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Abstract

We present an unsupervised model for
coreference resolution that casts the prob-
lem as a clustering task in a directed la-
beled weighted multigraph. The model
outperforms most systems participating in
the English track of the CoNLL’12 shared
task.

1 Introduction

Coreference resolution is the task of determining
which mentions in a text refer to the same en-
tity. With the advent of machine learning and
the availability of annotated corpora in the mid
1990s the research focus shifted from rule-based
approaches to supervised machine learning tech-
niques. Quite recently, however, rule-based ap-
proaches regained popularity due to Stanford’s
multi-pass sieve approach which exhibits state-
of-the-art performance on many standard coref-
erence data sets (Raghunathan et al., 2010) and
also won the CoNLL-2011 shared task on coref-
erence resolution (Lee et al., 2011; Pradhan et
al., 2011). These results show that carefully
crafted rule-based systems which employ suitable
inference schemes can achieve competitive perfor-
mance. Such a system can be considered unsuper-
vised in the sense that it does not employ training
data for optimizing parameters.

In this paper we present a graph-based approach
for coreference resolution that models a document
to be processed as a graph. The nodes are men-
tions and the edges correspond to relations be-
tween mentions. Coreference resolution is per-
formed via graph clustering. Our approach be-
longs to a class of recently proposed graph models
for coreference resolution (Cai and Strube, 2010;

Sapena et al., 2010; Martschat et al., 2012) and
is designed to be a simplified version of existing
approaches. In contrast to previous models be-
longing to this class we do not learn any edge
weights but perform inference on the graph struc-
ture only which renders our model unsupervised.
On the English data of the CoNLL’12 shared task
the model outperforms most systems which partic-
ipated in the shared task.

2 Related Work

Graph-based coreference resolution. While
not developed within a graph-based framework,
factor-based approaches for pronoun resolution
(Mitkov, 1998) can be regarded as greedy clus-
tering in a multigraph, where edges representing
factors for pronoun resolution have negative or
positive weight. This yields a model similar to
the one presented in this paper though Mitkov’s
work has only been applied to pronoun resolu-
tion. Nicolae and Nicolae (2006) phrase coref-
erence resolution as a graph clustering problem:
they first perform pairwise classification and then
construct a graph using the derived confidence val-
ues as edge weights. In contrast, work by Culotta
et al. (2007), Cai and Strube (2010) and Sapena
et al. (2010) omits the classification step entirely.
Sapena et al. (2010) and Cai and Strube (2010)
perform coreference resolution in one step using
graph partitioning approaches. These approaches
participated in the recent CoNLL’11 shared task
(Pradhan et al., 2011; Sapena et al., 2011; Cai
et al., 2011b) with excellent results. The ap-
proach by Cai et al. (2011b) has been modified by
Martschat et al. (2012) and ranked second in the
English track at the CoNLL’12 shared task (Prad-
han et al., 2012). The top performing system at
the CoNLL’12 shared task (Fernandes et al., 2012)
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also represents the problem as a graph by per-
forming inference on trees constructed using the
multi-pass sieve approach by Raghunathan et al.
(2010) and Lee et al. (2011), which in turn won
the CoNLL’11 shared task.

Unsupervised coreference resolution. Cardie
and Wagstaff (1999) present an early approach to
unsupervised coreference resolution based on a
straightforward clustering approach. Angheluta et
al. (2004) build on their approach and devise more
sophisticated clustering algorithms. Haghighi and
Klein (2007), Ng (2008) and Charniak and El-
sner (2009) employ unsupervised generative mod-
els. Poon and Domingos (2008) present a Markov
Logic Network approach to unsupervised corefer-
ence resolution. These approaches reach competi-
tive performance on gold mentions but not on sys-
tem mentions (Ng, 2008). The multi-pass sieve
approach by Raghunathan et al. (2010) can also be
viewed as unsupervised.

3 A Multigraph Model

We aim for a model which directly represents the
relations between mentions in a graph structure.
Clusters in the graph then correspond to entities.

3.1 Motivation

To motivate the choice of our model, let us con-
sider a simple made-up example.

Leaders met in Paris to discuss recent
developments. They left the city today.

We want to model that Paris is not a likely candi-
date antecedent for They due to number disagree-
ment, but that Leaders and recent developments
are potential antecedents for They. We want to
express that Leaders is the preferred antecedent,
since Leaders and They are in a parallel construc-
tion both occupying the subject position in their
respective sentences.

