This behavior is observed across the
two language pairs and domains. This can be seen
in some examples of crowdsourced translations
obtained through the system which are shown in
Table 2.

Incorrect splitting of sentences can cause diffi-
culties in translation for the worker. For instance,
discontinuous phrases will not be available to the
worker as a single translation unit. In the English
interrogative sentence, the noun phrase splits the
verb phrase, therefore the auxiliary and main verb
could be in different translation units. e.g.

Why did you buy the book?

In addition, the phrase structures of the source

and target languages may not map, making trans-
lation difficult. For instance, the vaala modifier in
Hindi translates to a clause in English. It does not
contain any tense information, therefore the tense
of the English clause cannot be determined by the
worker. e.g.

Lucknow vaalaa ladkaa

could translate to any one of:

the boy who lives/lived/is living in Lucknow
We rely on the worker in sentence composition

stage to correct mistakes due to these inadequacies
and compose a good translation. In addition, the
worker in the PT stage could be provided with the
sentence context for translation. However, there
is a tradeoff between the cognitive load of context
processing versus uncertainty in translation. More
elaborately, to what extent can the cognitive load
be reduced before uncertainty of translation sets
in? Similarly, how much of context can be shown
before the cognitive load becomes pressing?

7 Conclusions

In this system demonstration, we present Trans-
Doop as a translation crowdsourcing system which
has the potential to harness the strength of the
crowd to collect high quality human translations
on a large scale. It simplifies the tedious trans-
lation tasks by decomposing them into several
“easy-to-solve” subtasks while ensuring quality.
Our evaluation on small scale data shows that
the multistage approach performs better than com-
plete sentence translation. We would like to exten-
sively use this platform for large scale experiments
on more language pairs and complex domains like
Health, Parliamentary Proceedings, Technical and
Scientific literature etc. to establish the utility of
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Language Pair Domain Google No QC Translation with QC Reference
Translate single stage multi stage Human

en-mr Tourism 0.227∗ 0.30 0.368 0.372 0.48
en-hi Tourism 0.292 0.363 0.387 0.422 0.51
en-hi Judicial 0.252 0.30 0.388 0.436 0.49

Table 1: Experimental Results: Comparison of METEOR scores for different techniques, language pairs and domains
∗

Translated by an internal Moses-based SMT system

Accordingly the penalty imposed by AO is not justified and the same is cancelled.

isk� an� sAr e aO �ArA lgAy� gy� d\X uEct nhF\ h{ aOr ek hF r� kr EdyA h{

Accordingly A O by imposed penalty justified not is and one also cancel did

tdAn� sAr e ao �ArA lgAyA gyA d\X jAy) nhF\ h{ aOr us� r� kr EdyA h{

Accordingly A O by imposed penalty justified not is and that cancel did

(a) English-Hindi Judicial Translation

A crowd of devotees engulf Haridwar during the time of daily prayer in the evening

fAm m�\ d{Enk þATnA k� smy k� dOrAn BÄo\ ko apnF cp�V m�\ l� hEr�Ar kF BFX

evening in daily prayer of time during devotees its engulf in take Haridwar of crowd

��Al� ao\ kF BFX fAm m�\ d{Enk þATnA k� smy hEr�Ar ko apnF cp�V m�\ l�tF h{

devotees of crowd evening in daily prayer of time haridwar its engulf in take

(b) English-Hindi Tourism Translation

Table 2: Examples of translation from Google and three
staged pipeline for source sentence (2nd, 3rd and 1st rows
of each table respectively). Domains and languages are indi-
cated above.

the method for collection of parallel corpora on a
large scale.
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Abstract
This work presents tSEARCH, a web-based
application that provides mechanisms for
doing complex searches over a collection
of translation cases evaluated with a large
set of diverse measures. tSEARCH uses the
evaluation results obtained with the ASIYA

toolkit for MT evaluation and it is connected
to its on-line GUI, which makes possible
a graphical visualization and interactive ac-
cess to the evaluation results. The search
engine offers a flexible query language al-
lowing to find translation examples match-
ing a combination of numerical and struc-
tural features associated to the calculation of
the quality metrics. Its database design per-
mits a fast response time for all queries sup-
ported on realistic-size test beds. In sum-
mary, tSEARCH, used with ASIYA, offers
developers of MT systems and evaluation
metrics a powerful tool for helping transla-
tion and error analysis.

1 Introduction

In Machine Translation (MT) system develop-
ment, a qualitative analysis of the translations is a
fundamental step in order to spot the limitations of
a system, compare the linguistic abilities of differ-
ent systems or tune the parameters during system
refinement. This is especially true in statistical
MT systems, where usually no special structured
knowledge is used other than parallel data and lan-
guage models, but also on systems that need to
reason over linguistic structures. The need for an-
alyzing and comparing automatic translations with
respect to evaluation metrics is also paramount
for developers of translation quality metrics, who
need elements of analysis to better understand the
behavior of their evaluation measures.

This paper presents tSEARCH, a web applica-
tion that aims to alleviate the burden of manual

analysis that developers have to conduct to as-
sess the translation quality aspects involved in the
above mentioned situations. As a toy example,
consider for instance an evaluation setting with
two systems, s1 and s2, and two evaluation met-
rics m1 and m2. Assume also that m1 scores s1 to
be better than s2 in a particular test set, while m2

predicts just the contrary. In order to analyze this
contradictory evaluation one might be interested in
inspecting from the test set the particular transla-
tion examples that contribute to these results, i.e.,
text segments t for which the translation provided
by s1 is scored better by m1 than the translation
provided by s2 and the opposite behavior regard-
ing metric m2. tSEARCH allows to retrieve (vi-
sualize and export) these sentences with a simple
query in a fast time response. The search can be
further constrained, by requiring certain margins
on the differences, by including other systems or
metrics, or by requiring some specific syntactic or
semantic constructs to appear in the examples.

tSEARCH is build on top of ASIYA (Giménez
and Màrquez, 2010), an open-source toolkit for
MT evaluation; and it can be used along with
the ASIYA ON-LINE INTERFACE (Gonzàlez et al.,
2012), which provides an interactive environment
to examine the sentences. ASIYA allows to ana-
lyze a wide range of linguistic aspects of candi-
date and reference translations using a large set
of automatic and heterogeneous evaluation met-
rics. In particular, it offers a especially rich set
of measures that use syntactic and semantic infor-
mation. The intermediate structures generated by
the parsers, and used to compute the scoring mea-
sures, could be priceless for MT developers, who
can use them to compare the structures of several
translations and see how they affect the perfor-
mance of the metrics, providing more understand-
ing in order to interpret the actual performance of
the automatic translation systems.

tSEARCH consists of: 1) a database that stores
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the resources generated by ASIYA, 2) a query lan-
guage and a search engine able to look through
the information gathered in the database, and 3) a
graphical user interface that assists the user to
write a query, returns the set of sentences that ful-
fill the conditions, and allows to export these re-
sults in XML format. The application is publicly
accessible on-line1, and a brief explanation of its
most important features is given in the demonstra-
tive video.

In the following, Section 2 gives an overview
of the ASIYA toolkit and the information gathered
from the evaluation output. Section 3 and Sec-
tion 4 describe in depth the tSEARCH application
and the on-line interface, respectively. Finally,
Section 5 reviews similar applications in compari-
son to the functionalities addressed by tSEARCH.

2 MT Evaluation with the ASIYA Toolkit

Currently, ASIYA contains more than 800 variants
of MT metrics to measure the similarity between
two translations at several linguistic dimensions.
Moreover, the scores can be calculated at three
granularity levels: system (entire test-set), docu-
ment and sentence (or segment).

As shown in Figure 1, ASIYA requires the user
to provide a test suite. Then, the input files are
processed in order to calculate the annotations, the
parsing trees and the final metric scores. Sev-
eral external components are used for both, met-
ric computation and automatic linguistic analysis2.
The use of these tools depends on the languages
supported and the type of measures that one needs
to obtain. Hence, for instance, lexical-based
measures are computed using the last version
of most popular metrics, such as BLEU, NIST,
METEOR or ROUGE. The syntax-wise measures
need the output of taggers, lemmatizers, parsers

1http://asiya.lsi.upc.edu/demo
2A complete list of external components can be found in

the Technical Manual at the ASIYA web-site

Figure 1: ASIYA processes and data files

and other analyzers. In those cases, ASIYA uses
the SVMTool (Giménez and Màrquez, 2004),
BIOS (Surdeanu et al., 2005), the Charniak-
Johnson and Berkeley constituent parsers (Char-
niak and Johnson, 2005; Petrov and Klein, 2007),
and the MALT dependency parser (Nivre et al.,
2007), among others.

In the tSEARCH platform, the system manages
the communication with an instance of the ASIYA

toolkit running on the server. For every test suite,
the system maintains a synchronized representa-
tion of the input data, the evaluation results and the
linguistic information generated. Then, the system
updates a database where the test suites are stored
for further analysis using the tSEARCH tool, as de-
scribed next.

3 The tSEARCH Tool

tSEARCH offers a graphical search engine to ana-
lyze a given test suite. The system core retrieves
all translation examples that satisfy certain prop-
erties related to either the evaluation scores or the
linguistic structures. The query language designed
is simple and flexible, and it allows to combine
many properties to build sophisticated searches.

The tSEARCH architecture consists of the three
components illustrated in Figure 2: the web-based
interface, the storage system based on NoSQL
technology and the tSEARCH core, composed of
a query parser and a search engine.

The databases (Section 3.1) are fed through the
tSearch Data Loader API used by ASIYA. At
run-time, during the calculation of the measures,
ASIYA inserts all the information being calcu-
lated (metrics and parses) and a number of pre-
calculated variables (e.g., average, mean and per-
centiles). These operations are made in parallel,
which makes the overhead of filling the database
marginal.

