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Abstract

Automatically determining the temporal order
of events and times in a text is difficult, though
humans can readily perform this task. Some-
times events and times are related through use
of an explicit co-ordination which gives infor-
mation about the temporal relation: expres-
sions like “before” and “as soon as”. We in-
vestigate the rôle that these co-ordinating tem-
poral signals have in determining the type of
temporal relations in discourse. Using ma-
chine learning, we improve upon prior ap-
proaches to the problem, achieving over 80%
accuracy at labelling the types of temporal re-
lation between events and times that are re-
lated by temporal signals.

1 Introduction
It is important to understand time in language. The
ability to express and comprehend expressions of time
enables us to plan, to tell stories, and to discuss change
in the world around us.

When we automatically extract temporal informa-
tion, we are often concerned with events and times – re-
ferred to collectively as temporal intervals. We might
ask, for example, “Who is the current President of the
USA?.” In order to extract an answer to this question
from a document collection, we need to identify events
related to persons becoming president and the times of
those events. Crucially, however, we also need to iden-
tify the temporal relations between these events and
times, perhaps, for example, by recognizing a tempo-
ral relation type from a set such as that of Allen (1983).
This last task, temporal relation typing, is challeng-
ing, and is the focus of this paper.

Temporal signals are words or phrases that act as
discourse markers that co-ordinate a pair of events or
times and explicitly state the nature of the temporal re-
lation that holds between them. For example, in “The
parade reached the town hall before noon”, the word
before is a temporal signal, co-ordinating the event
reached with the time noon. Intuitively, these signal

words act as discourse contain temporal ordering infor-
mation that human readers can readily access, and in-
deed this hypothesis is borne out empirically (Bestgen
and Vonk, 1999). In this paper, we present an in-depth
examination into the role temporal signals can play in
machine learning for temporal relation typing, within
the framework of TimeML (Pustejovsky et al., 2005).

2 Related Work
Temporal relation typing is not a new problem. Clas-
sical work using TimeML is that of Boguraev and
Ando (2005), Mani et al. (2007) and Yoshikawa et al.
(2009). The TempEval challenge series features re-
lation typing as a key task (Verhagen et al., 2009).
The take-home message from all this work is that tem-
poral relation typing is a hard problem, even using
advanced techniques and extensive engineering – ap-
proaches rarely achieve over 60% on typing relations
between two events or over 75% accuracy for those be-
tween an event and a time. Recent attempts to include
more linguistically sophisticated features representing
discourse, syntactic and semantic role information have
yielded but marginal improvements, e.g. Llorens et al.
(2010); Mirroshandel et al. (2011).

Although we focus solely on determining the types
of temporal relations, one must also identify which
pairs of temporal intervals should be temporally re-
lated. Previous work has covered the tasks of identi-
fying and typing temporal relations jointly with some
success (Denis and Muller, 2011; Do et al., 2012). The
TempEval3 challenge addresses exactly this task (Uz-
Zaman et al., 2013).

Investigations into using signals for temporal rela-
tion typing have had promising results. Lapata and
Lascarides (2006) learn temporal structure according
to these explicit signals, then predict temporal order-
ings in sentences without signals. As part of an early
TempEval system, Min et al. (2007) automatically an-
notate signals and associate them with temporal rela-
tions. They then include the signal text as a feature
for a relation type classifier. Their definition of sig-
nals varies somewhat from the traditional TimeML sig-
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Event-event relations Event-time relations
Non-signalled Signalled Overall Non-signalled Signalled Overall

Baseline most-common-class 41.4% 57.4% 43.0% 49.2% 51.6% 49.6%
Maxent classifier 57.7% 58.6% 57.8% 81.4% 59.6% 77.3%
Error reduction 27.8% 2.74% 25.4% 64.5% 16.4% 55.5%
Sample size (number of relations) 3 179 343 3 522 2 299 529 2 828

Table 1: Relation typing performance using the base feature set, for relations with and without a temporal signal.

nal definition, as they include words such as reporting
which would otherwise be annotated as an event. The
system achieves a 22% error reduction on a simplified
set of temporal relation types.

Later, Derczynski and Gaizauskas (2010) saw a 50%
error reduction in assignment of relation types on sig-
nalled relation instances from introducing simple fea-
tures describing a temporal signal’s interaction with the
events or times that it co-ordinates. The features for de-
scribing signals included the signal text itself and the
signal’s position in the document relative to the inter-
vals it co-ordinated. This led to a large increase in re-
lation typing accuracy to 82.19% for signalled event-
event relations, using a maximum entropy classifier.

