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Abstract

We investigated the effect of word sur-
prisal on the EEG signal during sen-
tence reading. On each word of 205 ex-
perimental sentences, surprisal was esti-
mated by three types of language model:
Markov models, probabilistic phrase-
structure grammars, and recurrent neu-
ral networks. Four event-related poten-
tial components were extracted from the
EEG of 24 readers of the same sentences.
Surprisal estimates under each model type
formed a significant predictor of the am-
plitude of the N400 component only, with
more surprising words resulting in more
negative N400s. This effect was mostly
due to content words. These findings
provide support for surprisal as a gener-
ally applicable measure of processing dif-
ficulty during language comprehension.

1 Introduction

Many studies of human language comprehension
measure the brain’s electrical activity during read-
ing. Such electroencephalography (EEG) experi-
ments have revealed that the EEG signal displays
systematic variation in response to the appearance
of each word. The different components that can
be observed in this signal are known as event-
related potentials (ERPs). Probably the most reli-
ably observed (and most studied) of these compo-
nents is a negative-going deflection at centropari-
etal electrodes that peaks at around 400 ms after
word onset and is therefore referred to as the N400
component.

It is well known that the N400 increases in am-
plitude (i.e., becomes more negative) when the
word leads to comprehension difficulty. To study
the general relation between word predictability
and the N400, Dambacher et al. (2006) obtained

subjective word-probability estimates (so-called
cloze probabilities) by asking participants to pre-
dict the upcoming word at each point in a large
number of sentences. A different group of subjects
read these same sentences while their EEG signal
was recorded. Results showed a correlation be-
tween N400 amplitude and cloze probability: Less
predictable words yielded stronger N400s.

We investigated whether similar results can be
obtained using more objective, model-based word
probabilities. For each word in a collection of
English sentences, estimates of itssurprisal (i.e.,
its negative log-transformed conditional probabil-
ity: − logP (wt|w1, . . . , wt−1)) were generated
by three types of language model: Markov (i.e.,n-
gram) models, phrase-structure grammars (PSGs),
and recurrent neural networks (RNNs). Next, EEG
signals of participants reading the same sentences
were recorded. A comparison of word surprisal to
different ERP components revealed that, indeed,
N400 amplitude was predicted by surprisal values:
More surprising words resulted in more negative
N400s, at least for content words.

2 Language models

A range of models of each type was trained, al-
lowing to investigate whether models that capture
the language statistics more accurately also yield
better predictions of ERP size. Such a relation is
generally found in studies that use word-reading
time as the dependent variable (Fernandez Mon-
salve et al., 2012; Frank and Bod, 2011; Frank
and Thompson, 2012), providing additional sup-
port that these psychological data are indeed ex-
plained by the surprisal values and not by some
confounding variable.

2.1 Corpus data

All models were trained on sentences from the
written texts in the British National Corpus
(BNC). First, the 10,000 word types with highest
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frequency were selected from the BNC. Next, all
sentences were extracted that contained only those
words. This resulted in a training corpus of 1.06
million sentences (12.6 million word tokens).

Each trained model estimated a surprisal value
for each word of the 205 sentences (1931 word to-
kens) for which eye-tracking data are available in
the UCL corpus of reading times (Frank et al., in
press). These sentences, which were selected from
three unpublished novels, only contained words
from the 10,000 high-frequency word list.

2.2 Markov models

Markov models were trained with modified
Kneser-Ney smoothing (Chen and Goodman,
1999) as implemented in SRILM (Stolcke, 2002).
Model order was varied:n = 2, 3, 4. No unigram
model was computed because word frequency was
factored out during data analysis (see Section 4.2).

2.3 Recurrent neural networks

The RNN model architecture has been thoroughly
described elsewhere (Fernandez Monsalve et al.,
2012; Frank, in press) so it is not discussed here.
The only difference with previous versions was
that the current RNN was trained on a substantially
larger data set with more word types. A range of
RNN models was obtained by training on nine in-
creasingly large subsets of the BNC data, compris-
ing 2K, 5K, 10K, 20K, 50K, 100K, 200K, 400K,
and all 1.06M sentences. In addition, the network
was trained on the full set twice, making a total of
ten instantiations of the RNN model.