The query parser (Section 3.2) receives the
query from the on-line interface and converts it

Figure 2: tSEARCH architecture
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(a) Scores Column Family (b) Statistics Column Family

(c) Linguistic Elements Column Family

Figure 3: tSEARCH data model

into a binary tree structure where each leaf is a sin-
gle part of an operation and each node combines
the partial results of the children. The search en-
gine obtains the final results by processing the tree
bottom-up until the root is reached.

3.1 Data Representation, Storage and Access

The amount of data generated by ASIYA can be
very large for test sets with thousands of sen-
tences. In order to handle the high volume of
information, we decided to use the Apache Cas-
sandra database3, a NoSQL (also known as not
only SQL) solution that deals successfully with
this problem.

It is important to remark that there is no similar-
ity between NoSQL and the traditional relational
database management system model (RDBMS).
Actually, RDBMS uses SQL as its query language
and requires a relational model, whereas NoSQL
databases do not. Besides, the tSEARCH query
language can be complex, with several conditions,
which makes RDBMS perform poorly due the
complexity of the tables. In contrast, NoSQL-
databases use big-tables having many querying
information precalculated as key values, which
yields for direct access to the results.

The Cassandra data model is based on column
families (CF). A CF consists of a set of rows that
are uniquely identified by its key and have a set
of columns as values. So far, the tSEARCH data
model has the three CFs shown in Figure 3. The
scores CF in Figure 3(a) stores information related
to metrics and score values. Each row slot contains
the list of segments that matches the column key.

3http://cassandra.apache.org/

The statistics CF in Figure 3(b) stores basic statis-
tics, such as the minimum, maximum, average,
median and percentiles values for every evaluation
metric. The CF having the linguistic elements in
Figure 3(c) stores the results of the parsers, such
as part-of-speech, grammatical categories and de-
pendency relationships.

One of the goals of NoSQL databases is to ob-
tain the information required in the minimum ac-
cess time. Therefore, the data is stored in the
way required by the tSEARCH application. For
instance, the query BLEU > 0.4 looks for all
segments in the test suite having a BLEU score
greater than 0.4. Thus, in order to get the query
result in constant time, we use the metric identi-
fier as a part of the key for the scores CF, and the
score 0.4 as the column key.

3.2 The Query Language and Parser

The Query Parser module is one of the key ingre-
dients in the tSEARCH application because it de-
termines the query grammar and the allowed op-
erations, and it provides a parsing method to an-
alyze any query and produce a machine-readable
version of its semantics. It is also necessary in or-
der to validate the query.

There are several types of queries, depending on
the operations used: arithmetic comparisons, sta-
tistical functions (e.g., average, quartiles), range
of values, linguistic elements and logical opera-
tors. Furthermore, the queries can be applied at
segment-, document- and/or system-level, and it
is even possible to create any group of systems
or metrics. This is useful, for instance, in or-
der to limit the search to certain type of systems
(e.g., rule-based vs. statistical) and specific met-
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Figure 4: (top) Query operations and functions, (bottom) Queries for group of systems and metrics

rics (e.g., lexical vs. syntactic). All possible query
types are described in the following subsections
(3.2.1 to 3.2.3) and listed in Figure 4.

3.2.1 Segment-level and Metric-based
Queries

The most basic queries are those related to
segment level scores, i.e., obtain all segments
scored above/below a value for a concrete met-
ric. The common comparison operators are sup-
ported, such as for instance, BLEU > 0.4 and
BLEU gt 0.4, that are both correct and equiva-
lent queries.

Basic statistics are also calculated at run-time,
which allows to use statistic variables as values,
e.g., obtain the segments scored in the fourth quar-
tile of BLEU. The maximum, minimum, average,
median and percentile values of each metric are
precalculated and saved into the MAX, MIN, AVG,
MEDIAN and PERC variables, respectively. The
thresholds and quartiles (TH,Q) are calculated at
run-time based on percentiles. MIN and MAX can
also be used and allow to get all segments in the
test set (i.e.,BLEU ge MIN).

The threshold function implies a percentage.
The query BLEU > TH(20) gets all segments
that have a BLEU score greater than the score
value of the bottom 20% of the sentences.

It is also possible to specify an interval of values
using the operator IN[x,y]. The use of paren-
thesis is allowed in order to exclude the bound-
aries. The arguments for this operator can be
either numerical values or the predefined func-
tions for quartiles and percentiles. Therefore,
the following example BLEU IN [TH(20),
TH(30)] returns all segments with a BLEU score
in the range between the threshold of the 20% (in-
cluded) and the 30% (excluded).

The quartile function Q(X) takes a value be-
tween 1 and 4 and returns all segments that
have their score in that quartile. In contrast,
the percentile function generalizes the previous:
PERC(n,M), where 1 < M <= 100; 1 <= n <=
M , returns all the segments with a score in the nth

part, when the range of scores is divided in M parts
of equal size.

Finally, a query can be composed of more than
one criterion. To do so, the logical operators AND
and OR are used to specify intersection and union,
respectively.

3.2.2 System- and Document-level Queries

The queries described next implement the search
procedures for more sophisticated queries involv-
ing system and document level properties, and
also the linguistic information used in the calcu-
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lation of the evaluation measures. The purpose of
this functionality is to answer questions related to
groups of systems and/or metrics.

As explained in the introduction, one may
want to find the segments with good scores
for lexical metrics and, simultaneously, bad
scores for syntactic-based ones, or viceversa.
The following query illustrates how to do
it: ((srb[LEX] > AVG) OR (s3[LEX]
< AVG)) AND ((srb[SYN] < AVG) OR
(s3[SYN] > AVG) ), where srb = {s1, s2}
is the definition of a group of the rule-based
systems s1 and s2, s3 is another transla-
tion system, and LEX={BLEU,NIST} and
SYN={CP-Op(*),SP-Oc(*)} are two groups
of lexical- and syntactic-based measures, respec-
tively. The output of this kind of queries can help
developers to inspect the differences between the
systems that meet these criteria.

Concerning queries at document level, its struc-
ture is the same but applied at document scope.
They may help to find divergences when translat-
ing documents from different domains.

3.2.3 Linguistic Element-based Queries
The last functionality in tSEARCH allows search-
ing the segments that contain specific linguistic
elements (LE), estimated with any of the ana-
lyzers used to calculate the linguistic structures.
Linguistic-wise queries will allow the user to
find segments which match the criteria for any
linguistic feature calculated by ASIYA: part-of-
speech, lemmas, named entities, grammatical cat-
egories, dependency relations, semantic roles and
discourse structures.

We have implemented queries that match
n-grams of lemmas (lemma), parts-of-speech
(pos) and items of shallow (SP) or constituent
parsing (CP), dependency relations (DP) and se-
mantic roles SR, such as LE[lemma(be),
pos(NN,adj), SP(NP,ADJP,VP),
CP(VP,PP)]. The DP function allows also
specifying a compositional criterion (i.e., the
categories of two words and their dependency
relationship) and even a chain of relations, e.g.,
LE[DP(N,nsubj,V,dep,V)]. In turn, the
SR function obtains the segments that match a
verb and its list of arguments, e.g., LE[SR(ask,
A0, A1)].

The asterisk symbol can be used to substi-
tute any LE-item, e.g., LE[SP(NP,*,PP),
DP(*,*,V)]. When combined with semantic

roles, one asterisk substitutes any verb that has all
the arguments specified, e.g., LE[SR(*, A0,
A1)], whereas two asterisks in a row allow
arguments to belong to different verbs in the
same sentence. For instance, LE[SR(**, A1,
AM-TMP)] matches the sentence Those who pre-
fer to save money, may try to wait a few more days,
where the verb wait has the argument AM-TMP
and the verb prefer has the argument A1.

4 On-line Interface and Export of the
Results

tSEARCH is fully accessible on-line through the
ASIYA ON-LINE INTERFACE. The web applica-
tion runs ASIYA remotely, calculates the scores
and fills the tSEARCH database. It also offers the
chance to upload the results of a test suite previ-
ously processed. This way it feeds the database
directly, without the need to run ASIYA.

Anyhow, once the tSEARCH interface is already
accessible, one can see a tools icon on the right
of the search box. It shows the toolbar with all
available metrics, functions and operations. The
search box allows to query the database using the
query language described in Section 3.2.

After typing a query, the user can navigate the
results using three different views that organize
them according to the user preferences: 1) All
segments shows all segments and metrics men-
tioned in the query, the segments can be sorted
by the score, in ascendent or descendent order,
just tapping on the metric name; 2) Grouped by
system groups the segments by system and, for

Figure 5: The tSEARCH Interface
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each system, by document; 3) Grouped by segment
displays the segment organization, which allows
an easy comparison between several translations.
Each group contains all the information related to
a segment number, such as the source and the ref-
erence sentences along with the candidate transla-
tions that matched the query.

Additionally, moving the mouse over the seg-
ments displays a floating box as illustrated in Fig-
ure 5. It shows some relevant information, such
as the source and references segments, the system
that generated the translation, the document which
the segment belongs to, and the scores.

Finally, all output data obtained during the
search can be exported as an XML file. It is possi-
ble to export all segments, or the results structured
by system, by segment, or more specific informa-
tion from the views.

5 Related Work and Conclusions

The ultimate goal of tSEARCH is to provide the
community with a user-friendly tool that facilitates
the qualitative analysis of automatic translations.
Currently, there are no freely available automatic
tools for aiding MT evaluation tasks. For this rea-
son, we believe that tSEARCH can be a useful tool
for MT system and evaluation metric developers.