In other words, our model should express the
following relations for this example:

• number disagreement for (They, Paris), which
indicates that the mentions are not coreferent,

• the anaphor being a pronoun for (They, Lead-
ers), (They, recent developments) and (They,
Paris), which is a weak indicator for corefer-
ence if the mentions are close to each other,

• syntactic parallelism for (They, Leaders): both
mentions are in a parallel construction in adja-

cent sentences (both in the subject slot), which
is also a weak coreference indicator.

We denote these relations as N Number,
P AnaPron and P Subject respectively. The
graphical structure depicted in Figure 1 mod-
els these relations between the four mentions
Leaders, Paris, recent developments and They.

Leaders

recent de-
velopments
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ParisP AnaPron

P Subject

P AnaPron

N
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P
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Figure 1: An example graph modeling relations
between mentions.

A directed edge from a mention m to n indi-
cates that n precedes m and that there is some rela-
tion between m and n that indicates coreference or
non-coreference. Labeled edges describe the rela-
tions between the mentions, multiple relations can
hold between a pair. Edges may be weighted.

3.2 Multigraphs for Coreference Resolution

Formally, the model is a directed labeled weighted
multigraph. That is a tuple D = (R, V,A,w)
where

• R is the set of labels (in our case relations such
as P Subject that hold between mentions),

• V is the set of nodes (the mentions extracted
from a document),

• A ⊆ V × V × R is the set of edges (relations
between two mentions),

• w is a mapping w : A→ R∪ {±∞} (weights
for edges).

Many graph models for coreference resolution op-
erate on A = V ×V . Our multigraph model allows
us to have multiple edges with different labels be-
tween mentions.

To have a notion of order we employ a directed
graph: We only allow an edge from m to n if m
appears later in the text than n.

To perform coreference resolution for a docu-
ment d, we first construct a directed labeled multi-
graph (Section 3.3). We then assign a weight to
each edge (Section 3.4). The resulting graph is
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clustered to obtain the mentions that refer to the
same entity (Section 3.5).

3.3 Graph Construction

Given a set M of mentions extracted from a doc-
ument d, we set V = M , i.e. the nodes of the
graph are the mentions. To construct the edges
A, we consider each pair (m,n) of mentions with
n ≺ m. We then check for every relation r ∈ R
if r holds for the pair (m,n). If this is the case
we add the edge (m,n, r) to A. For simplicity,
we restrict ourselves to binary relations that hold
between pairs of mentions (see Section 4).

The graph displayed in Figure 1 is the graph
constructed for the mentions Leaders, Paris, re-
cent developments and They from the example
sentence at the beginning of this Section, where
R = {P AnaPron, P Subject, N Number}.

3.4 Assigning Weights

Depending on whether a relation r ∈ R is indica-
tive for non-coreference (e.g. number disagree-
ment) or for coreference (e.g. string matching) it
should be weighted differently. We therefore di-
vide R into a set of negative relations R− and a
set of positive relations R+.

Previous work on multigraphs for coreference
resolution disallows any edge between mentions
for which a negative relations holds (Cai et al.,
2011b; Martschat et al., 2012). We take a sim-
ilar approach and set w(m,n, r) = −∞ for
(m,n, r) ∈ A when r ∈ R−1.

Work on graph-based models similar to ours re-
port robustness with regard to the amount of train-
ing data used (Cai et al., 2011b; Cai et al., 2011a;
Martschat et al., 2012). Motivated by their obser-
vations we treat every positive relation equally and
set w(m,n, r) = 1 for (m,n, r) ∈ A if r ∈ R+.

In contrast to previous work on similar graph
models we do not learn any edge weights from
training data. We compare this unsupervised
scheme with supervised variants empirically in
Section 5.

3.5 Clustering

To describe the clustering algorithm used in this
work we need some additional terminology. If
there exists an edge (m,n, r) ∈ A we say that n is
a child of m.

1We experimented with different weighting schemes
for negative relations on development data (e.g. setting
w(m,n, r) = −1) but did not observe a gain in performance.

In the graph constructed according to the pro-
cedure described in Section 3.3, all children of a
mention m are candidate antecedents for m. The
relations we employ are indicators for coreference
(which get a positive weight) and indicators for
non-coreference (which get a negative weight).
We aim to employ a simple and efficient cluster-
ing scheme on this graph and therefore choose
1-nearest-neighbor clustering: for every m, we
choose as antecedent m’s child n such that the sum
of edge weights is maximal and positive. We break
ties by choosing the closest mention.