2.4 Phrase-structure grammars

To prepare data for PSG training, the selected
BNC sentences were parsed by the Stanford parser
(Klein and Manning, 2003). The resulting tree-
bank was divided into nine increasingly large sub-
sets, equal to those used for RNN training.1 Gram-
mars were induced from these subsets using the
algorithm by Roark (2001) with its standard set-
tings. Next, surprisal values on the experimental
sentences were generated by Roark’s incremental
parser. Since increasing the parser’s beam width
has been shown to improve both word-probability
estimates and the fit to word-reading times (Frank,
2009), the parser’s ‘base beam threshold’ parame-
ter was reduced to10−20.

1Because not all experimental sentences could be parsed
when the treebank comprised only 2K sentences, 1K sen-
tences were added to the smallest subset.

3 EEG data collection

Twenty-four healthy, adult volunteers from the
UCL Psychology subject pool took part in the
reading study. Their EEG was recorded contin-
uously from 32 channels during the presentation
of 5 practice sentences and the 205 experimental
items. Participants were asked to minimise blinks,
eye movements, and head movements during sen-
tence presentation.

Each sentence was preceded by a centrally pre-
sented fixation cross. As soon as the partici-
pant pressed a key, the cross was replaced by the
sentence’s first word, which was then automati-
cally replaced by each subsequent word. Word
presentation duration (in milliseconds) equalled
190 + 20k, wherek is the number of characters
in the word (including any attached punctuation).
After the word disappeared, there was a 390 ms
interval before the next word appeared.

The sentences were presented in random or-
der, one word at a time, always centrally located
on the monitor. One-hundred and ten of the ex-
perimental sentences were followed by a yes/no-
comprehension question, to ensure that partici-
pants tried to understand the sentences. All par-
ticipants answered at least 80% of the comprehen-
sion questions correctly.

4 Data analysis

4.1 ERP components

Four ERP components of interest were identified
from the literature on EEG and sentence reading:
Early Left Anterior Negativity (ELAN), P200,
N400, and a post-N400 positivity (PNP). Table 1
lists the corresponding time windows and approx-
imate electrode sites.2 For each component, the
average electrode potential over the corresponding
time window and electrodes was computed. These
average ERP amplitudes served as the four depen-
dent variables for data analysis.

The ELAN component is generally thought of
as indicative of difficulty with constructing syntac-
tic phrase structure (Friederici et al., 1999; Gunter
et al., 1999; Neville et al., 1991). Hence, if any
of the model types predicts ELAN size, we would
expect this to be the PSG.

Dambacher et al. (2006) found effects of word
frequency or length (which are strongly correlated

2The P600 component (Osterhout and Holcomb, 1992)
was not included because the shortest interval between con-
secutive word onsets was only 600 ms.
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Component Time window Location
ELAN 125–175 ms left anterior
P200 140–200 ms frontocentral
N400 300–500 ms centroparietal
PNP 400–600 ms frontopolar

Table 1: Investigated ERP components, their time
windows, and approximate scalp locations.

and therefore difficult to tease apart) on the P200
amplitude. Since we factor out these two lexical
factors in the analysis, we expect no additional ef-
fect of surprisal on P200.

If any of the components is sensitive to word
surprisal, this is most likely to be the N400 as
many studies have already shown that N400 am-
plitude depends on subjective word predictabil-
ity (Dambacher et al., 2006; Kutas and Hillyard,
1984; Moreno et al., 2002). Whether an effect
will appear on the PNP is more doubtful. Van
Petten and Luka (2012) argue that word expec-
tations that are confirmed result in reduced N400
size, whereas expectations that aredisconfirmed
increase the PNP. However, in a probabilistic set-
ting, expectations are not all-or-nothing so there
is no strict distinction between confirmation and
disconfirmation. Nevertheless, surprisal effects on
PNP may occur. Since the PNP has received rel-
atively little attention, the component may not be
such a reliable index of comprehension difficulty
as the N400 has proven to be.