So far, related works in the field address (semi)-
automatic error analysis from different perspec-
tives. A framework for error analysis and classifi-
cation was proposed in (Vilar et al., 2006), which
has inspired more recent works in the area, such
as (Fishel et al., 2011). They propose a method
for automatic identification of various error types.
The methodology proposed is language indepen-
dent and tackles lexical information. Nonetheless,
it can also take into account language-dependent
information if linguistic analyzers are available.
The user interface presented in (Berka et al., 2012)
provides also automatic error detection and clas-
sification. It is the result of merging the Hjer-
son tool (Popović, 2011) and Addicter (Zeman et
al., 2011). This web application shows alignments
and different types of errors colored.

In contrast, the ASIYA interface and the
tSEARCH tool together facilitate the qualitative
analysis of the evaluation results yet providing
a framework to obtain multiple evaluation met-
rics and linguistic analysis of the translations.
They also provide the mechanisms to search and
find relevant translation examples using a flexible

query language, and to export the results.
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Mark Fishel, Ondřej Bojar, Daniel Zeman, and Jan
Berka. 2011. Automatic Translation Error Analy-
sis. In Proc. 14th Text, Speech and Dialogue (TSD).
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Jesús Giménez and Lluı́s Màrquez. 2010. Asiya: An
Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathe-
matical Linguistics, 94.
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Abstract

VSEM is an open library for visual se-
mantics. Starting from a collection of
tagged images, it is possible to auto-
matically construct an image-based rep-
resentation of concepts by using off-the-
shelf VSEM functionalities. VSEM is en-
tirely written in MATLAB and its object-
oriented design allows a large flexibility
and reusability. The software is accompa-
nied by a website with supporting docu-
mentation and examples.

1 Introduction

In the last years we have witnessed great progress
in the area of automated image analysis. Important
advances, such as the introduction of local features
for a robust description of the image content (see
Mikolajczyk et al. (2005) for a systematic review)
and the bag-of-visual-words method (BoVW)1 for
a standard representation across multiple images
(Sivic and Zisserman, 2003), have contributed to
make image analysis ubiquitous, with applications
ranging from robotics to biology, from medicine to
photography.

Two facts have played a key role in the rapid ad-
vance of these ideas. First, the introduction of very
well defined challenges which have been attracting
also a wide community of “outsiders" specialized
in a variety of disciplines (e.g., machine learning,
neural networks, graphical models and natural lan-
guage processing). Second, the sharing of effec-
tive, well documented implementations of cutting
edge image analysis algorithms, such as OpenCV2

1Bag-of-visual-words model is a popular technique for
image classification inspired by the traditional bag-of-words
model in Information Retrieval. It represents an image with
discrete image-describing features. Visual words are iden-
tified by clustering a large corpus of lower-level continuous
features.

2http://opencv.org/

and VLFeat.3

A comparable story can be told about automatic
text analysis. The last decades have seen a long
series of successes in the processing of large text
corpora in order to extract more or less structured
semantic knowledge. In particular, under the as-
sumption that meaning can be captured by patterns
of co-occurrences of words, distributional seman-
tic models such as Latent Semantic Analysis (Lan-
dauer and Dumais, 1997) or Topic Models (Blei
et al., 2003) have been shown to be very effective
both in general semantic tasks such as approximat-
ing human intuitions about meaning, as well as in
more application-driven tasks such as information
retrieval, word disambiguation and query expan-
sion (Turney and Pantel, 2010). And also in the
case of automated text analysis, a wide range of
method implementations are at the disposal of the
scientific community.4

Nowadays, given the parallel success of the two
disciplines, there is growing interest in making
the visual and textual channels interact for mutual
benefit. If we look at the image analysis commu-
nity, we discover a well established tradition of
studies that exploit both channels of information.
For example, there is a relatively extended amount
of literature about enhancing the performance on
visual tasks such as object recognition or image re-
trieval by replacing a purely image-based pipeline
with hybrid methods augmented with textual in-
formation (Barnard et al., 2003; Farhadi et al.,
2009; Berg et al., 2010; Kulkarni et al., 2011).

Unfortunately, the same cannot be said of the
exploitation of image analysis from within the text
community. Despite the huge potential that au-
tomatically induced visual features could repre-
sent as a new source of perceptually grounded

3http://www.vlfeat.org/
4See for example the annotated list of corpus-based

computational linguistics resources at http://www-nlp.
stanford.edu/links/statnlp.html.

187



semantic knowledge,5 image-enhanced models of
semantics developed so far (Feng and Lapata,
2010; Bruni et al., 2011; Leong and Mihalcea,
2011; Bergsma and Goebel, 2011; Bruni et al.,
2012a; Bruni et al., 2012b) have only scratched
this great potential and are still considered as
proof-of-concept studies only.

One possible reason of this delay with respect to
the image analysis community might be ascribed
to the high entry barriers that NLP researchers
adopting image analysis methods have to face. Al-
though many of the image analysis toolkits are
open source and well documented, they mainly ad-
dress users within the same community and there-
fore their use is not as intuitive for others. The
final goal of libraries such VLFeat and OpenCV
is the representation and classification of images.
Therefore, they naturally lack of a series of com-
plementary functionalities that are necessary to
bring the visual representation to the level of se-
mantic concepts.6

To fill the gap we just described, we present
hereby VSEM,7 a novel toolkit which allows the
extraction of image-based representations of con-
cepts in an easy fashion. VSEM is equipped with
state-of-the-art algorithms, from low-level feature
detection and description up to the BoVW repre-
sentation of images, together with a set of new rou-
tines necessary to move from an image-wise to a
concept-wise representation of image content. In
a nutshell, VSEM extracts visual information in a
way that resembles how it is done for automatic
text analysis. Thanks to BoVW, the image con-
tent is indeed discretized and visual units some-
how comparable to words in text are produced (the
visual words). In this way, from a corpus of im-
ages annotated with a set of concepts, it is pos-
sible to derive semantic vectors of co-occurrence
counts of concepts and visual words akin to the
representations of words in terms of textual collo-
cates in standard distributional semantics. Impor-

5In recent years, a conspicuous literature of studies has
surfaced, wherein demonstration was made of how text based
models are not sufficiently good at capturing the environment
we acquire language from. This is due to the fact that they
are lacking of perceptual information (Andrews et al., 2009;
Baroni et al., 2010; Baroni and Lenci, 2008; Riordan and
Jones, 2011).

6The authors of the aforementioned studies usually refer
to words instead of concepts. We chose to call them concepts
to account for the both theoretical and practical differences
standing between a word and the perceptual information it
brings along, which we define its concept.

7http://clic.cimec.unitn.it/vsem/

tantly, the obtained visual semantic vectors can be
easily combined with more traditional text-based
vectors to arrive at a multimodal representation of
meaning (see e.g. (Bruni et al., 2011)). It has
been shown that the resulting multimodal models
perform better than text-only models in semantic
tasks such as approximating semantic similarity
and relatedness ((Feng and Lapata, 2010; Bruni et
al., 2012b)).

VSEM functionalities concerning image anal-
ysis is based on VLFeat (Vedaldi and Fulkerson,
2010). This guarantees that the image analysis un-
derpinnings of the library are well maintained and
state-of-the-art.

The rest of the paper is organized as follows.
In Section 2 we introduce the procedure to obtain
an image-based representation of a concept. Sec-
tion 3 describes the VSEM architecture. Section
4 shows how to install and run VSEM through
an example that uses the Pascal VOC data set.
Section 5 concludes summarizing the material and
discussing further directions.

2 Background

As shown by Feng and Lapata (2010), Bruni et
al. (2011) and Leong and Mihalcea (2011), it is
possible to construct an image-based representa-
tion of a set of target concepts by starting from a
collection of images depicting those concepts, en-
coding the image contents into low-level features
(e.g., SIFT) and scaling up to a higher level rep-
resentation, based on the well-established BoVW
method to represent images. In addition, as shown
by Bruni et al. (2012b), better representations can
be extracted if the object depicting the concept is
first localized in the image.

More in detail, the pipeline encapsulating the
whole process mentioned above takes as input a
collection of images together with their associated
tags and optionally object location annotations. Its
output is a set of concept representation vectors
for individual tags. The following steps are in-
volved: (i) extraction of local image features, (ii)
visual vocabulary construction, (iii) encoding the
local features in a BoVW histogram, (iv) including
spatial information with spatial binning, (v) aggre-
gation of visual words on a per-concept basis in
order to obtain the co-occurrence counts for each
concept and (vi) transforming the counts into asso-
ciation scores and/or reducing the dimensionality
of the data. A brief description of the individual
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feature extraction

Figure 1: An example of a visual vocabulary cre-
ation pipeline. From a set of images, a larger set
of features are extracted and clustered, forming the
visual vocabulary.

steps follows.

Local features Local features are designed to
find local image structures in a repeatable fash-
ion and to represent them in robust ways that are
invariant to typical image transformations, such
as translation, rotation, scaling, and affine defor-
mation. Local features constitute the basis of
approaches developed to automatically recognize
specific objects (Grauman and Leibe, 2011). The
most popular local feature extraction method is the
Scale Invariant Feature Transform (SIFT), intro-
duced by Lowe (2004). VSEM uses the VLFeat
implementation of SIFT.

Visual vocabulary To obtain a BoVW repre-
sentation of the image content, a large set of lo-
cal features extracted from a large corpus of im-
ages are clustered. In this way the local fea-
ture space is divided into informative regions (vi-
sual words) and the collection of the obtained vi-
sual words is called visual vocabulary. k-means
is the most commonly used clustering algorithm
(Grauman and Leibe, 2011). In the special case
of Fisher encoding (see below), the clustering of
the features is performed with a Gaussian mixture
model (GMM), see Perronnin et al. (2010). Fig-
ure 1 exemplifies a visual vocabulary construction
pipeline. VSEM contains both the k-means and
the GMM implementations.

