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Abstract

Syntactic features are useful for many
text classification tasks. Among these,
tree kernels (Collins and Duffy, 2001)
have been perhaps the most robust and
effective syntactic tool, appealing for
their empirical success, but also be-
cause they do not require an answer
to the difficult question of which tree
features to use for a given task. We
compare tree kernels to different ex-
plicit sets of tree features on five diverse
tasks, and find that explicit features of-
ten perform as well as tree kernels on
accuracy and always in orders of mag-
nitude less time, and with smaller mod-
els. Since explicit features are easy to
generate and use (with publicly avail-
able tools), we suggest they should al-
ways be included as baseline compar-
isons in tree kernel method evaluations.

1 Introduction

Features computed over parse trees are use-
ful for a range of discriminative tasks, in-
cluding authorship attribution (Baayen et al.,
1996), parse reranking (Collins and Duffy,
2002), language modeling (Cherry and Quirk,
2008), and native-language detection (Wong
and Dras, 2011). A major distinction among
these uses of syntax is how the features are rep-
resented. The implicit approach uses tree
kernels (Collins and Duffy, 2001), which make
predictions with inner products between tree
pairs. These products can be computed effi-
ciently with a dynamic program that produces
weighted counts of all the shared tree frag-
ments between a pair of trees, essentially in-
corporating all fragments without representing
any of them explicitly. Tree kernel approaches

have been applied successfully in many areas
of NLP (Collins and Duffy, 2002; Moschitti,
2004; Pighin and Moschitti, 2009).

Tree kernels were inspired in part by ideas
from Data-Oriented Parsing (Scha, 1990; Bod,
1993), which was in turn motivated by uncer-
tainty about which fragments to include in a
grammar. However, manual and automatic
approaches to inducing tree fragments have
recently been found to be useful in an ex-
plicit approach to text classification, which
employs specific tree fragments as features in
standard classifiers (Post, 2011; Wong and
Dras, 2011; Swanson and Charniak, 2012).
These feature sets necessarily represent only a
small subset of all possible tree patterns, leav-
ing open the question of what further gains
might be had from the unusued fragments.

Somewhat surprisingly, explicit and implicit
syntactic features have been explored largely
independently. Here, we compare them on a
range of classification tasks: (1,2) grammati-
cal classification (is a sentence written by a hu-
man?), (3) question classification (what type
of answer is sought by this question?), and
(4,5) native language prediction (what is the
native language of a text’s author?).

Our main contribution is to show that an ex-
plicit syntactic feature set performs as well or
better than tree kernels on each tested task,
and in orders of magnitude less time. Since
explicit features are simple to generate (with
publicly available tools) and flexible to use, we
recommend they be included as baseline com-
parisons in tree kernel method evaluations.

2 Experimental setup

We used the following feature sets:

N-grams All unigrams and bigrams.1

1Experiments with trigrams did not show any im-
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CFG rules Counts of depth-one context-
free grammar (CFG) productions obtained
from the Berkeley parser (Petrov et al., 2006).

C&J features The parse-tree reranking
feature set of Charniak and Johnson (2005),
extracted from the Berkeley parse trees.

TSG features We also parsed with a
Bayesian tree substitution grammar (Post and
Gildea, 2009, TSG)2 and extracted fragment
counts from Viterbi derivations.

We build classifiers with Liblinear3 (Fan
et al., 2008). We divided each dataset into
training, dev, and test sets. We then trained
an L2-regularized L1-loss support vector ma-
chine (-s 3) with a bias parameter of 1 (-B 1),
optimizing the regularization parameter (-c)
on the dev set over the range {0.0001 . . . 100}
by multiples of 10. The best model was then
used to classify the test set. A sentence length
feature was included for every sentence.

For tree kernels, we used SVM-light-TK4

(Moschitti, 2004; Moschitti, 2006) with the
default settings (-t 5 -D 1 -L 0.4),5 which
also solves an L2-regularized L1-loss SVM op-
timization problem. We tuned the regulariza-
tion parameter (-c) on the dev set in the same
manner as described above, providing 4 GB of
memory to the kernel cache (-m 4000).6 We
used subset tree kernels, which compute the
similarity between two trees by implicitly enu-
merating all possible fragments of the trees (in
contrast with subtree kernels, where all frag-
ments fully extend to the leaves).

3 Tasks

Table 1 summarizes our datasets.

3.1 Coarse grammatical classification

Our first comparison is coarse grammatical
classification, where the goal is to distin-
guish between human-written sentences and
“pseudo-negative” sentences sampled from a
trigram language model constructed from in-

provement.
2github.com/mjpost/dptsg
3www.csie.ntu.edu.tw/~cjlin/liblinear/
4disi.unitn.it/moschitti/Tree-Kernel.htm
5Optimizing SVM-TK’s decay parameter (-L) did

not improve test-set accuracy, but did increase training
time (squaring the number of hyperparameter combi-
nations to evaluate), so we stuck with the default.