4.2 Regression analysis

Data were discarded on words attached to a
comma, clitics, sentence-initial, and sentence-
final words. Moreover, artifacts in the EEG data
(mostly due to eye blinks) were identified and re-
moved, leaving 32,010 analysed data points per in-
vestigated ERP component. For each data point
and ERP component, a baseline potential was de-
termined by averaging over the component’s elec-
trodes in the 100 ms leading up to word onset.

In order to quantify the fit of surprisal to ERP
size, a linear mixed-effects regression model was
fitted to each of the four ERPs, using the pre-
dictors: baseline potential, log-transformed word
frequency, word length (number of characters),
word position in the sentence, and sentence po-
sition in the experiment.3 Also, all significant

3For word and sentence position, both linear and squared
factors were included in order to capture possible non-linear

two-way interactions were included (main effects
were removed if they were not significant and did
not appear in any interaction). In addition, there
were by-subject and by-item random intervals, as
well as significant by-subject and by-item random
slopes. Parameters for the correlation between
random intercept and slope where also estimated,
if they significantly contributed to model fit.

When the surprisal estimates by a particular lan-
guage model are included in the analysis, the re-
gression model’s deviance decreases. The size of
this decrease is theχ2-statistic of a likelihood-
ratio test for significance of the surprisal effect,
and was taken as the measure of the surprisal val-
ues’ fit to the ERP data.4 Negative values will be
used to indicate effects in the negative direction,
that is, when higher surprisal results in more neg-
ative (or less positive) going ERP deflections.

5 Results

5.1 Surprisal effects

Figure 1 plots the fit of each model’s surprisal esti-
mates to ERP amplitude as a function of the aver-
age naturallogP (wt|w1, . . . , wt−1), which quan-
tifies to what extent the model has acquired accu-
rate language statistics.5 For the ELAN, P200 and
PNP components, there were no significant effects
after correcting for multiple comparisons. In con-
trast, effects on the N400 were highly significant.

5.2 Model comparison

Table 2 shows results of pairwise comparisons be-
tween the best models of each type (i.e., those
whose surprisal estimates fit the N400 data best).
Clearly, RNN-based surprisal explains variance
over and above each of the other two models
whereas neither then-gram nor the PSG model
outperforms the RNN. Moreover, the RNN’s sur-
prisals explain a marginally significant (χ2 =
3.47; p < .07) amount of variance over and above
thecombined PSG andn-gram surprisals.

changes over the course of the sentence or experiment.
4This definition equals what Frank and Bod (2011) call

‘psychological accuracy’ in an analysis of reading times.
5This measure, which Frank and Bod (2011) call ‘linguis-

tic accuracy’, equals the negative logarithm of the model’s
perplexity. Increasing the amount of training data (or the
value ofn) resulted in higher linguistic accuracy, except for
the three PSG models trained on the smallest amounts of data.
This shows that the models did not suffer from overfitting.
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Figure 1: Fit to surprisal of ERP amplitude (for ELAN, P200, N400, and PNP components) as a function
of averagelogP (wt|w1, . . . , wt−1). Each plotted point corresponds to predictions by one of the trained
models. Dotted lines indicateχ2 = ±3.84, beyond which effects are statistically significant (p < .05)
if no correction for multiple comparisons is applied. The dashed line indicates the level below which
effects are significant after applying the correction proposed by Benjamini and Hochberg (1995), on
each ERP component separately because of our prior expectation that effects would occur mostly (if not
exclusively) on the N400 component.

Model n-gram RNN PSG
n-gram χ2 = 1.34 χ2 = 1.66

p > .2 p > .1

RNN χ2 = 6.52 χ2 = 4.78
p < .02 p < .05

PSG χ2 = 4.20 χ2 = 2.14
p < .05 p > .1

Table 2: Pairwise comparisons between surprisal
estimates by the best models of each type. Shown
are the results of likelihood-ratio tests for the ef-
fect of one set of surprisal estimates (rows) over
and above the other (columns).