Encoding The encoding step maps the local fea-
tures extracted from an image to the correspond-
ing visual words of the previously created vocab-
ulary. The most common encoding strategy is
called hard quantization, which assigns each fea-
ture to the nearest visual word’s centroid (in Eu-
clidean distance). Recently, more effective encod-
ing methods have been introduced, among which
the Fisher encoding (Perronnin et al., 2010) has
been shown to outperform all the others (Chatfield

et al., 2011). VSEM uses both the hard quantiza-
tion and the Fisher encoding.

Spatial binning A consolidated way of intro-
ducing spatial information in BoVW is the use of
spatial histograms (Lazebnik et al., 2006). The
main idea is to divide the image into several (spa-
tial) regions, compute the encoding for each region
and stack the resulting histograms. This technique
is referred to as spatial binning and it is imple-
mented in VSEM. Figure 2 exemplifies the BoVW
pipeline for a single image, involving local fea-
tures extraction, encoding and spatial binning.

  

feature extraction spatial binningencoding

Figure 2: An example of a BoVW representation
pipeline for an image. Figure inspired by Chatfield
et al. (2011). Each feature extracted from the tar-
get image is assigned to the corresponding visual
word(s). Then, spatial binning is performed.

Moreover, the input of spatial binning can be
further refined by introducing localization. Three
different types of localization are typically used:
global, object, and surrounding. Global extracts
visual information from the whole image and it is
also the default option when the localization in-
formation is missing. Object extracts visual infor-
mation from the object location only and the sur-
rounding extracts visual information from outside
the object location. Localization itself can either
be done by humans (or ground truth annotation)
but also by existing localization methods (Uijlings
et al., 2013).

For localization, VSEM uses annotated object
locations (in the format of bounding boxes) of the
target object.

Aggregation Since each concept is represented
by multiple images, an aggregation function for
pooling the visual word occurrences across images
has to be defined. As far as we know, the sum
function has been the only function utilized so far.
An example for the aggregation step is sketched in
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Figure 3: An example of a concept representa-
tion pipeline for cat. First, several images depict-
ing a cat are represented as vectors of visual word
counts and, second, the vectors are aggregated into
one single concept vector.

figure 3. VSEM offers an implementation of the
sum function.

Transformations Once the concept-
representing visual vectors are built, two types
of transformation can be performed over them to
refine their raw visual word counts: association
scores and dimensionality reduction. So far,
the vectors that we have obtained represent co-
occurrence counts of visual words with concepts.
The goal of association scores is to distinguish
interesting co-occurrences from those that are due
to chance. In order to do this, VSEM implements
two versions of mutual information (pointwise
and local), see Evert (2005).

On the other hand, dimensionality reduction
leads to matrices that are smaller and easier to
work with. Moreover, some techniques are able
to smooth the matrices and uncover latent dimen-
sions. Common dimensionality reduction methods
are singular value decomposition (Manning et al.,
2008), non-negative matrix factorization (Lee and
Seung, 2001) and neural networks (Hinton and
Salakhutdinov, 2006). VSEM implements the sin-
gular value decomposition method.

3 Framework design

VSEM offers a friendly implementation of the
pipeline described in Section 2. The framework is
organized into five parts, which correspond to an
equal number of MATLAB packages and it is writ-
ten in object-oriented programming to encourage

reusability. A description of the packages follows.

• datasets This package contains the code
that manages the image data sets. We al-
ready provide a generic wrapper for sev-
eral possible dataset formats (VsemDataset
). Therefore, to use a new image data set
two solutions are possible: either write a
new class which extends GenericDataset or
use directly VsemDataset after having rear-
ranged the new data as described in help

VsemDataset.

• vision This package contains the code for
extracting the bag-of-visual-words represen-
tation of images. In the majority of cases,
it can be used as a “black box” by the user.
Nevertheless, if the user wants to add new
functionalities such as new features or encod-
ings, this is possible by simply extending the
corresponding generic classes and the class
VsemHistogramExtractor.

• concepts This is the package that deals
with the construction of the image-based rep-
resentation of concepts. concepts is the
most important package of VSEM. It ap-
plies the image analysis methods to obtain the
BoVW representation of the image data and
then aggregates visual word counts concept-
wise. The main class of this package is
ConceptSpace, which takes care of storing
concepts names and vectors and provides
managing and transformation utilities as its
methods.

• benchmarks VSEM offers a benchmarking
suite to assess the quality of the visual con-
cept representations. For example, it can be
used to find the optimal parametrization of
the visual pipeline.

• helpers This package contains supporting
classes. There is a general helpers with
functionalities shared across packages and
several package specific helpers.

4 Getting started

Installation VSEM can be easily installed by
running the file vsemSetup.m. Moreover, pascal-
DatasetSetup.m can be run to download and place
the popular dataset, integrating it in the current
pipeline.
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Documentation All the MATLAB commands
of VSEM are self documented (e.g. help vsem)
and an HTML version of the MATLAB command
documentation is available from the VSEM web-
site.

The Pascal VOC demo The Pascal VOC demo
provides a comprehensive example of the work-
ings of VSEM. From the demo file pascalVQDemo

.mmultiple configurations are accessible. Addi-
tional settings are available and documented for
each function, class or package in the toolbox (see
Documentation).

Running the demo file executes the following
lines of code and returns as output ConceptSpace,
which contains the visual concept representations
for the Pascal data set.

% Create a matlab structure with the
% whole set of images in the Pascal
% dataset along with their annotation
dataset = datasets.VsemDataset(

configuration.imagesPath,’
annotationFolder’,configuration.
annotationPath);

% Initiate the class that handles
% the extraction of visual features.
featureExtractor = vision.features.

PhowFeatureExtractor();

% Create the visual vocabulary
vocabulary = KmeansVocabulary.

trainVocabulary(dataset,
featureExtractor);

% Calculate semantic vectors
conceptSpace = conceptExtractor.

extractConcepts(dataset,
histogramExtractor);

% Compute pointwise mutual
% information
conceptSpace = conceptSpace.reweight();

% Conclude the demo, computing
% the similarity of correlation
% measures of the 190 possible
% pair of concepts from the Pascal
% dataset against a gold standard
[correlationScore, p-value] =

similarityBenchmark.computeBenchmark
(conceptSpace,similarityExtractor);

5 Conclusions

We have introduced VSEM, an open library for vi-
sual semantics. With VSEM it is possible to ex-
tract visual semantic information from tagged im-
ages and arrange such information into concept
representations according to the tenets of distri-
butional semantics, as applied to images instead

of text. To analyze images, it uses state-of-the-art
techniques such as the SIFT features and the bag-
of-visual-words with spatial pyramid and Fisher
encoding. In the future, we would like to add
automatic localization strategies, new aggregation
functions and a completely new package for fusing
image- and text-based representations.
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Abstract

We describe Docent, an open-source de-
coder for statistical machine translation
that breaks with the usual sentence-by-
sentence paradigm and translates complete
documents as units. By taking transla-
tion to the document level, our decoder
can handle feature models with arbitrary
discourse-wide dependencies and consti-
tutes an essential infrastructure compon-
ent in the quest for discourse-aware SMT
models.

1 Motivation

Most of the research on statistical machine trans-
lation (SMT) that was conducted during the last
20 years treated every text as a “bag of sentences”
and disregarded all relations between elements in
different sentences. Systematic research into ex-
plicitly discourse-related problems has only begun
very recently in the SMT community (Hardmeier,
2012) with work on topics such as pronominal
anaphora (Le Nagard and Koehn, 2010; Hard-
meier and Federico, 2010; Guillou, 2012), verb
tense (Gong et al., 2012) and discourse connect-
ives (Meyer et al., 2012).

One of the problems that hamper the develop-
ment of cross-sentence models for SMT is the fact
that the assumption of sentence independence is
at the heart of the dynamic programming (DP)
beam search algorithm most commonly used for
decoding in phrase-based SMT systems (Koehn et
al., 2003). For integrating cross-sentence features
into the decoding process, researchers had to adopt
strategies like two-pass decoding (Le Nagard and
Koehn, 2010). We have previously proposed an
algorithm for document-level phrase-based SMT
decoding (Hardmeier et al., 2012). Our decoding
algorithm is based on local search instead of dy-
namic programming and permits the integration of

document-level models with unrestricted depend-
encies, so that a model score can be conditioned on
arbitrary elements occurring anywhere in the input
document or in the translation that is being gen-
erated. In this paper, we present an open-source
implementation of this search algorithm. The de-
coder is written in C++ and follows an object-
oriented design that makes it easy to extend it with
new feature models, new search operations or dif-
ferent types of local search algorithms. The code
is released under the GNU General Public License
and published on Github1 to make it easy for other
researchers to use it in their own experiments.

2 Document-Level Decoding with Local
Search

Our decoder is based on the phrase-based SMT
model described by Koehn et al. (2003) and im-
plemented, for example, in the popular Moses
decoder (Koehn et al., 2007). Translation is
performed by splitting the input sentence into
a number of contiguous word sequences, called
phrases, which are translated into the target lan-
guage through a phrase dictionary lookup and op-
tionally reordered. The choice between different
translations of an ambiguous source phrase and the
ordering of the target phrases are guided by a scor-
ing function that combines a set of scores taken
from the phrase table with scores from other mod-
els such as an n-gram language model. The actual
translation process is realised as a search for the
highest-scoring translation in the space of all the
possible translations that could be generated given
the models.

The decoding approach that is implemented in
Docent was first proposed by Hardmeier et al.
(2012) and is based on local search. This means
that it has a state corresponding to a complete, if
possibly bad, translation of a document at every

1https://github.com/chardmeier/docent/wiki
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stage of the search progress. Search proceeds by
making small changes to the current search state in
order to transform it gradually into a better trans-
lation. This differs from the DP algorithm used in
other decoders, which starts with an empty trans-
lation and expands it bit by bit. It is similar to
previous work on phrase-based SMT decoding by
Langlais et al. (2007), but enables the creation of
document-level models, which was not addressed
by earlier approaches.