In the unsupervised setting described in Section
3.4 this algorithm reduces to choosing the child
that is connected via the highest number of posi-
tive relations and via no negative relation.

For the graph depicted in Figure 1 this algorithm
computes the clusters {They, Leaders}, {Paris}
and {recent developments}.

4 Relations

The graph model described in Section 3 is based
on expressing relations between pairs of mentions
via edges built from such relations. We now de-
scribe the relations currently used by our system.
They are well-known indicators and constraints
for coreference and are taken from previous work
(Cardie and Wagstaff, 1999; Soon et al., 2001;
Rahman and Ng, 2009; Lee et al., 2011; Cai et al.,
2011b). All relations operate on pairs of mentions
(m,n), where m is the anaphor and n is a candi-
date antecedent. If a relation r holds for (m,n),
the edge (m,n, r) is added to the graph. We final-
ized the set of relations and their distance thresh-
olds on development data.

4.1 Negative Relations
Negative relations receive negative weights. They
allow us to introduce well-known constraints such
as agreement into our model.

(1) N Gender, (2) N Number: Two mentions do
not agree in gender or number. We compute
number and gender for common nouns us-
ing the number and gender data provided by
Bergsma and Lin (2006).

(3) N SemanticClass: Two mentions do not
agree in semantic class (we only use the top
categories Object, Date and Person from
WordNet (Fellbaum, 1998)).

(4) N ItDist: The anaphor is it or they and the
sentence distance to the antecedent is larger
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than one.

(5) N Speaker12Pron: Two first person pro-
nouns or two second person pronouns with dif-
ferent speakers, or one first person pronoun
and one second person pronoun with the same
speaker2.

(6) N ContraSubObj: Two mentions are in the
subject/object positions of the same verb, the
anaphor is a non-possessive/reflexive pronoun.

(7) N Mod: Two mentions have the same syntac-
tic heads, and the anaphor has a nominal mod-
ifier which does not occur in the antecedent.

(8) N Embedding: Two mentions where one em-
beds the other, which is not a reflexive or pos-
sessive pronoun.

(9) N 2PronNonSpeech: Two second person
pronouns without speaker information and not
in direct speech.

4.2 Positive Relations

Positive relations are coreference indicators which
are added as edges with positive weights.

(10) P NonPron StrMatch: Applies only if the
anaphor is definite or a proper name3. This re-
lation holds if after discarding stop words the
strings of mentions completely match.

(11) P HeadMatch: If the syntactic heads of
mentions match.

(12) P Alias: If mentions are aliases of each other
(i.e. proper names with partial match, full
names and acronyms, etc.).

(13) P Speaker12Pron: If the speaker of the sec-
ond person pronoun is talking to the speaker
of the first person pronoun (applies only to
first/second person pronouns).

(14) P DSPron: One mention is a speak verb’s
subject, the other mention is a first person pro-
noun within the corresponding direct speech.

(15) P ReflPronSub: If the anaphor is a reflexive
pronoun, and the antecedent is the subject of
the sentence.

(16) P PossPronSub: If the anaphor is a posses-
sive pronoun, and the antecedent is the subject
of the anaphor’s sentence or subclause.

(17) P PossPronEmb: The anaphor is a posses-

2Like all relations using speaker information, this relation
depends on the gold speaker annotation layer in the corpus.

3This condition is necessary to cope with the high-recall
output of the mention tagger.

sive pronoun embedded in the antecedent.

(18) P AnaPron: If the anaphor is a pronoun and
none of the mentions is a first or second per-
son pronoun. This relation is restricted to a
sentence distance of 3.

(19) P VerbAgree: If the anaphor is a third per-
son pronoun and has the same predicate as the
antecedent. This relation is restricted to a sen-
tence distance of 1.

(20) P Subject, (21) P Object: The anaphor is a
third person pronoun and both mentions are
subjects/objects. These relations are restricted
to a sentence distance of 1.

(22) P Pron StrMatch: If both mentions are
pronouns and their strings match.

(23) P Pron Agreement: If both mentions are
different pronoun tokens but agree in number,
gender and person.