5.3 Comparing word classes

N400 effects are nearly exclusively investigated
on content (i.e., open-class) words. Dambacher et
al. (2006), too, investigated the relation between
ERP amplitudes and cloze probabilities on con-
tent words only. When running separate analyses
on content and function words (constituting 53.2%
and 46.8% of the data, respectively), we found that
the N400 effect of Figure 1 is nearly fully driven
by content words (see Figure 2). None of the mod-
els’ surprisal estimates formed a significant pre-
dictor of N400 amplitude on function words, after
correction for multiple comparisons.

6 Discussion

We demonstrated a clear effect of word surprisal,
as estimated by different language models, on the
EEG signal: The larger a (content) word’s sur-
prisal value, the more negative the resulting N400.
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Figure 2: Fit to surprisal of N400 amplitude, for
content words (left) and function words (right).
Dotted lines indicateχ2 = ±3.84, beyond which
effects are statistically significant (p < .05) with-
out correcting for multiple comparisons. Dashed
lines indicates the levels beyond which effects
are significant after multiple-comparison correc-
tion (Benjamini and Hochberg, 1995).

The N400 component is generally viewed as in-
dicative of lexical rather than syntactic processing
(Kaan, 2007), which may explain why surprisal
under the PSG model did not have any significant
explanatory value over and above RNN-based sur-
prisal. The relatively weak performance of our
Markov models is most likely due to their strict
(and cognitively unrealistic) limit on the size of
the prior context upon which word-probability es-
timates are conditioned.

Unlike the ELAN, P200, and PNP components,
the N400 is known to be sensitive to the cloze
probability of content words. The fact that sur-
prisal effects were found on the N400 only, there-
fore suggests that subjective predictability scores
and model-based surprisal estimates form opera-
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tionalisations of one and the same underlying cog-
nitive factor. Needless to say, our statistical mod-
els fail to capture many information sources, such
as semantics and discourse, that do affect cloze
probabilities. However, it is possible in principle
to integrate these into probabilistic language mod-
els (Dubey et al., 2011; Mitchell et al., 2010).

To the best of our knowledge, only one other
published study relates language model predic-
tions to the N400: Parviz et al. (2011) found that
surprisal estimates (corrected for word frequency)
from ann = 4 Markov model predicted N400 size
as measured by magnetoencephalography (rather
than EEG). Although their PSG-based surprisals
did not correlate with N400 size, a related measure
derived from the PSG –lexical entropy– did. How-
ever, Parviz et al. (2011) only looked at effects
on the sentence-final content word of items con-
structed for a speech perception experiment (Ka-
likow et al., 1977), rather than investigating sur-
prisal’s general predictive value across words of
naturally occurring sentences, as we did here.

Our experimental design was parametric rather
than factorial, which allowed us to study the effect
of surprisal over a sample of English sentences
rather than carefully manipulating surprisal while
holding other factors constant. This has the ad-
vantage that our findings are likely to generalise to
other sentence stimuli, but it can also raise a pos-
sible concern: The N400 effect may not be due
to surprisal itself, but to an unknown confound-
ing variable that was not included in the regression
analysis. However, this seems unlikely because of
two additional findings that only follow naturally
if surprisal is indeed the relevant predictor: Signif-
icant results only appeared where they were most
expected a priori (i.e., on N400 but not on other
components) and there was a nearly monotonic re-
lation between the models’ word-prediction accu-
racy and their ability to account for N400 size.

7 Conclusion

Although word surprisal has often been shown
to be predictive of word-reading time (Fernan-
dez Monsalve et al., 2012; Frank and Thompson,
2012; Smith and Levy, in press), a general effect
on the EEG signal has not before been demon-
strated. Hence, these results provide additional ev-
idence in support of surprisal as a reliable measure
of cognitive processing difficulty during sentence
comprehension (Hale, 2001; Levy, 2008).
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