Docent currently implements two search al-
gorithms that are different generalisations of the
hill climbing local search algorithm by Hardmeier
et al. (2012). The original hill climbing algorithm
starts with an initial state and generates possible
successor states by randomly applying simple ele-
mentary operations to the state. After each op-
eration, the new state is scored and accepted if
its score is better than that of the previous state,
else rejected. Search terminates when the decoder
cannot find an acceptable successor state after a
certain number of attempts, or when a maximum
number of steps is reached.

Simulated annealing is a stochastic variant of
hill climbing that always accepts moves towards
better states, but can also accept moves towards
lower-scoring states with a certain probability that
depends on a temperature parameter in order to
escape local maxima. Local beam search gener-
alises hill climbing in a different way by keeping
a beam of a fixed number of multiple states at any
time and randomly picking a state from the beam
to modify at each move. The original hill climb-
ing procedure can be recovered as a special case
of either one of these search algorithms, by call-
ing simulated annealing with a fixed temperature
of 0 or local beam search with a beam size of 1.

Initial states for the search process can be gen-
erated either by selecting a random segmentation
with random translations from the phrase table in
monotonic order, or by running DP beam search
with sentence-local models as a first pass. For
the second option, which generally yields better
search results, Docent is linked with the Moses
decoder and makes direct calls to the DP beam
search algorithm implemented by Moses. In addi-
tion to these state initialisation procedures, Docent
can save a search state to a disk file which can be
loaded again in a subsequent decoding pass. This
saves time especially when running repeated ex-
periments from the same starting point obtained

by DP search.
In order to explore the complete search space

of phrase-based SMT, the search operations in a
local search decoder must be able to change the
phrase translations, the order of the output phrases
and the segmentation of the source sentence into
phrases. The three operations used by Hardmeier
et al. (2012), change-phrase-translation, reseg-
ment and swap-phrases, jointly meet this require-
ment and are all implemented in Docent. Addi-
tionally, Docent features three extra operations, all
of which affect the target word order: The move-
phrases operation moves a phrase to another loca-
tion in the sentence. Unlike swap-phrases, it does
not require that another phrase be moved in the
opposite direction at the same time. A pair of
operations called permute-phrases and linearise-
phrases can reorder a sequence of phrases into ran-
dom order and back into the order corresponding
to the source language.

Since the search algorithm in Docent is
stochastic, repeated runs of the decoder will gen-
erally produce different output. However, the vari-
ance of the output is usually small, especially
when initialising with a DP search pass, and it
tends to be lower than the variance introduced
by feature weight tuning (Hardmeier et al., 2012;
Stymne et al., 2013a).

3 Available Feature Models

In its current version, Docent implements a selec-
tion of sentence-local feature models that makes
it possible to build a baseline system with a con-
figuration comparable to that of a typical Moses
baseline system. The published source code
also includes prototype implementations of a few
document-level models. These models should be
considered work in progress and serve as a demon-
stration of the cross-sentence modelling capabilit-
ies of the decoder. They have not yet reached a
state of maturity that would make them suitable
for production use.

The sentence-level models provided by Docent
include the phrase table, n-gram language models
implemented with the KenLM toolkit (Heafield,
2011), an unlexicalised distortion cost model with
geometric decay (Koehn et al., 2003) and a word
penalty cost. All of these features are designed
to be compatible with the corresponding features
in Moses. From among the typical set of baseline
features in Moses, we have not implemented the
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lexicalised distortion model, but this model could
easily be added if required. Docent uses the same
binary file format for phrase tables as Moses, so
the same training apparatus can be used.

DP-based SMT decoders have a parameter
called distortion limit that limits the difference in
word order between the input and the MT out-
put. In DP search, this is formally considered to
be a parameter of the search algorithm because it
affects the algorithmic complexity of the search
by controlling how many translation options must
be considered at each hypothesis expansion. The
stochastic search algorithm in Docent does not re-
quire this limitation, but it can still be useful be-
cause the standard models of SMT do not model
long-distance reordering well. Docent therefore
includes a separate indicator feature to indicate
a violated distortion limit. In conjunction with a
very large weight, this feature can effectively en-
sure that the distortion limit is enforced. In con-
trast with the distortion limit parameter of a DP de-
coder, the weight of our distortion limit feature can
potentially be tuned to permit occasional distor-
tion limit violations when they contribute to better
translations.

The document-level models included in Docent
include a length parity model, a semantic lan-
guage model as well as a collection of document-
level readability models. The length parity model
is a proof-of-concept model that ensures that all
sentences in a document have either consistently
odd or consistently even length. It serves mostly as
a template to demonstrate how a simple document-
level model can be implemented in the decoder.
The semantic language model was originally pro-
posed by Hardmeier et al. (2012) to improve lex-
ical cohesion in a document. It is a cross-sentence
model over sequences of content words that are
scored based on their similarity in a word vector
space. The readability models serve to improve
the readability of the translation by encouraging
the selection of easier and more consistent target
words. They are described and demonstrated in
more detail in section 5.

Docent can read input files both in the NIST-
XML format commonly used to encode docu-
ments in MT shared tasks such as NIST or WMT
and in the more elaborate MMAX format (Müller
and Strube, 2003). The MMAX format makes
it possible to include a wide range of discourse-
level corpus annotations such as coreference links.

These annotations can then be accessed by the
feature models. To allow for additional target-
language information such as morphological fea-
tures of target words, Docent can handle simple
word-level annotations that are encoded in the
phrase table in the same way as target language
factors in Moses.

In order to optimise feature weights we have
adapted the Moses tuning infrastructure to Do-
cent. In this way we can take advantage of all its
features, for instance using different optimisation
algorithms such as MERT (Och, 2003) or PRO
(Hopkins and May, 2011), and selective tuning of
a subset of features. Since document features only
give meaningful scores on the document level and
not on the sentence level, we naturally perform
optimisation on document level, which typically
means that we need more data than for the op-
timisation of sentence-based decoding. The res-
ults we obtain are relatively stable and competit-
ive with sentence-level optimisation of the same
models (Stymne et al., 2013a).

4 Implementing Feature Models
Efficiently

While translating a document, the local search de-
coder attempts to make a great number of moves.
For each move, a score must be computed and
tested against the acceptance criterion. An over-
whelming majority of the proposed moves will be
rejected. In order to achieve reasonably fast de-
coding times, efficient scoring is paramount. Re-
computing the scores of the whole document at
every step would be far too slow for the decoder
to be useful. Fortunately, score computation can
be sped up in two ways. Knowledge about how
the state to be scored was generated from its pre-
decessor helps to limit recomputations to a min-
imum, and by adopting a two-step scoring proced-
ure that just computes the scores that can be calcu-
lated with little effort at first, we need to compute
the complete score only if the new state has some
chance of being accepted.

The scores of SMT feature models can usu-
ally be decomposed in some way over parts of
the document. The traditional models borrowed
from sentence-based decoding are necessarily de-
composable at the sentence level, and in practice,
all common models are designed to meet the con-
straints of DP beam search, which ensures that
they can in fact be decomposed over even smal-
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ler sequences of just a few words. For genuine
document-level features, this is not the case, but
even these models can often be decomposed in
some way, for instance over paragraphs, anaphoric
links or lexical chains. To take advantage of this
fact, feature models in Docent always have access
to the previous state and its score and to a list of
the state modifications that transform the previous
state into the next. The scores of the new state are
calculated by identifying the parts of a document
that are affected by the modifications, subtract-
ing the old scores of this part from the previous
score and adding the new scores. This approach
to scoring makes feature model implementation
a bit more complicated than in DP search, but it
gives the feature models full control over how they
decompose a document while still permitting effi-
cient decoding.

A feature model class in Docent implements
three methods. The initDocument method is called
once per document when decoding starts. It
straightforwardly computes the model score for
the entire document from scratch. When a state
is modified, the decoder first invokes the estim-
ateScoreUpdate method. Rather than calculating
the new score exactly, this method is only required
to return an upper bound that reflects the max-
imum score that could possibly be achieved by this
state. The search algorithm then checks this upper
bound against the acceptance criterion. Only if the
upper bound meets the criterion does it call the
updateScore method to calculate the exact score,
which is then checked against the acceptance cri-
terion again.

The motivation for this two-step procedure is
that some models can compute an upper bound ap-
proximation much more efficiently than an exact
score. For any model whose score is a log probab-
ility, a value of 0 is a loose upper bound that can
be returned instantly, but in many cases, we can do
much better. In the case of the n-gram language
model, for instance, a more accurate upper bound
can be computed cheaply by subtracting from the
old score all log-probabilities of n-grams that are
affected by the state modifications without adding
the scores of the n-grams replacing them in the
new state. This approximation can be calculated
without doing any language model lookups at all.
On the other hand, some models like the distor-
tion cost or the word penalty are very cheap to
compute, so that the estimateScoreUpdate method

can simply return the precise score as a tight up-
per bound. If a state gets rejected because of a
low score on one of the cheap models, this means
we will never have to compute the more expensive
feature scores at all.

5 Readability: A Case Study

As a case study we report initial results on how
document-wide features can be used in Docent in
order to improve the readability of texts by encour-
aging simple and consistent terminology (Stymne
et al., 2013b). This work is a first step towards
achieving joint SMT and text simplification, with
the final goal of adapting MT to user groups such
as people with reading disabilities.