Previous work has attempted to linguistically charac-
terise temporal signals (Brée et al., 1993; Derczynski
and Gaizauskas, 2011). Signal phrases typically fall
into one of three categories: monosemous as temporal
signals (e.g. “during”, “when”); bisemous as temporal
or spatial signals (e.g. “before”); or polysemous with
the temporal sense a minority class (e.g. “in”, “fol-
lowing”). Further, a signal phrase may take two argu-
ments, though its arguments need not be in the imme-
diate content and may be anaphoric. We leave the task
of automatic signal annotation to future work, instead
focusing on the impact that signals have on temporal
relation typing.

Our work builds on previous work by expanding the
study to include relations other than just event-event
relations, by extending the feature set, by doing tem-
poral relation labelling over a more carefully curated
version of the TimeBank corpus (see below), and by
providing detailed analysis of the performance of a set
of labelling techniques when using temporal signals.

3 Experimental Setup
We only approach the relation typing task, and we use
existing signal annotations – that is, we do not attempt
to automatically identify temporal signals.

The corpus used is the signal-curated version of
TimeBank (Pustejovsky et al., 2003). This corpus, TB-
sig,1 adds extra events, times and relations to Time-
Bank, in an effort to correct signal under-annotation in
the original corpus (Derczynski and Gaizauskas, 2011).
Like the original TimeBank corpus, it comprises 183
documents. In these, we are interested only in the tem-
poral relations that use a signal. There are 851 signals
annotated in the corpus, co-ordinating 886 temporal re-

1See http://derczynski.com/sheffield/resources/tb sig.tar.bz2

lations (13.7% of all). For comparison, TimeBank has
688 signal annotations which co-ordinate 718 temporal
relations (11.2%).

When evaluating classifiers, we performed 10-fold
cross-validation, keeping splits at document level.
There are only 14 signalled time-time relations in this
corpus, which is not enough to support any generaliza-
tions, and so we disregard this interval type pairing.

As is common with statistical approaches to tempo-
ral relation typing, we also perform relation folding;
that is, to reduce the number of possible classes, we
sometimes invert argument order and relation type. For
example, A BEFORE B and B AFTER A convey the
same temporal relation, and so we can remove all AF-
TER-type relations by swapping their argument order
and converting them to BEFORE relations. This loss-
less process condenses the labels that our classifier has
to distinguish between, though classification remains a
multi-class problem.

We adopt the base feature set of Mani et al. (2007),
which consists mainly of TimeML event and time
annotation surface attributes. These are, for events:
class, aspect, modality, tense, polarity, part
of speech; and, for times: value, type, function
in document, mod, quant. To these are added
same-tense and same-aspect features, as well as
the string values of events/times.

The feature groups we use here are:

• Base – The attributes of TimeML annotations in-
volved (includes tense, aspect, polarity and so on
as above), as with previous approaches.

• Argument Ordering – Two features: a boolean
set if both arguments are in the same sentence (as
in Chambers et al. (2007)), and the text order of
argument intervals (as in Hepple et al. (2007)).

• Signal Ordering – Textual ordering is important
with temporal signals; compare “You walk before
you run” and “Before you walk you run”. We
add features accounting for relative textual posi-
tion of signal and arguments as per Derczynski
and Gaizauskas (2010). To these we add a feature
reporting whether the signal occurs in first, last,
or mid-sentence position, and features to indicate
whether each interval is in the same sentence as
the signal.

• Syntactic – We add syntactic features: fol-
lowing Bethard et al. (2007), the lowest com-
mon constituent label between each argument and
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Features Classifier Event-event accuracy Event-time accuracy
N/A Baseline most-common-class 57.4% 51.6%
Base Baseline maximum entropy 58.6% 59.6%

Maximum entropy 72.6% 72.4%DG2010 Random forest 76.7% 78.6%

All

Adaptive boosting 70.4% 73.0%
Naı̈ve Bayes 73.8% 71.5%
Maximum entropy 75.5% 78.1%
Linear SVC / Crammer-Singer 79.3% 75.6%
Linear SVC 80.7% 77.1%
Random forest 80.8% 80.3%

Table 2: Results at temporal relation typing over TB-sig, for relations that use a temporal signal

the signal; following Swampillai and Stevenson
(2011), the syntactic path from each argument
to the signal, using a top-level ROOT node for
cross-sentence paths; and three features indicat-
ing whether there is a temporal function tag (-TMP
between each of the intervals or the signal to the
root note. These features are generated using the
Stanford parser (Klein and Manning, 2003) and a
function tagger (Blaheta and Charniak, 2000).

• Signal Text – We add the signal’s raw string, as
well as its lower-case version and its lemma.

• DCT – For event-time relations, whether the time
expression also functions as the document’s cre-
ation timestamp.

Collectively, these feature groups comprise the All
feature set. For comparison, the feature set we reported
in previous work (Derczynski and Gaizauskas, 2010)
is also included, labeled DG2010. This set contains the
base and the signal ordering feature groups only, plus a
single signal feature for the signal raw string.