6Increased from the default of 40 MB, which halves
the running time.

train dev test

Coarse grammaticality (BLLIP)
sentences 100,000 6,000 6,000

Fine grammaticality (PTB)
sentences 79,664 3,978 3,840

Question classification (TREC-10)
sentences 4,907 545 500

Native language (ICLE; 7 languages)
documents 490 105 175
sentences 17,715 3,968 6,777

Native language (ACL; 5 languages)
documents 987 195 185
sentences 146,257 28,139 28,403

Table 1: Datasets.

system accuracy CPU time

Chance 50.0 -
N-gram 68.4 minutes

CFG 86.3 minutes
TSG 89.8 minutes
C&J 92.9 an hour

SVM-TK 91.0 a week

Table 2: Coarse grammaticality. CPU time is
for classifier setup, training, and testing.

domain data (Okanohara and Tsujii, 2007).
Cherry and Quirk (2008) first applied syn-
tax to this task, learning weighted parameters
for a CFG with a latent SVM. Post (2011)
found further improvements with fragment-
based representations (TSGs and C&J) with a
regular SVM. Here, we compare their results
to kernel methods. We repeat Post’s experi-
ments on the BLLIP dataset,7 using his exact
data splits (Table 2). To our knowledge, tree
kernels have not been applied to this task.

3.2 Fine grammatical classification

Real-world grammaticality judgments require
much finer-grained distinctions than the
coarse ones of the previous section (for exam-
ple, marking dropped determiners or wrong
verb inflections). For this task, we too pos-
itive examples from all sentences of sections
2–21 of the WSJ portion of the Penn Tree-
bank (Marcus et al., 1993). Negative exam-
ples were created by inserting one or two errors

7LDC Catalog No. LDC2000T43
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system accuracy CPU time

Wong & Dras 60.6 -

Chance 50.0 -
N-gram 61.4 minutes

CFG 64.5 minutes
TSG 67.0 minutes
C&J 71.9 an hour

SVM-TK 67.8 weeks

Table 3: Fine-grained classification accuracy
(the Wong and Dras (2010) score is the highest
score from the last column of their Table 3).

system accuracy CPU time

Pighin & Moschitti 86.6 -

Bigram 73.2 seconds

CFG 90.0 seconds
TSG 85.6 seconds
C&J 89.6 minutes

SVM-TK 87.7 twenty min.

Table 4: Question classification (6 classes).

into the parse trees from the positive data us-
ing GenERRate (Foster and Andersen, 2009).
An example sentence pair is But the ballplay-
ers disagree[ing], where the negative exam-
ple incorrectly inflects the verb. Wong and
Dras (2010) reported good results with parsers
trained separately on the positive and negative
sides of the training data and classifiers built
from comparisons between the CFG produc-
tions of those parsers. We obtained their data
splits (described as NoisyWSJ in their paper)
and repeat their experiments here (Table 3).

3.3 Question Classification

We look next at question classification (QC).
Li and Roth (2002) introduced the TREC-10
dataset,8 a set of questions paired with labels
that categorize the question by the type of an-
swer it seeks. The labels are organized hi-
erarchically into six (coarse) top-level labels
and fifty (fine) refinements. An example ques-
tion from the ENTY/animal category is What
was the first domesticated bird?. Table 4 con-
tains results predicting just the coarse labels.
We compare to Pighin and Moschitti (2009),
and also repeat their experiments, finding a
slightly better result for them.

8cogcomp.cs.illinois.edu/Data/QA/QC/

system sent. voting whole

Wong & Dras - - 80.0

Style 42.0 75.3 86.8

CFG 39.5 73.2 83.7
TSG 38.7 72.1 83.2
C&J 42.9 76.3 86.3

SVM-TK 40.7 69.5 -

Style 42.5 65.3 83.7

CFG 39.2 52.6 86.3
TSG 40.4 56.8 84.7
C&J 49.2 66.3 81.1

SVM-TK 42.1 52.6 -

Table 5: Accuracy on ICLE (7 languages, top)
and ACL (five, bottom) datasets at the sen-
tence and document levels. All documents
were signature-stylized (§3.4).

We also experimented with the refined ver-
sion of the task, where we directly predict one
of the fifty refined categories, and found nearly
identical relative results, with the best explicit
feature set (CFG) returning an accuracy of
83.6% (in seconds), and the tree kernel system
69.8% (in an hour). For reference, Zhang and
Lee (2003) report 80.2% accuracy when train-
ing on the full training set (5,500 examples)
with an SVM and bag-of-words features.9

3.4 Native language identification

Native language identification (NLI) is the
task of determining a text’s author’s native
language. This is usually cast as a document-
level task, since there are often not enough
cues to identify native languages at smaller
granularities. As such, this task presents a
challenge to tree kernels, which are defined at
the level of a single parse tree and have no ob-
vious document-level extension. Table 5 there-
fore presents three evaluations: (a) sentence-
level accuracy, and document-level accuracy
from (b) sentence-level voting and (c) direct,
whole-document classification.