5 Evaluation

5.1 Data and Evaluation Metrics

We use the data provided for the English track of
the CoNLL’12 shared task on multilingual coref-
erence resolution (Pradhan et al., 2012) which is
a subset of the upcoming OntoNotes 5.0 release
and comes with various annotation layers provided
by state-of-the-art NLP tools. We used the official
dev/test split for development and evaluation. We
evaluate the model in a setting that corresponds
to the shared task’s closed track, i.e. we use only
WordNet (Fellbaum, 1998), the number and gen-
der data of Bergsma and Lin (2006) and the pro-
vided annotation layers. To extract system men-
tions we employ the mention extractor described
in Martschat et al. (2012).

We evaluate our system with the coreference
resolution evaluation metrics that were used for
the CoNLL shared tasks on coreference, which are
MUC (Vilain et al., 1995), B3 (Bagga and Bald-
win, 1998) and CEAFe (Luo, 2005). We also re-
port the unweighted average of the three scores,
which was the official evaluation metric in the
shared tasks. To compute the scores we employed
the official scorer supplied by the shared task or-
ganizers.

5.2 Results

Table 1 displays the performance of our model and
of the systems that obtained the best (Fernandes
et al., 2012) and the median performance in the
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MUC B3 CEAFe average
R P F1 R P F1 R P F1

CoNLL’12 English development data
best 64.88 74.74 69.46 66.53 78.28 71.93 54.93 43.68 48.66 63.35
median 62.3 62.8 62.0 66.7 71.8 69.1 46.4 44.9 45.6 58.9
this work (weights fraction) 64.00 68.56 66.20 66.59 75.67 70.84 50.48 45.52 47.87 61.63
this work (weights MaxEnt) 63.72 65.78 64.73 66.60 73.76 70.00 47.46 45.30 46.36 60.36
this work (unsupervised) 64.01 68.58 66.22 67.00 76.45 71.41 51.10 46.16 48.51 62.05

CoNLL’12 English test data
best 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37
median 62.08 63.02 62.55 66.23 70.45 68.27 45.74 44.74 45.23 58.68
this work (weights fraction) 64.25 68.31 66.22 65.44 74.20 69.54 49.18 44.71 46.84 60.87
this work (weights MaxEnt) 63.58 64.70 64.14 65.63 72.09 68.71 45.58 44.41 44.99 59.28
this work (unsupervised) 63.95 67.99 65.91 65.47 74.93 69.88 49.83 45.40 47.51 61.10

Table 1: Results of different systems on the CoNLL’12 English data sets.

CoNLL’12 shared task, which are denoted as best
and median respectively. best employs a struc-
tured prediction model with learned combinations
of 70 basic features. We also compare with two
supervised variants of our model which use the
same relations and the same clustering algorithm
as the unsupervised model: weights fraction sets
the weight of a relation to the fraction of posi-
tive instances in training data (as in Martschat et
al. (2012)). weights MaxEnt trains a mention-pair
model (Soon et al., 2001) via the maximum en-
tropy classifier implemented in the BART toolkit
(Versley et al., 2008) and builds a graph where
the weight of an edge connecting two mentions
is the classifier’s prediction4. We use the official
CoNLL’12 English training set for training.

Our unsupervised model performs considerably
better than the median system from the CoNLL’12
shared task on both data sets according to all met-
rics. It also seems to be able to accommodate well
for the relations described in Section 4 since it out-
performs both supervised variants5. The model
performs worse than best, the gap according to B3

and CEAFe being considerably smaller than ac-
cording to MUC. While we observe a decrease of
1 point average score when evaluating on test data
the model still would have ranked fourth in the En-
glish track of the CoNLL’12 shared task with only
0.2 points difference in average score to the sec-
ond ranked system.

4The classifier’s output is a number p ∈ [0, 1]. In order to
have negative weights we use the transformation p′ = 2p−1.

5Compared with the supervised variants all improvements
in F1 score are statistically significant according to a paired
t-test (p < 0.05) except for the difference in MUC F1 to
weights fraction.

6 Error Analysis

In order to understand weaknesses of our model
we perform an error analysis on the development
data. We distinguish between precision and recall
errors. For an initial analysis we split the errors
according to the mention type of anaphor and an-
tecedent (name, nominal and pronoun).