Using these feature representations we trained multi-
nomial naı̈ve Bayes (Rennie et al., 2003), maximum
entropy (Daumé III, 2008), adaptive boosting (Fre-
und and Schapire, 1997; Zhu et al., 2009), multi-class
SVM (Crammer and Singer, 2002; Chang and Lin,
2011) and random forest2 (Breiman, 2001) classifiers
via Scikit-learn (Pedregosa et al., 2011).

We use two baselines: most-common-class and a
model trained with no signal features. We also in-
troduce two measures replicating earlier work: one
using the DG2010 features and the classifier used in
that work (maximum entropy), and another using the
DG2010 features with the best-performing classifier
under our All feature set, in order to see if performance
changes are due to features or classifier.

Classifiers were evaluated by determining if the class
they output matched the relation type in TB-sig. Re-
sults are given in Table 2. For comparison with the
general case, i.e. for both signalled and non-signalled
temporal relation instances, we list performance with
a maximum entropy classifier and the base feature set

2With nestimators = 200, a minimum of one sample per
node, and no maximum depth.

Figure 1: Effect of training data size on relation typing
performance.

on TB-sig’s temporal relations. Results are in Table 1.
These are split into those that use a signal and those that
do not, though no features relaying signal information
are included.

In order to assess the adequacy of the dataset in
terms of size, we also examined performance using a
maximum entropy classifier learned from varying sub-
proportions of the training data. This was measured
over event-event relations, using all features. Results
are given in Figure 1. That performance appears to sta-
bilise and level off indicates that the training set is of
sufficient size for these experiments.

4 Analysis
The results in Table 2 echo earlier findings and intu-
ition: temporal signals are useful in temporal relation
typing. Results support that signals are not only helpful
in event-event relation typing but also event-time typ-
ing. For comparison, inter-annotator agreement across
all temporal relation labels, i.e. signalled and non-
signalled relations, in TimeBank is 77%.

Using the maximum entropy classifier, our approach
gives a 2.9% absolute performance increase over the
DG2010 feature set for event-event relations (10.6% er-
ror reduction) and a 5.7% absolute increase for event-
time relations (20.7% error reduction). Random forests
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Feature sets Evt-evt Evt-time
All 80.8% 80.3%
All-argument order 80.8% 78.3%
All-signal order 79.0% 77.5%
All-syntax 79.2% 79.6%
All-signal text 70.8% 72.7%
All-DCT 79.9% 79.4%
Base 54.2% 53.9%
Base+argument order 56.8% 60.1%
Base+signal order 59.7% 65.0%
Base+syntax 70.0% 71.0%
Base+signal text 75.5% 66.3%
Base+DCT 54.2% 53.9%
Base+signal text+signal order 80.4% 76.9%
Base+signal text+syntax 79.0% 74.1%
Base+arg order+signal order 77.8% 75.2%

Table 3: Relation typing accuracy based on various fea-
ture combinations, using random forests. Bold figures
indicate the largest performance change.

offer better performance under both feature sets, with
the extended features achieving notable error reduction
over DG2010 – 17.6% for event-event, 7.9% for event-
time relations. Linear support vector classification pro-
vided rapid labelling and comparable performance for
event-event relations but was accuracy was not as good
as random forests for event-time relation labelling.

Note, figures reported earlier in Derczynski and
Gaizauskas (2010) are not directly comparable to the
DG2010 figures reported here, as here we are using the
better-annotated TB-sig corpus, which contains a larger
and more varied set of temporal signal annotations.

Although we are only examining the 13.7% of tem-
poral relations that are co-ordinated with a signal, it
is important to note the performance of conventional
classification approaches on this subset of temporal
relations. Specifically, the error reduction relative to
the baseline that is achieved without signal features is
much lower on relations that use signals than on non-
signalled relations (Table 1). Thus, temporal relations
that use a signal appear to be more difficult to clas-
sify than other relations, unless signal information is
present in the features. This may be due to differences
in how signals are used by authors. One explanation
is that signals may be used in the stead of temporal or-
dering information in surrounding discourse, such as
modulations of dominant tense or aspect (Derczynski
and Gaizauskas, 2013).

Unlike earlier work using maxent, we experiment
with a variety of classifiers, and find a consistent im-
provement in temporal relation typing using signal fea-
tures. With the notable exception of adaptive boost-
ing, classifiers with preference bias (Liu et al., 2002)
– AdaBoost, random trees and SVC – performed best
in this task. Conversely, those tending toward the in-
dependence assumption (naı̈ve Bayes and maxent) did
not capitalise as effectively on the training data.

