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Abstract

We present a system for automated pho-
netic clustering analysis of cognitive tests
of phonemic verbal fluency, on which one
must name words starting with a specific
letter (e.g., ‘F’) for one minute. Test re-
sponses are typically subjected to man-
ual phonetic clustering analysis that is
labor-intensive and subject to inter-rater
variability. Our system provides an au-
tomated alternative. In a pilot study,
we applied this system to tests of 55
novice and experienced professional fight-
ers (boxers and mixed martial artists) and
found that experienced fighters produced
significantly longer chains of phonetically
similar words, while no differences were
found in the total number of words pro-
duced. These findings are preliminary, but
strongly suggest that our system can be
used to detect subtle signs of brain damage
due to repetitive head trauma in individu-
als that are otherwise unimpaired.

1 Introduction

The neuropsychological test of phonemic verbal
fluency (PVF) consists of asking the patient to
generate as many words as he or she can in a lim-
ited time (usually 60 seconds) that begin with a
specific letter of the alphabet (Benton et al., 1989).
This test has been used extensively as part of larger
cognitive test batteries to study cognitive impair-
ment resulting from a number of neurological con-
ditions, including Parkinson’s and Huntington’s
diseases, various forms of dementia, and traumatic
brain injury (Troyer et al., 1998a,b; Raskin et al.,
1992; Ho et al., 2002). Patients with these dis-
orders tend to generate significantly fewer words
on this test than do healthy individuals. Prior
studies have also found that clustering (the degree

to which patients generate groups of phonetically
similar words) and switching (transitioning from
one cluster to the next) behaviors are also sensi-
tive to the effects of these neurological conditions.

Contact sports such as boxing, mixed martial
arts, football, and hockey are well known for
high prevalence of repetitive head trauma. In re-
cent years, the long-term effects of repetitive head
trauma in athletes has become the subject of inten-
sive research. In general, repetitive head trauma
is a known risk factor for chronic traumatic en-
cephalopathy (CTE), a devastating and untreat-
able condition that ultimately results in permanent
disability and premature death (Omalu et al., 2010;
Gavett et al., 2011). However, little is currently
known about the relationship between the amount
of exposure to head injury and the magnitude of
risk for developing these conditions. Furthermore,
the development of new behavioral methods aimed
at detection of subtle early signs of brain impair-
ment is an active area of research.

The PVF test is an excellent target for this re-
search because it is very easy to administer and has
been shown to be sensitive to the effects of acute
traumatic brain injury (Raskin and Rearick, 1996).
However, a major obstacle to using this test widely
for early detection of brain impairment is that clus-
tering and switching analyses needed to detect
these subtle changes have to be done manually.
These manual approaches are extremely labor-
intensive, and are therefore limited in the types of
clustering analyses that can be performed. Manual
methods are also not scalable to large numbers of
tests and are subject to inter-rater variability, mak-
ing the results difficult to compare across subjects,
as well as across different studies. Moreover, tra-
ditional manual clustering and switching analyses
rely primarily on word orthography to determine
phonetic similarity (e.g., by comparing the first
two letters of two words), rather than phonetic rep-
resentations, which would be prohibitively time-
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Figure 1: High-level system architecture and
workflow.

consuming to obtain by hand.
Phonetic similarity has been investigated in ap-

plication to a number of research areas, including
spelling correction (Toutanova and Moore, 2002),
machine translation (Knight and Graehl, 1998;
Kondrak et al., 2003), cross-lingual information
retrieval (Melamed, 1999; Fujii and Ishikawa,
2001), language acquisition (Somers, 1998), his-
torical linguistics (Raman et al., 1997), and social-
media informatics (Liu et al., 2012); we propose a
novel clinical application.

Our objective was to develop and pilot-test a
relatively simple, but robust, system for automatic
identification of word clusters, based on phonetic
content, that uses the CMU Pronouncing Dictio-
nary, a decision tree-based algorithm for gener-
ating pronunciations for out-of-dictionary words,
and two different approaches to calculating pho-
netic similarity between words.