We perform these experiments on two
datasets. In order to mitigate topic bias10 and
other problems that have been reported with

9Pighin and Moschitti (2009) did not report results
on this version of the task.

10E.g., when we train with all words, the keyword
’Japanese’ is a strong indicator for Japanese authors,
while ’Arabic’ is a strong indicator for English ones.
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the ICLE dataset (Tetreault et al., 2012),11 we
preprocessed each dataset into two signature-
stylized versions by replacing all words not in a
stopword list.12 The first version replaces non-
stopwords with word classes computed from
surface-form signatures,13 and the second with
POS tags.14 N-gram features are then taken
from both stylized versions of the corpus.

Restricting the feature representation to be
topic-independent is standard-practice in sty-
lometric tasks like authorship attribution, gen-
der identification, and native-language identi-
fication (Mosteller and Wallace, 1984; Koppel
et al., 2003; Tomokiyo and Jones, 2001).

3.4.1 ICLE v.2

The first dataset is a seven-language subset
of the International Corpus of Learner En-
glish, Version 2 (ICLE) (Granger et al., 2009),
which contains 3.7 million words of English
documents written by people with sixteen dif-
ferent native languages. Table 1 contains
scores, including one reported by Wong and
Dras (2011), who used the CFG and C&J fea-
tures, and whose data splits we mirror.15

3.4.2 ACL Anthology Network

We also experimented with native language
classification on scientific documents using
a version of the ACL Anthology Network
(Radev et al., 2009, AAN) annotated for ex-
periments in stylemetric tasks, including a
native/non-native author judgment (Bergsma
et al., 2012). For NLI, we further anno-
tated this dataset in a semi-automatic fash-
ion for the five most-common native languages
of ACL authors in our training era: English,
Japanese, German, Chinese, and French. The
annotation heuristics, designed to favor pre-
cision over recall, provided annotations for
1,959 of 8,483 papers (23%) in the 2001–2009
AAN.16

11Including prompts, characters, and special tokens
that correlate strongly with particular outcomes.

12The stopword list contains the set of 524 SMART-
system stopwords used by Tomokiyo and Jones (2001),
plus punctuation and Latin abbreviations.

13For example, suffix and capitalization.
14Via CRFTagger (Phan, 2006).
15Tetreault et al. reported accuracies up to 90.1 in a

cross-validation setting that isn’t directly comparable.
16Details and data at old-site.clsp.jhu.edu/

~sbergsma/Stylo/.

60

70

80

90

100

0 0.01 0.1 1 10 100 1,000

ac
cu

ra
cy

training time (thousands of seconds)

size CFG CFG TSG TSG TSG+ TSG+ C&J C&J SVM-TK SVM-TK uSVM-TK USVM-TK
100 7 62.6 6 61.0 8 73.1 407 72.8 13 62.9 27 62.7
300 7 68.0 6 65.0 8 77.9 412 77.5 46 70.8 174 70.9
1000 7 73.3 6 70.9 9 78.4 433 82.2 227 77.1 1475 77.4
3000 9 75.8 7 77.5 12 82.3 465 87.1 1034 81.4 4394 81.2
10000 13 80.8 11 82.5 32 85.2 708 89.9 8984 85.5 6691 85.3
30000 37 83.5 29 85.8 108 87.7 1276 92.7 72859 88.8 7789 87.8
100000 133 86.3 85 89.1 406 89.8 3152 93.0 873969 91.0 8488 89.0

CFG
TSG
C&J
SVM-TK
uSVM-TK

uSVM-TK USVM-TK
1010.35 62.7
2628.84 70.9
7264.65 77.4
25447.47 81.2
29298.76 85.3
45938.05 87.8
48570.46 89.0

OLD VALUES

Figure 1: Training time (1000s of seconds) vs.
test accuracy for coarse grammaticality, plot-
ting test scores from models trained on 100,
300, 1k, 3k, 10k, 30k, and 100k instances.

4 Discussion

Syntactic features improve upon the n-gram
baseline for all tasks except whole-document
classification for ICLE. Tree kernels are often
among the best, but always trail (by orders
of magnitude) when runtime is considered.
Constructing the multi-class SVM-TK models
for the NLI tasks in particular was computa-
tionally burdensome, requiring cpu-months of
time. The C&J features are similarly often the
best, but incur a runtime cost due to the large
models. CFG and TSG features balance per-
formance, model size, and runtime. We now
compare these approaches in more depth.