Lexical consistency modelling for SMT has
been attempted before. The suggested approaches
have been limited by the use of sentence-level
decoders, however, and had to resort to proced-
ures like post processing (Carpuat, 2009), multiple
decoding runs with frozen counts from previous
runs (Ture et al., 2012), or cache-based models
(Tiedemann, 2010). In Docent, however, we al-
ways have access to a full document translation,
which makes it straightforward to include features
directly into the decoder.

We implemented four features on the document
level. The first two features are type token ra-
tio (TTR) and a reformulation of it, OVIX, which
is less sensitive to text length. These ratios have
been related to the “idea density” of a text (Müh-
lenbock and Kokkinakis, 2009). We also wanted
to encourage consistent translations of words, for
which we used the Q-value (Deléger et al., 2006),
which has been proposed to measure term qual-
ity. We applied it on word level (QW) and phrase
level (QP). These features need access to the full
target document, which we have in Docent. In ad-
dition, we included two sentence-level count fea-
tures for long words that have been used to meas-
ure the readability of Swedish texts (Mühlenbock
and Kokkinakis, 2009).

We tested our features on English–Swedish
translation using the Europarl corpus. For train-
ing we used 1,488,322 sentences. As test data, we
extracted 20 documents with a total of 690 sen-
tences. We used the standard set of baseline fea-
tures: 5-gram language model, translation model
with 5 weights, a word penalty and a distortion
penalty.
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Baseline Readability features Comment
de ärade ledamöterna (the honourable
Members)

ledamöterna (the members) / ni
(you)

+ Removal of non-essential words

på ett sådant sätt att (in such a way
that)

så att (so that) + Simplified expression

gemenskapslagstiftningen (the
community legislation)

gemenskapens lagstiftning (the
community’s legislation)

+ Shorter words by changing long
compound to genitive construction

Världshandelsorganisationen (World
Trade Organisation)

WTO (WTO) − Changing long compound to
English-based abbreviation

handlingsplanen (the action plan) planen (the plan) − Removal of important word
ägnat särskild uppmärksamhet åt (paid
particular attention to)

särskilt uppmärksam på
(particular attentive on)

− Bad grammar because of changed
part of speech and missing verb

Table 2: Example translation snippets with comments

Feature BLEU OVIX LIX
Baseline 0.243 56.88 51.17
TTR 0.243 55.25 51.04
OVIX 0.243 54.65 51.00
QW 0.242 57.16 51.16
QP 0.243 57.07 51.06
All 0.235 47.80 49.29

Table 1: Results for adding single lexical consist-
ency features to Docent

To evaluate our system we used the BLEU score
(Papineni et al., 2002) together with a set of read-
ability metrics, since readability is what we hoped
to improve by adding consistency features. Here
we used OVIX to confirm a direct impact on con-
sistency, and LIX (Björnsson, 1968), which is a
common readability measure for Swedish. Unfor-
tunately we do not have access to simplified trans-
lated text, so we calculate the MT metrics against a
standard reference, which means that simple texts
will likely have worse scores than complicated
texts closer to the reference translation.

We tuned the standard features using Moses and
MERT, and then added each lexical consistency
feature with a small weight, using a grid search ap-
proach to find values with a small impact. The res-
ults are shown in Table 1. As can be seen, for in-
dividual features the translation quality was main-
tained, with small improvements in LIX, and in
OVIX for the TTR and OVIX features. For the
combination we lost a little bit on translation qual-
ity, but there was a larger effect on the readability
metrics. When we used larger weights, there was
a bigger impact on the readability metrics, with a
further decrease on MT quality.

We also investigated what types of changes the
readability features could lead to. Table 2 shows a
sample of translations where the baseline is com-
pared to systems with readability features. There
are both cases where the readability features help

and cases where they are problematic. Overall,
these examples show that our simple features can
help achieve some interesting simplifications.

There is still much work to do on how to take
best advantage of the possibilities in Docent in or-
der to achieve readable texts. This attempt shows
the feasibility of the approach. We plan to ex-
tend this work for instance by better feature op-
timisation, by integrating part-of-speech tags into
our features in order to focus on terms rather than
common words, and by using simplified texts for
evaluation and tuning.

6 Conclusions

In this paper, we have presented Docent, an open-
source document-level decoder for phrase-based
SMT released under the GNU General Public Li-
cense. Docent is the first decoder that permits the
inclusion of feature models with unrestricted de-
pendencies between arbitrary parts of the output,
even crossing sentence boundaries. A number of
research groups have recently started to investig-
ate the interplay between SMT and discourse-level
phenomena such as pronominal anaphora, verb
tense selection and the generation of discourse
connectives. We expect that the availability of a
document-level decoder will make it substantially
easier to leverage discourse information in SMT
and make SMT models explore new ground bey-
ond the next sentence boundary.
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Abstract

We present an open-source framework
for large-scale online structured learning.
Developed with the flexibility to handle
cost-augmented inference problems such
as statistical machine translation (SMT),
our large-margin learner can be used with
any decoder. Integration with MapReduce
using Hadoop streaming allows efficient
scaling with increasing size of training
data. Although designed with a focus
on SMT, the decoder-agnostic design of
our learner allows easy future extension to
other structured learning problems such as
sequence labeling and parsing.

1 Introduction

Structured learning problems such as sequence la-
beling or parsing, where the output has a rich in-
ternal structure, commonly arise in NLP. While
batch learning algorithms adapted for structured
learning such as CRFs (Lafferty et al., 2001)
and structural SVMs (Joachims, 1998) have re-
ceived much attention, online methods such as
the structured perceptron (Collins, 2002) and a
family of Passive-Aggressive algorithms (Cram-
mer et al., 2006) have recently gained promi-
nence across many tasks, including part-of-speech
tagging (Shen, 2007), parsing (McDonald et
al., 2005) and statistical machine translation
(SMT) (Chiang, 2012), due to their ability to deal
with large training sets and high-dimensional in-
put representations.

Unlike batch learners, which must consider all
examples when optimizing the objective, online
learners operate in rounds, optimizing using one
example or a handful of examples at a time. This
online nature offers several attractive properties,
facilitating scaling to large training sets while re-
maining simple and offering fast convergence.

Mr. MIRA, the open source system1 de-
scribed in this paper, implements an online large-
margin structured learning algorithm based on
MIRA (§2.1), for cost-augmented online large-
scale training in high-dimensional feature spaces.
Our contribution lies in providing the first pub-
lished decoder-agnostic parallelization of MIRA
with Hadoop for structured learning.

While the current demonstrated application fo-
cuses on large-scale discriminative training for
machine translation, the learning algorithm is gen-
eral with respect to the inference algorithm em-
ployed. We are able to decouple our learner en-
tirely from the MT decoder, allowing users to
specify their own inference procedure through a
simple text communication protocol (§2.2). The
learner only requires k-best output with feature
vectors, as well as the specification of a cost func-
tion. Standard automatic evaluation metrics for
MT, such as BLEU (Papineni et al., 2002) and TER

(Snover et al., 2006), have already been imple-
mented. Furthermore, our system can be extended
to other structured learning problems with a min-
imal amount of effort, simply by implementing a
task-specific cost function and specifying an ap-
propriate decoder.

Through Hadoop streaming, our system can
take advantage of commodity clusters to handle
large-scale training (§3), while also being capable
of running in environments ranging from a single
machine to a PBS-managed batch cluster. Experi-
mental results (§4) show that it scales linearly and
makes fast parameter tuning on large tuning sets
for SMT practical.

2 Learning and Inference
2.1 Online Large-Margin Learning
MIRA is a popular online large-margin structured
learning method for NLP tasks (McDonald et al.,
2005; Chiang et al., 2009; Chiang, 2012). The

1https://github.com/kho/mr-mira
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main intuition is that we want our model to enforce
a margin between the correct and incorrect out-
puts of a sentence that agrees with our cost func-
tion. This is done by making the smallest update
we can to our parameters, w, on every sentence,
that will ensure that the difference in model scores
δfi(y

′) = w>(f(xi, y
+) − f(xi, y

′)) between the
correct output y+ and incorrect output y′ is at least
as large as the cost, ∆i(y

′), incurred by predicting
the incorrect output:2

wt+1 = arg min
w

1

2
||w −wt||2 + Cξi

s.t. ∀y′ ∈ Y(xi), δfi(y
′) ≥ ∆i(y

′)− ξi

where Y(xi) is the space of possible structured
outputs we are able to produce from xi, and
C is a regularization parameter that controls the
size of the update. In practice, we can de-
fine Y(xi) to be the k-best output. With a
passive-aggressive (PA) update, the ∀y′ constraint
above can be approximated by selecting the sin-
gle most violated constraint, which maximizes
y′ ← arg maxy∈Y(xi)w

>f(xi, y) + ∆i(y). This
optimization problem is attractive because it re-
duces to a simple analytical solution, essentially
performing a subgradient descent step with the
step size adjusted based on each example:

α← min

(
C,

∆i(y
′)− δfi(y′)

‖f(xi, y+)− f(xi, y′)‖2
)

w← w + ηα
(
f(xi, y

+)− f(xi, y
′)
)

The user-defined cost function is a task-specific
external measure of quality that relays how bad se-
lecting y′ truly is on the task we care about. The
cost can take any form as long as it decomposes
across the local parts of the structure, just as the
feature functions. For instance, it could be the
Hamming loss for sequence labeling, F-score for
parsing, or an approximate BLEU score for SMT.

Cost-augmented Inference For most struc-
tured prediction problems in machine learning,
yi ∈ Y(xi), that is, the model is able to produce,
and thus score, the correct output structure, mean-
ing y+ = yi. However, for certain NLP prob-
lems this may not be the case. For instance in
SMT, our model may not be able to produce or
reach the correct reference translation, which pro-
hibits our model from scoring it. This problem

2For a more formal description we refer the reader
to (Crammer et al., 2006; Chiang, 2012).

necessitates cost-augmented inference, where we
select y+ ← arg maxy∈Y(xi)w

>f(xi, y)−∆i(y)
from the space of structures our model can pro-
duce, to stand in for the correct output in optimiza-
tion. Our system was developed to handle both
cases, with the decoder providing the k-best list
to the learner, specifying whether to perform cost-
augmented selection.