We first describe the system architecture and
our phonetic-similarity computation methods, and
then present the results of a pilot study, using data
from professional fighters, demonstrating the util-
ity of this system for early detection of subtle signs
of brain impairment.

2 Automated Clustering Analysis

Figure 1 shows the high-level architecture and
workflow of our system.

2.1 Pronunciation Dictionary

We use a dictionary developed for speech recog-
nition and synthesis applications at the Carnegie
Mellon University (CMUdict). CMUdict contains
phonetic transcriptions, using a phone set based on
ARPABET (Rabiner and Juang, 1993), for North
American English word pronunciations (Weide,
1998). We used the latest version, cmudict.0.7a,
which contains 133,746 entries.

From the full set of entries in CMUdict,
we removed alternative pronunciations for each
word, leaving a single phonetic representation for
each heteronymous set. Additionally, all vowel
symbols were stripped of numeric stress mark-
ings (e.g., AH1 → AH), and all multicharacter
phone symbols were converted to arbitrary single-
character symbols, in lowercase to distinguish
these symbols from the original single-character
ARPABET symbols (e.g., AH → c). Finally,
whitespace between the symbols constituting each
phonetic representation was removed, yielding
compact phonetic-representation strings suitable
for computing our similarity measures.

To illustrate, the CMUdict pronunciation entry
for the word phonetic, [F AH0 N EH1 T IH0
K], would be represented as FcNiTmK.

2.2 Similarity Computation

Our system uses two methods for determining
phonetic similarity: edit distance and a common-
biphone check. Each of these methods gives a
measure of similarity for a pair of phonetic repre-
sentations, which we respectively call a phonetic-
similarity score (PSS) and a common-biphone
score (CBS).

For PSS, we first compute the Levenshtein
distance (Levenshtein, 1966) between compact
phonetic-representation strings and normalize that
to the length of the longer string; then, that value
is subtracted from 1. PSS values range from 0 to
1, with higher scores indicating greater similarity.
The CBS is binary, with a score of 1 given for two
phonetic representations that have a common ini-
tial and/or final biphone, and 0 for two strings that
have neither in common.
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Figure 2: Phonetic chain and common-biphone
chain (below) for an example PVF response.

2.3 Phonetic Clustering
We distinguish between two ways of defining pho-
netic clusters. Traditionally, any sequence of n
words in a PVF response is deemed to form a clus-
ter if all pairwise word combinations for that se-
quence are determined to be phonetically similar
by some metric. In addition to this method, we
developed a less stringent approach in which we
define chains instead of clusters.

A chain comprises a sequence for which the
phonetic representation of each word is similar
to that of the word immediately prior to it in the
chain (unless it is chain-initial) and the word sub-
sequent to it (unless it is chain-final). Lone words
that do not belong to any cluster constitute sin-
gleton clusters. We call chains based on the edit-
distance method phonetic chains, and chains based
on the common-biphone method common-biphone
chains; both are illustrated in Figure 2.

Unlike the binary CBS method, the PSS
method produces continuous edit-distance values,
and therefore requires a threshold for categorizing
a word pair as similar or dissimilar. We determine
the threshold empirically for each letter by taking
a random sample of 1000 words starting with that
letter in CMUdict, computing PSS scores for each
pairwise combination (n = 499, 500), and then
setting the threshold as the value separating the
upper quintile of these scores. With the common-
biphone method, two words are considered pho-
netically similar simply if their CBS is 1.

2.4 System Overview
Our system is written in Python, and is available
online.1 The system accepts transcriptions of a

1http://rxinformatics.umn.edu/
downloads.html

PVF response for a specific letter and, as a pre-
processing step, removes any words that do not be-
gin with that letter. After pre-processing, all words
are phoneticized by dictionary lookup in our mod-
ified CMUdict. For out-of-dictionary words, we
automatically generate a phonetic representation
with a decision tree-based grapheme-to-phoneme
algorithm trained on the CMUdict (Pagel et al.,
1998).