6.1 Precision Errors
Our system operates in a pairwise fashion. We
therefore count one precision error whenever the
clustering algorithm assigns two non-coreferent
mentions to the same cluster. Table 2 shows the

NAM NOM PRO
NAM 3413 (21%) 67 (66%) 11 (46%)
NOM 43 (67%) 2148 (49%) 9 (89%)
PRO 868 (32%) 1771 (55%) 5308 (24%)

Table 2: Number of clustering decisions made ac-
cording to mention type (rows anaphor, columns
antecedent) and percentage of wrong decisions.

number of clustering decisions made according to
the mention type and in brackets the fraction of de-
cisions that erroneously assign two non-coreferent
mentions to the same cluster. We see that two main
sources of error are nominal-nominal pairs and the
resolution of pronouns. We now focus on gain-
ing further insight into the system’s performance
for pronoun resolution by investigating the perfor-
mance per pronoun type. The results are displayed
in Table 3. We obtain good performance for I and
my which in the majority of cases can be resolved
unambiguously by the speaker relations employed
by our system. The relations we use also seem
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Anaphor all anaphoric
I 1260 (13%) 1239 (11%)

my 192 (14%) 181 (9%)
he 824 (14%) 812 (13%)
. . . . . .

they 764 (29%) 725 (26%)
. . . . . .
you 802 (41%) 555 (15%)
it 1114 (64%) 720 (44%)

Table 3: Precision statistics for pronouns. Rows
are pronoun surfaces, columns number of cluster-
ing decisions and percentage of wrong decisions
for all and only anaphoric pronouns respectively.

to work well for he. In contrast, the local, shal-
low approach we currently employ is not able to
resolve highly ambiguous pronouns such as they,
you or it in many cases. The reduction in error rate
when only considering anaphoric pronouns shows
that our system could benefit from an improved
detection of expletive it and you.

6.2 Recall Errors

Estimating recall errors by counting all missing
pairwise links would consider each entity many
times. Therefore, we instead count one recall er-
ror for a pair (m,n) of anaphor m and antecedent
n if (i) m and n are coreferent, (ii) m and n are
not assigned to the same cluster, (iii) m is the first
mention in its cluster that is coreferent with n, and
(iv) n is the closest mention coreferent with m that
is not in m’s cluster.

This can be illustrated by an example. Consid-
ering mentions m1, . . . ,m5, assume that m1, m3,
m4 and m5 are coreferent but the system clusters
are {m2,m3} and {m4,m5}. We then count two
recall errors: one for the missing link from m3 to
m1 and one for the missing link from m4 to m3.

According to this definition we count 3528 re-
call errors on the development set. The distribu-
tion of errors is displayed in Table 4. We see that

NAM NOM PRO
NAM 321 220 247
NOM 306 797 330
PRO 306 476 525

Table 4: Number of recall errors according to
mention type (rows anaphor, columns antecedent).

the main source of recall errors are missing links
of nominal-nominal pairs. We randomly extracted
50 of these errors and manually assigned them to
different categories.

29 errors: missing semantic knowledge. In these
cases lexical or world knowledge is needed to
build coreference links between mentions with dif-
ferent heads. For example our system misses the
link between the sauna and the hotbox sweatbox.
14 errors: too restrictive N Mod. In these cases
the heads of the mentions matched but no link was
built due to N Mod. An example is the missing
link between our island’s last remaining forest of
these giant trees and the forest of Chilan.
4 errors: too cautious string match. We only
apply string matching for common nouns when the
noun is definite.

Three errors could not be attributed to any of the
above categories.

7 Conclusions and Future Work

We presented an unsupervised graph-based model
for coreference resolution. Experiments show that
our model exhibits competitive performance on
the English CoNLL’12 shared task data sets.

An error analysis revealed that two main
sources of errors of our model are the inaccurate
resolution of highly ambiguous pronouns such as
it and missing links between nominals with dif-
ferent heads. Future work should investigate how
semantic knowledge and more complex relations
capturing deeper discourse properties such as co-
herence or information status can be added to the
model. Processing these features efficently may
require a more sophisticated clustering algorithm.

We are surprised by the good performance of
this unsupervised model in comparison to the
state-of-the-art which uses sophisticated machine
learning techniques (Fernandes et al., 2012) or
well-engineered rules (Lee et al., 2011). We are
not sure how to interpret these results and want to
leave different interpretations for discussion:

• our unsupervised model is really that good
(hopefully),

• the evaluation metrics employed are to be
questioned (certainly),

• efficiently making use of annotated training
data still remains a challenge for the state-of-
the-art (likely).
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