4.1 Training time versus accuracy

Tree kernel training is quadratic in the size of
the training data, and its empirical slowness
is known. It is informative to examine learn-
ing curves to see how the time-accuracy trade-
offs extrapolate. We compared models trained
on the first 100, 300, 1k, 3k, 10k, 30k, and
100k data points of the coarse grammaticality
dataset, split evenly between positive and neg-
ative examples (Figure 1). SVM-TK improves
over the TSG and CFG models in the limit,
but at an extraordinary cost in training time:
100k training examples is already pushing the
bounds of practicality for tree kernel learning,
and generating curve’s next point would re-
quire several months of time. Kernel methods
also produce large models that result in slow
test-time performance, a problem dubbed the
“curse of kernelization” (Wang et al., 2010).

Approximate kernel methods designed to
scale to large datasets address this (Severyn

869



and Moschitti, 2010). We investigated the
uSVM-TK toolkit,17 which enables tuning the
tradeoff between training time and accuracy.
While faster than SVM-TK, its performance
was never better than explicit methods along
both dimensions (time and accuracy).

4.2 Overfitting

Overfitting is also a problem for kernel meth-
ods. The best models often had a huge number
of support vectors, achieving near-perfect ac-
curacy on the training set but making many
errors on the dev. and test sets. On the ICLE
task, close to 75% of all the training exam-
ples were used as support vectors. We found
only half as many support vectors used for the
explicit representations, implying less error
(Vapnik, 1998), and saw much lower variance
between training and testing performance.

4.3 Which fragments?

Our findings support the observations of
Cumby and Roth (2003), who point out that
kernels introduce a large number of irrelevant
features that may be especially harmful in
small-data settings, and that, when possible, it
is often better to have a set of explicit, relevant
features. In other words, it is better to have
the right features than all of them. Tree ker-
nels provide a robust, efficiently-computable
measure of comparison, but they also skirt the
difficult question, Which fragments?

So what are the “right” features? Table 6)
presents an intuitive list from the coarse gram-
maticality task: phenomena such as balanced
parenthetical phrases and quotations are asso-
ciated with grammaticality, while small, flat,
abstract rules indicate samples from the n-
gram model. Similar intuitive results hold for
the other tasks. The immediate interpretabil-
ity of the explicit formalisms is another ad-
vantage, although recent work has shown that
weights on the implicit features can also be ob-
tained after a kind of linearization of the tree
kernel (Pighin and Moschitti, 2009).

Ultimately, which features matter is task-
dependent, and skirting the question is ad-
vantageous in many settings. But it is also
encouraging that methods for selecting frag-
ments and other tree features work so well,

17disi.unitn.it/~severyn/code.html

(TOP (S “ S , ” NP (VP (VBZ says) ADVP) .))
(FRAG (X SYM) VP .)
(PRN (-LRB- -LRB-) S (-RRB- -RRB-))
(PRN (-LRB- -LRB-) NP (-RRB- -RRB-))
(S NP VP .)
(NP (NP DT CD (NN %)) PP)
(NP DT)
(PP (IN of))
(TOP (NP NP PP PP .))
(NP DT JJ NNS)

Table 6: The highest- and lowest-weighted
TSG features (coarse grammaticality).

yielding quick, light-weight models that con-
trast with the heavy machinery of tree kernels.

5 Conclusion

Tree kernels provide a robust measure of com-
parison between trees, effectively making use
of all fragments. We have shown that for
some tasks, it is sufficient (and advantageous)
to instead use an explicitly-represented subset
of them. In addition to their flexibility and
interpetability, explicit syntactic features of-
ten outperformed tree kernels in accuracy, and
even where they did not, the cost was multiple
orders of magnitude increase in both training
and testing time. These results were consistent
across a range of task types, dataset sizes, and
classification arities (binary and multiclass).

There are a number of important caveats.
We explored a range of data settings, but
there are many others where tree kernels have
been proven useful, such as parse tree rerank-
ing (Collins and Duffy, 2002; Shen and Joshi,
2003), sentence subjectivity (Suzuki et al.,
2004), pronoun resolution (Yang et al., 2006),
relation extraction (Culotta and Sorensen,
2004), machine translation evaluation (Liu
and Gildea, 2005), predicate-argument recog-
nition, and semantic role labeling (Pighin and
Moschitti, 2009). There are also tree ker-
nel variations such as dependency tree kernels
(Culotta and Sorensen, 2004) and shallow se-
mantic tree kernels (Moschitti et al., 2007).
These variables provide a rich environment for
future work; in the meantime, we take these re-
sults as compelling motivation for the contin-
ued development of explicit syntactic features
(both manual and automatically induced), and
suggest that such features should be part of
the baseline systems on applicable discrimina-
tive NLP tasks.
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