Next, PSSs and CBSs are computed sequen-
tially for each pair of contiguous phonetic rep-
resentations, and are used in their respective
methods to compute the following measures:
mean pairwise similarity score (MPSS), mean
chain length (MCL), and maximum chain length
(MXCL). Singletons are included in these calcula-
tions as chains of length 1.

We also calculate equivalent measures for clus-
ters, but do not present these results here due to
space limitations, as they are similar to those for
chains. In addition to these measures, our sys-
tem produces a count of the total number of words
that start with the letter specified for the PVF test
(WCNT), and a count of repeated words (RCNT).

3 Pilot Study

3.1 Participants

We used PVF tests from 55 boxers and mixed
martial artists (4 women, 51 men; mean age 27.7
y.o., SD 6.0) that participated in the Professional
Fighters Brain Health Study (PFBH). The PFBH
is a longitudinal study of unarmed active profes-
sional fighters, retired professional fighters, and
age/education matched controls (Bernick et al., in
press). It is designed to enroll over 400 partici-
pants over the next five years. The 55 participants
in our pilot represent a sample from the first wave
of assessments, conducted in summer of 2012. All
55 participants were fluent speakers of English and
were able to read at at least a 4th-grade level. None
of these participants fought in a professional or
amateur competition within 45 days prior to test-
ing.

3.2 Methods

Each participant’s professional fighting history
was used to determine his or her total number of
pro fights and number of fights per year. These
figures were used to construct a composite fight-
exposure index as a summary measure of cumula-
tive traumatic exposure, as follows.
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Figure 3: Computation-method and exposure-group comparisons showing significant differences be-
tween the low- and high-exposure fighter groups on MPSS, MCL, and MXCL measures. Error bars
represent 95% confidence intervals around the means.

Fighters with zero professional fights were as-
signed a score of 0; fighters with between 1 and 15
total fights, but only one or fewer fights per year,
were assigned a score of 1; fighters with 1-15 to-
tal fights, and more than one fight per year, got a
score of 2; fighters with more than 15 total fights,
but only one or fewer fights per year, got a score
of 3; remaining fighters, with more than 15 fights
and more than one fight per year, were assigned
the highest score of 4.

Due to the relatively small sample size in our
pilot study, we combined groups with scores of
0 and 1 to constitute the low-exposure group
(n = 25), and the rest were assigned to the high-
exposure group (n = 30).

All participants underwent a cognitive test bat-
tery that included the PVF test (letter ‘F’). Their
responses were processed by our system, and
means for our chaining variables of interest, as
well as counts of total words and repetitions,
were compared across the low- and high-exposure
groups. Additionally, all 55 PVF responses were
subjected to manual phonetic clustering analysis,
following the methodology of Troyer et al. (1997).
With this approach, clusters are used instead of
chains, and two words are considered phonetically
similar if they meet any of the following condi-
tions: they begin with the same two orthographic
letters; they rhyme; they differ by only a vowel
sound (e.g., flip and flop); or they are homophones.

For each clustering method, the differences in
means between the groups were tested for sta-
tistical significance using one-way ANOVA ad-
justed for the effects of age and years of education.
Spearman correlation was used to test for associ-

ations between continuous variables, due to non-
linearity, and to directly compare manually deter-
mined clustering measures with corresponding au-
tomatically determined chain measures.

4 Results

The results of comparisons between the clustering
methods, as well as between the low- and high-
exposure groups, are illustrated in Figure 3.2

We found a significant difference (p < 0.02)
in MPSS between the high- and low-exposure
groups using the common-biphone method (0.15
vs. 0.11), while with edit distance the difference
was small (0.29 vs. 0.28) and not significant (Fig-
ure 3a). Due to infeasibility, MPSS was not calcu-
lated manually.