Sparse Features While utilizing sparse features
is a primary motivation for performing large-scale
discriminative training, which features to use and
how to learn their weights can have a large im-
pact on the potential benefit. To this end, we in-
corporate `1/`2 regularization for joint feature se-
lection in order to improve efficiency and counter
overfitting effects (Simianer et al., 2012). Further-
more, the PA update has a single learning rate η
for all features, which specifies how much the fea-
ture weights can change at each update. How-
ever, since dense features (e.g., language model)
are observed far more frequently than sparse fea-
tures (e.g., rule id), we may instead want to use
a per-feature learning rate that allows larger steps
for features that do not have much support. Thus,
we allow setting an adaptive per-feature learning
rate (Green et al., 2013; Crammer et al., 2009;
Duchi et al., 2011).

2.2 Learner/Decoder Communication
Training requires communication between the de-
coder and the learner. The decoder needs to re-
ceive weight updates and the input sentence from
the learner; and the learner needs to receive k-best
output with feature vectors from the decoder. This
is essentially all the required communication be-
tween the learner and the decoder. Below, we de-
scribe a simple line-based text protocol.

Input sentence and weight updates Follow-
ing common practice in machine translation, the
learner encodes each input sentence as a single-
line SGML entry named seg and sends it to the
decoder. The first line of Figure 1 is an exam-
ple sentence in this format. In addition to the
required sentence ID (useful in parallel process-
ing), an optional delta field is used to encode
the weight updates, as a sparse vector indexed
by feature names. First, for each name and up-
date pair, a binary record consisting of a null-
terminated string (name) and a double-precision
floating point number in native byte order (up-
date) is created. Then, all binary records are con-
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<seg id="123" delta="TE0AexSuR+F6hD8="> das ist ein kleine haus </seg>
<seg id="124"> ein kleine haus </seg>\tein kleine ||| a small\thaus ||| house

Figure 1: Example decoder input in SGML

5
123 ||| 5 ||| this is a small house ||| TE0AAAAA... <base64> ||| 120.3
123 ||| 5 ||| this is the small house ||| <base64> ||| 118.4
123 ||| 5 ||| this was small house ||| <base64> ||| 110.5
<empty>
<empty>

Figure 2: Example k-best output

catenated and encoded in base64. In the example
above, the value of delta is the base64 encod-
ing of 0x4c 0x4d 0x00 0x7b 0x14 0xae 0x47

0xe1 0x7a 0x84 0x3f. The first 3 bytes store the
feature name (LM) and the next 8 bytes is its update
(0.01), to be added to the decoder’s current value
of the corresponding feature weight.

The learner also allows the user to pass any ad-
ditional information to the decoder, as long as it
can be encoded as a single-line text string. Such
information, if given, is appended after the seg en-
try, with a leading tab character as the delimiter.
For example, the second line of Figure 1 passes
two phrase translation rules to the decoder.

k-best output The decoder reads from standard
input and outputs the k-best output for one input
sentence before consuming the next line. For the
k-best output, the decoder first outputs to standard
output a line consisting of a single integerN . Next
the decoder outputs N lines where each line can
be either empty or an actual hypothesis. When the
line is an actual hypothesis, it consists of the fol-
lowing parts:
SID ||| LEN ||| TOK ||| FEAT [ REST ]

SID is the sentence ID of the corresponding input;
LEN is the length of source sentence;3 TOK contains
the tokens of the hypothesis sentence separated by
spaces; FEAT is the feature vector, encoded in the
same way as the weight updates, delimited by a
whitespace. Everything after FEAT until the end of
the line is discarded. See Figure 2 for an example
of k-best output. Note the scores after the last |||
are discarded by the learner.

Overall workflow The learner reads lines from
standard input in the following tab-delimited for-
mat:

3This is used in computing the smoothed cost. Usually
this is identical for all hypotheses if the input is a plain sen-
tence. But in applications such as lattice-based translation,
each hypothesis can be produced from different source sen-
tences, resulting in different lengths.

SRC<tab>REF<tab>REST

SRC is the actual input sentence as a seg entry; REF
is the gold output for the input sentence, for ex-
ample, reference translations in MT;4 REST is the
additional information that will be appended after
the seg entry and passed to the decoder.

The learner creates a sub-process for the de-
coder and connects to the sub-process’ standard
input and output with pipes. Then it processes the
input lines one by one. For each line, it first sends
a composed input message to the decoder, combin-
ing the input sentence, weight updates, and user-
supplied information. Next it collects the k-best
output from the decoder, solves the QP problem to
obtain weight updates and repeats.

The learner produces two types of output. First,
the 1-best hypothesis for each input sentence, in
the following format:

SID<tab>TOK

Second, when there are no more input lines, the
learner outputs final weights and the number of
lines processed, in the following format:

-1<tab>NUM ||| WEIGHTS

The 1-best hypotheses can be scored against ref-
erences to obtain an estimate of cost. The final
weights are stored in a way convenient for averag-
ing in a parallel setting, as we shall discuss next.

3 Large-Scale Discriminative Training

3.1 MapReduce
With large amounts of data available today,
distributed computations have become essen-
tial. MapReduce (Dean and Ghemawat, 2004)
has emerged as a popular distributed process-
ing framework for commodity clusters that has
gained widespread adoption in both industry and
academia, thanks to its simplicity and the avail-
ability of the Hadoop open-source implementa-
tion. MapReduce provides a higher level of

4There can be multiple references, separated by |||.
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abstraction for designing distributed algorithms
compared to, say, MPI or pthreads, by hiding
system-level details (e.g., deadlock, race condi-
tions, machine failures) from the developer.

A single MapReduce program begins with a
map phase, where mapper processes input key-
value pairs to produce an arbitrary number of in-
termediate key-value pairs. The mappers execute
in parallel, consuming data splits independently.
Following the map phase, all key-value pairs emit-
ted by the mappers are sorted by key and dis-
tributed to the reducers, such that all pairs shar-
ing the same key are guaranteed to arrive at the
same reducer. Finally, in the reduce phase, each
reducer processes the intermediate key-value pairs
it receives and emits final output key-value pairs.

3.2 System Architecture

Algorithm design We use Hadoop streaming to
parallelize the training process. Hadoop stream-
ing allows any arbitrary executable to serve as the
mapper or reducer, as long as it handles key-value
pairs properly.5 One iteration of training is im-
plemented as a single Hadoop streaming job. In
the map step, our learner can be directly used as
the mapper. Each mapper loads the same initial
weights, processes a single split of data and pro-
duces key-value pairs: the one-best hypothesis of
each sentence is output with the sentence ID as
the key (non-negative); the final weights with re-
spect to the split are output with a special negative
key. In the reduce step, a single reducer collects all
key-value pairs, grouped and sorted by keys. The
one-best hypotheses are output to disk in the or-
der they are received, so that the order matches the
reference translation set. The reducer also com-
putes the feature selection and weighted average
of final weights received from all of the mappers.
Assuming mapper i produces the final weights wi

after processing ni sentences, the weighted aver-
aged is defined as w∗ =

∑
i wi×ni∑

i ni
. Although aver-

aging yields different result from running a single
learner over the entire data, we have found the dif-
ference to be quite small in terms of convergence
and quality of tuned weights in practice.

After the reducer finishes, the averaged weights
are extracted and used as the initial weights for the
next iteration; the emitted hypotheses are scored

5By default, each line is treated as a key-value pair en-
coded in text, where the key and the value are separated by a
<tab>.

against the references, which allows us to track the
learning curve and the progress of convergence.

Scalability In an application such as SMT, the
decoder requires access to the translation gram-
mar and language model to produce translation hy-
potheses. For small tuning sets, which have been
typical in MT research, having these files trans-
ferred across the network to individual servers
(which then load the data into memory) is not
a problem. However, for even modest input on
the order of tens of thousands of sentences, this
creates a challenge. For example, distributing
thousands of per-sentence grammar files to all the
workers in a Hadoop cluster is time-consuming,
especially when this needs to be performed prior
to every iteration.

To benefit from MapReduce, it is essential to
avoid dependencies on “side data” as much as
possible, due to the challenges explained above
with data transfer. To address this issue, we ap-
pend the per-sentence translation grammar as user-
supplied additional information to each input sen-
tence. This results in a large input file (e.g., 75 gi-
gabytes for 50,000 sentences), but this is not an is-
sue since the data reside on the Hadoop distributed
file system and MapReduce optimizes for data lo-
cality when scheduling mappers.

Unfortunately, it is much more difficult to ob-
tain per-sentence language models that are small
enough to handle in this same manner. Currently,
the best solution we have found is to use Hadoop’s
distributed cache to ship the single large language
model to each worker.

4 Evaluation

We evaluated online learning in Hadoop Map-
Reduce by applying it to German-English ma-
chine translation, using our hierarchical phrase-
based translation system with cdec as the de-
coder (Dyer et al., 2010). The parallel training
data consist of the Europarl and News Commen-
tary corpora from the WMT12 translation task,6

containing 2.08M sentences. A 5-gram language
model was trained on the English side of the bi-
text along with 750M words of news using SRILM
with modified Kneser-Ney smoothing (Chen and
Goodman, 1996).