Features Evt-evt Evt-time
All 80.8% 80.3%
All-signal text 70.8% 72.7%
All-signal text-argument order 70.7% 72.2%
All-signal text-signal order 69.5% 71.2%
All-signal text-syntax 59.5% 69.0%
All-signal text-DCT 70.8% 72.8%

Table 4: Feature ablation without signal text features.
Bold figures indicate largest performance change.

We also investigated the impact of each feature
group on the best-performing classifier (random forests
with n = 200) through feature ablation. Results are
given in Table 3. Ablation suggested that the signal text
features (signal string, lower case string, head word and
lemma) had most impact in event-event relation typing,
though were second to syntax features in event-time re-
lations. Removing other feature groups gave only mi-
nor performance decreases.

We also experimented with adding feature groups to
the base set one-by-one. All but DCT features gave
above-baseline improvement, though argument order-
ing features were not very helpful for event-event re-
lation typing. Signal text features gave the strongest
improvement over baseline for event-event relations,
but syntax gave a larger improvement for event-time
relations. Accordingly, it may be useful to distinguish
between event-event and event-time relations when ex-
tracting temporal information using syntax (c.f. the ap-
proach of Wang et al. (2010)).

A strong above-baseline performance was still ob-
tained even when signal text features were removed,
which included the signal text itself. This was interest-
ing, as signal phrases can indicate quite different tem-
poral orderings (e.g. “Open the box while it rains” vs.
“Open the box before it rains”, and the words used are
typically critical to correct interpretation of the tempo-
ral relation. Further, the model is able to generalise
beyond particular signal phrase choices. To investigate
further, we examined the performance impact of each
group sans “signal text” features (Table 4). In this case,
removing the syntactic features had the greatest (neg-
ative) impact on performance, though the absolute im-
pact on event-event relations (a drop of 11.3%) was far
lower than that on event-time relations (3.7%).

To examine helpful features, we trained a max-
ent classifier on the entire dataset and collected fea-
ture:value pairs. These were then ranked by their
weight. The ten largest-weighted pairings for event-
event relations (the hardest problem in overall temporal
relation typing) are given in Table 5. Prefixes of 1- and
2- correspond to the two interval arguments (events).
Negative values are those where the presence of a par-
ticular feature:value pair suggests the mentioned class
is not applicable.

648



Weight Feature Value Class
9.346 2-polarity POS ENDS

-8.713 1-2-same-sent True BEGINS
-7.861 2-aspect NONE BEGINS
-7.256 1-aspect NONE INCLUDES
6.564 2-sig-synt-path NN-NP-IN INCLUDES
6.519 signal-lower before ENDS

-6.294 2-tense NONE BEGINS
-5.908 2-modality None ENDS
5.643 2-text took BEGINS

-5.580 1-modality None ENDS

Table 5: Top ten largest-weighted feature:value pairs.

It can be seen that BEGINS and INCLUDES rela-
tionships are not indicated if the arguments have no
TimeML aspect assigned; this is what one might ex-
pect, given how aspect is used in English, with these
temporal relation types corresponding to event starts
and the progressive. Also, notice how a particular syn-
tactic path, connecting adjacent nominalised event and
the word in acting as a signal, indicate a temporal inclu-
sion relationship. Temporal polysemy, where a word
has more than one possible temporal interpretation,
is also observable here (Derczynski and Gaizauskas
(2011) examine this polysemy in depth). This is vis-
ible in how the temporal signal phrase “before” is not,
as one might expect, a strong indicator of a BEFORE or
even AFTER relation, but of an ENDS relationship.

5 Conclusion
This paper set out to investigate the rôle of temporal
signals in predicting the type of temporal relation be-
tween two intervals. The paper demonstrated the util-
ity of temporal signals in this task, and identified ap-
proaches for using the information these signals con-
tain, which performed consistently better than the state-
of-the-art across a range of machine learning classi-
fiers. Further, it identified the impact that signal text,
signal order and syntax features had in temporal rela-
tion typing of signalled relations.

Two directions of future work are indicated. Firstly,
the utility of signals prompts investigation into detect-
ing which words in a given text occur as temporal sig-
nals. Secondly, it is intuitive that temporal signals ex-
plicitly indicate related pairs of intervals (i.e. events or
times). So, the task of deciding which interval pair(s) a
temporal signal co-ordinates must be approached.

Although we have found a method for achieving
good temporal relation typing performance on a subset
of temporal relations, the greater problem of general
temporal relation typing remains. A better understand-
ing of the semantics of events, times, signals and how
they are related together through syntax may provide
further insights into the temporal relation typing task.

Finally, Bethard et al. (2007) reached high temporal
relation typing performance on one a subset of relations

(events and times in the same sentence); we reach high
temporal relation typing performance on another subset
of relations – those using a temporal signal. Identify-
ing further explicit sources of temporal information ap-
plicable to new sets of relations may reveal promising
paths for investigation.
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