Mean chain sizes determined by the common-
biphone method correlated with manually deter-
mined cluster sizes more strongly than did chain
sizes determined by edit distance (ρ = 0.73, p <
0.01 vs. ρ = 0.48, p < 0.01). Comparisons of
maximum chain and cluster sizes showed a sim-
ilar pattern (ρ = 0.71, p < 0.01 vs. ρ = 0.39,
p < 0.01).

Both automatic methods showed significant dif-
ferences (p < 0.01) between the two groups in
MCL and MXCL, with each finding longer chains
in the high-exposure group (Figure 3b, 3c); how-
ever, slightly larger differences were observed us-
ing the common-biphone method (MCL: 2.79 vs.
2.21 by common-biphone method, 3.23 vs. 2.80
by edit-distance method; MXCL: 3.94 vs. 2.64 by

2Clustering measures rely on chains for our automatic
methods, and on clusters for manual analysis.
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common biphone, 4.94 vs. 3.76 by edit distance).
Group differences for manually determined MCL
and MXCL were also significant (p < 0.05 and
p < 0.02, respectively), but less so (MCL: 1.71
vs. 1.46; MXCL: 4.0 vs. 3.04).

5 Discussion

While manual phonetic clustering analysis yielded
significant differences between the low- and high-
exposure fighter groups, our automatic approach,
which utilizes phonetic word representations, ap-
pears to be more sensitive to these differences; it
also appears to produce less variability on cluster-
ing measures. Furthermore, as discussed above,
automatic analysis is much less labor-intensive,
and thus is more scalable to large numbers of tests.
Moreover, our system is not prone to human error
during analysis, nor to inter-rater variability.

Of the two automatic clustering methods, the
common-biphone method, which uses binary sim-
ilarity values, found greater differences between
groups in MPSS, MCL, and MXCL; thus, it ap-
pears to be more sensitive than the edit-distance
method in detecting group differences. Common-
biphone measures were also found to better cor-
relate with manual measures; however, both au-
tomated methods disagreed with the manual ap-
proach to some extent. The fact that the auto-
mated common-biphone method shows significant
differences between group means, while having
less variability in measurements, suggests that it
may be a more suitable measure of phonetic clus-
tering than the traditional manual method.

These results are particularly important in light
of the difference in WCNT means between low-
and high-exposure groups being small and not sig-
nificant (WCNT: 17.6, SD 5.1 vs. 18.7, SD 4.7;
p = 0.24). Other studies that used manual cluster-
ing and switching analyses reported significantly
more switches for healthy controls than for indi-
viduals with neurological conditions (Troyer et al.,
1997). These studies also reported differences in
the total number of words produced, likely due to
investigating already impaired individuals.

Our findings show that the low- and high-
exposure groups produced similar numbers of
words, but the high-exposure group tended to
produce longer sequences of phonetically simi-
lar words. The latter phenomenon may be inter-
preted as a mild form of perseverative (stuck-in-
set/repetitive) behavior that is characteristic of dis-

orders involving damage to frontal and subcortical
brain structures.

To test this interpretation, we correlated MCL
and MXCL, the two measures with greatest dif-
ferences between low- and high-exposure fighters,
with the count of repeated words (RCNT). The
resulting correlations were 0.41 (p = 0.01) and
0.48 (p < 0.001), respectively, which supports the
perseverative-behavior interpretation of our find-
ings.

Clearly, these findings are preliminary and need
to be confirmed in larger samples; however, they
plainly demonstrate the utility of our fully auto-
mated and quantifiable approach to characteriz-
ing and measuring clustering behavior on PVF
tests. Pending further clinical validation, this sys-
tem may be used for large-scale screening for sub-
tle signs of certain types of brain damage or de-
generation not only in contact-sports athletes, but
also in the general population.
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