We experimented with two feature sets: (1) a
small set with standard MT features, including

6http://www.statmt.org/wmt12/translation-task.html
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Tuning set size Time/iteration # splits # features Tuning BLEU Test
(corpus) (on disk, GB) (in seconds) BLEU TER

dev 3.3 119 120 16 22.38 22.69 60.61
5k 7.8 289 120 16 32.60 22.14 59.60
10k 15.2 432 120 16 33.16 22.06 59.43
25k 37.2 942 300 16 32.48 22.21 59.54
50k 74.5 1802 600 16 32.21 22.21 59.39
dev 3.3 232 120 85k 23.08 23.00 60.19
5k 7.8 610 120 159k 33.70 22.26 59.26
10k 15.2 1136 120 200k 34.00 22.12 59.24
25k 37.2 2395 300 200k 32.96 22.35 59.29
50k 74.5 4465 600 200k 32.86 22.40 59.15

Table 1: Evaluation of our Hadoop implementation of MIRA, showing running time as well as BLEU

and TER values for tuning and testing data.

dev test 5k 10k 25k 50k
Sentences 3003 3003 5000 10000 25000 50000
Tokens en 75k 74k 132k 255k 634k 1258k
Tokens de 74k 73k 133k 256k 639k 1272k

Table 2: Corpus statistics

phrase and lexical translation probabilities in both
directions, word and arity penalties, and language
model scores; and (2) a large set containing the top
200k sparse features that might be useful to train
on large numbers of instances: rule id and shape,
target bigrams, insertions and deletions, and struc-
tural distortion features.

All experiments were conducted on a Hadoop
cluster (running Cloudera’s distribution, CDH
4.2.1) with 16 nodes, each with two quad-core 2.2
GHz Intel Nehalem Processors, 24 GB RAM, and
three 2 TB drives. In total, the cluster is configured
for a capacity of 128 parallel workers, although
we do not have direct control over the number
of simultaneous mappers, which depends on the
number of input splits. If the number of splits is
smaller than 128, then the cluster is under-utilized.
To note this, we report the number of splits for
each setting in our experimental results (Table 1).

We ran MIRA on a number of tuning sets, de-
scribed in Table 2, in order to test the effective-
ness and scalability of our system. First, we used
the standard development set from WMT12, con-
sisting of 3,003 sentences from news domain. In
order to show the scaling characteristics of our ap-
proach, we then used larger portions of the train-
ing bitext directly to tune parameters. In order to
avoid overfitting, we used a jackknifing method
to split the training data into n = 10 folds, and

built a translation system on n − 1 folds, while
adjusting the sampling rate to sample sentences
from the other fold to obtain tuning sets ranging
from 5,000 sentences to 50,000 sentences. Table 1
shows details of experimental results for each set-
ting. The second column shows the space each
tuning set takes up on disk when we include refer-
ence translations and grammar files along with the
sentences. The reported tuning BLEU is from the
iteration with best performance, and running times
are reported from the top-scoring iteration as well.

Even though our focus in this evaluation is to
show the scalability of our implementation to large
input and feature sets, it is also worthwhile to men-
tion the effectiveness aspect. As we increase the
tuning set size by sampling sentences from the
training data, we see very little improvement in
BLEU and TER with the smaller feature set. This
is not surprising, since sparse features are more
likely to gain from additional tuning instances. In-
deed, tuning scores for all sets improve substan-
tially with sparse features, accompanied by small
increases on test.

While tuning on dev data results in better BLEU

on test data than when tuning on the larger sets, it
is important to note that although we are able to
tune more features on the larger bitext tuning sets,
they are not composed of the same genre as the
dev and test sets, resulting in a domain mismatch.
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Therefore, we are actually comparing a smaller in-
domain tuning set with a larger out-of-domain set.
While this domain adaptation is problematic (Had-
dow and Koehn, 2012), the ability to discrimina-
tively tune on larger sets remains highly desirable.

In terms of running time, we observe that the al-
gorithm scales linearly with respect to input size,
regardless of the feature set. With more features,
running time increases due to a more complex
translation model, as well as larger intermediate
output (i.e., amount of information passed from
mappers to reducers). The scaling characteristics
point out the strength of our system: our scalable
MIRA implementation allows one to tackle learn-
ing problems where there are many parameters,
but also many training instances.

Comparing the wall clock time of paralleliza-
tion with Hadoop to the standard mode of 10–20
learner parallelization (Haddow et al., 2011; Chi-
ang et al., 2009), for the small 25k feature set-
ting, after one iteration, which takes 4625 sec-
onds using 15 learners on our PBS cluster, the tun-
ing score is 19.5 BLEU, while in approximately
the same time, we can perform five iterations
with Hadoop and obtain 30.98 BLEU. While this
is not a completely fair comparison, as the two
clusters utilize different resources and the num-
ber of learners, it suggests the practical benefits
that Hadoop can provide. Although increasing the
number of learners on our PBS cluster to the num-
ber of mappers used in Hadoop would result in
roughly equivalent performance, arbitrarily scal-
ing out learners on the PBS cluster to handle larger
training sets can be challenging since we’d have to
manually coordinate the parallel processes in an
ad-hoc manner. In contrast, Hadoop provides scal-
able parallelization in a manageable framework,
providing data distribution, synchronization, fault
tolerance, as well as other features, “for free”.

5 Conclusion

In this paper, we presented an open-source
framework that allows seamlessly scaling struc-
tured learning to large feature-rich problems with
Hadoop, which lets us take advantage of large
amounts of data as well as sparse features. The
development of Mr. MIRA has been motivated pri-
marily by application to SMT, but we are planning
to extend our system to other structured prediction
tasks in NLP such as parsing, as well as to facili-
tate its use in other domains.
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Mihǎilǎ, Claudiu, 43
Miller, Tristan, 37
Mirkin, Shachar, 85
Mishra, Abhijit, 175

205



Moran, Steven, 13

Navigli, Roberto, 103
Neubig, Graham, 91
Niraula, Nobal, 163
Nivre, Joakim, 193

Pham, Nghia The, 31
Ponnamperuma, Kapila, 169

Qiu, Xipeng, 49

Rak, Rafal, 115
Resnik, Philip, 199
Roberts, Ian, 19
Rohrdantz, Christian, 73, 109
Rowley, Andrew, 115
Roy, Shourya, 175
Rus, Vasile, 163

S. Chang, Jason, 139
Seeker, Wolfgang, 55
Segal-haLevi, Erel, 97
Sergienya, Irina, 187
Shah, Kashif, 79
Shnarch, Eyal, 97
Siddharthan, Advaith, 169
Soroa, Aitor, 151
Spaniol, Marc, 133
Specia, Lucia, 79
Steels, Luc, 127
Stefanescu, Dan, 163
Stevenson, Mark, 151
Stymne, Sara, 193

Tablan, Valentin, 19
Tanev, Hristo, 25
Thiele, Gregor, 55
Thompson, Paul, 43
Tiedemann, Jörg, 193
Trancoso, Isabel, 61
Ture, Ferhan, 199

Uijlings, Jasper, 187

van der Wal, René, 169
van Trijp, Remi, 127
Venkatapathy, Sriram, 85

Wang, Limin, 67
Wang, Xiaolong, 67
Weikum, Gerhard, 133
Wellens, Pieter, 127
Wu, Jian-Cheng, 139

Wu, Ke, 199

Yen, Tzu-Hsi, 139
Yimam, Seid Muhie, 1
Yosef, Mohamed Amir, 133

Zeng, Cheng, 169
Zesch, Torsten, 37, 121
Zhang, Qi, 49
Zorn, Hans-Peter, 37


	Program
	WebAnno: A Flexible, Web-based and Visually Supported System for Distributed Annotations
	A Stacking-based Approach to Twitter User Geolocation Prediction
	An Open Source Toolkit for Quantitative Historical Linguistics
	AnnoMarket: An Open Cloud Platform for NLP
	Detecting Event-Related Links and Sentiments from Social Media Texts
	DISSECT - DIStributional SEmantics Composition Toolkit
	DKPro WSD: A Generalized UIMA-based Framework for Word Sense Disambiguation
	Extending an interoperable platform to facilitate the creation of multilingual and multimodal NLP applications
	FudanNLP: A Toolkit for Chinese Natural Language Processing
	ICARUS – An Extensible Graphical Search Tool for Dependency Treebanks
	Meet EDGAR, a tutoring agent at MONSERRATE
	PAL: A Chatterbot System for Answering Domain-specific Questions
	PhonMatrix: Visualizing co-occurrence constraints of sounds
	QuEst - A translation quality estimation framework
	SORT: An Interactive Source-Rewriting Tool for Improved Translation
	Travatar: A Forest-to-String Machine Translation Engine based on Tree Transducers
	PLIS: a Probabilistic Lexical Inference System
	A Java Framework for Multilingual Definition and Hypernym Extraction
	A Visual Analytics System for Cluster Exploration
	Development and Analysis of NLP Pipelines in Argo
	DKPro Similarity: An Open Source Framework for Text Similarity
	Fluid Construction Grammar for Historical and Evolutionary Linguistics
	HYENA-live: Fine-Grained Online Entity Type Classification from Natural-language Text
	Linggle: a Web-scale Linguistic Search Engine for Words in Context
	ParaQuery: Making Sense of Paraphrase Collections
	PATHS: A System for Accessing Cultural Heritage Collections
	Propminer: A Workflow for Interactive Information Extraction and Exploration using Dependency Trees
	SEMILAR: The Semantic Similarity Toolkit
	Tag2Blog: Narrative Generation from Satellite Tag Data
	TransDoop: A Map-Reduce based Crowdsourced Translation for Complex Domain
	tSEARCH: Flexible and Fast Search over Automatic Translations for Improved Quality/Error Analysis
	VSEM: An open library for visual semantics representation
	Docent: A Document-Level Decoder for Phrase-Based Statistical Machine Translation
	Mr. MIRA: Open-Source Large-Margin Structured Learning on MapReduce

