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Abstract

In this paper we present a technique to

reveal definitions and hypernym relations

from text. Instead of using pattern match-

ing methods that rely on lexico-syntactic

patterns, we propose a technique which

only uses syntactic dependencies between

terms extracted with a syntactic parser.

The assumption is that syntactic informa-

tion are more robust than patterns when

coping with length and complexity of the

sentences. Afterwards, we transform such

syntactic contexts in abstract representa-

tions, that are then fed into a Support

Vector Machine classifier. The results on

an annotated dataset of definitional sen-

tences demonstrate the validity of our ap-

proach overtaking current state-of-the-art

techniques.

1 Introduction

Nowadays, there is a huge amount of textual

data coming from different sources of informa-

tion. Wikipedia1 , for example, is a free encyclo-

pedia that currently contains 4,208,409 English ar-

ticles2. Even Social Networks play a role in the

construction of data that can be useful for Infor-

mation Extraction tasks like Sentiment Analysis,

Question Answering, and so forth.

From another point of view, there is the need

of having more structured data in the forms of

ontologies, in order to allow semantics-based re-

trieval and reasoning. Ontology Learning is

a task that permits to automatically (or semi-

automatically) extract structured knowledge from

plain text. Manual construction of ontologies usu-

ally requires strong efforts from domain experts,

and it thus needs an automatization in such sense.

1http://www.wikipedia.org/
2April 12, 2013.

In this paper, we focus on the extraction of hy-

pernym relations. The first step of such task relies

on the identification of what (Navigli and Velardi,

2010) called definitional sentences, i.e., sentences

that contain at least one hypernym relation. This

subtask is important by itself for many tasks like

Question Answering (Cui et al., 2007), construc-

tion of glossaries (Klavans and Muresan, 2001),

extraction of taxonomic and non-taxonomic rela-

tions (Navigli, 2009; Snow et al., 2004), enrich-

ment of concepts (Gangemi et al., 2003; Cataldi et

al., 2009), and so forth.

Hypernym relation extraction involves two as-

pects: linguistic knowlege, and model learning.

Patterns collapse both of them, preventing to face

them separately with the most suitable techniques.

First, patterns have limited expressivity; then, lin-

guistic knowledge inside patterns is learned from

small corpora, so it is likely to have low coverage.

Classification strictly depends on the learned pat-

terns, so performance decreases, and the available

classification techniques are restricted to those

compatible with the pattern approach. Instead, we

use a syntactic parser for the first aspect (with all

its native and domain-independent knowledge on

language expressivity), and a state-of-the-art ap-

proach to learn models with the use of Support

Vector Machine classifiers.

Our assumption is that syntax is less dependent

than learned patterns from the length and the com-

plexity of textual expressions. In some way, pat-

terns grasp syntactic relationships, but they actu-

ally do not use them as input knowledge.

2 Related Work

In this section we present the current state of the

art concerning the automatic extraction of defini-

tions and hypernym relations from plain text. We

will use the term definitional sentence referring to

the more general meaning given by (Navigli and

Velardi, 2010): A sentence that provides a for-
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mal explanation for the term of interest, and more

specifically as a sentence containing at least one

hypernym relation.

So far, most of the proposed techniques rely on

lexico-syntactic patterns, either manually or semi-

automatically produced (Hovy et al., 2003; Zhang

and Jiang, 2009; Westerhout, 2009). Such pat-

terns are sequences of words like “is a” or “refers

to”, rather than more complex sequences includ-

ing part-of-speech tags.

In the work of (Westerhout, 2009), after a man-

ual identification of types of definitions and related

patterns contained in a corpus, he successively ap-

plied Machine Learning techniques on syntactic

and location features to improve the results.

A fully-automatic approach has been proposed

by (Borg et al., 2009), where the authors applied

genetic algorithms to the extraction of English def-

initions containing the keyword “is”. In detail,

they assign weights to a set of features for the clas-

sification of definitional sentences, reaching a pre-

cision of 62% and a recall of 52%.

Then, (Cui et al., 2007) proposed an approach

based on soft patterns, i.e., probabilistic lexico-

semantic patterns that are able to generalize over

rigid patterns enabling partial matching by cal-

culating a generative degree-of-match probability

between a test instance and the set of training in-

stances.

Similarly to our approach, (Fahmi and Bouma,

2006) used three different Machine Learning algo-

rithms to distinguish actual definitions from other

sentences also relying on syntactic features, reach-

ing high accuracy levels.

The work of (Klavans and Muresan, 2001) re-

lies on a rule-based system that makes use of “cue

phrases” and structural indicators that frequently

introduce definitions, reaching 87% of precision

and 75% of recall on a small and domain-specific

corpus.

As for the task of definition extraction, most

of the existing approaches use symbolic methods

that are based on lexico-syntactic patterns, which

are manually crafted or deduced automatically.

The seminal work of (Hearst, 1992) represents the

main approach based on fixed patterns like “NPx

is a/an NPy” and “NPx such as NPy”, that usu-

ally imply < x IS-A y >.

The main drawback of such technique is that it

does not face the high variability of how a relation

can be expressed in natural language. Still, it gen-

erally extracts single-word terms rather than well-

formed and compound concepts. (Berland and

Charniak, 1999) proposed similar lexico-syntactic

patterns to extract part-whole relationships.

(Del Gaudio and Branco, 2007) proposed a rule-

based approach to the extraction of hypernyms

that, however, leads to very low accuracy values

in terms of Precision.

(Ponzetto and Strube, 2007) proposed a

technique to extract hypernym relations from

Wikipedia by means of methods based on the

connectivity of the network and classical lexico-

syntactic patterns. (Yamada et al., 2009) extended

their work by combining extracted Wikipedia en-

tries with new terms contained in additional web

documents, using a distributional similarity-based

approach.

Finally, pure statistical approaches present

techniques for the extraction of hierarchies of

terms based on words frequency as well as co-

occurrence values, relying on clustering proce-

dures (Candan et al., 2008; Fortuna et al., 2006;

Yang and Callan, 2008). The central hypothesis is

that similar words tend to occur together in similar

contexts (Harris, 1954). Despite this, they are de-

fined by (Biemann, 2005) as prototype-based on-

tologies rather than formal terminological ontolo-

gies, and they usually suffer from the problem of

data sparsity in case of small corpora.

3 Approach

In this section we present our approach to identify

hypernym relations within plain text. Our method-

ology consists in relaxing the problem into two

easier subtasks. Given a relation rel(x, y) con-

tained in a sentence, the task becomes to find 1)

a possible x, and 2) a possible y. In case of more

than one possible x or y, a further step is needed

to associate the correct x to the right y.

By seeing the problem as two different classi-

fication problems, there is no need to create ab-

stract patterns between the target terms. In ad-

dition to this, the general problem of identifying

definitional sentences can be seen as to find at least

one x and one y in a sentence.

3.1 Local Syntactic Information

Dependency parsing is a procedure that extracts

syntactic dependencies among the terms contained

in a sentence. The idea is that, given a hyper-

nym relation, hyponyms and hypernyms may be
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characterized by specific sets of syntactic contexts.

According to this assumption, the task can be seen

as a classification problem where each term in a

sentence has to be classified as hyponym, hyper-

nym, or neither of the two.

For each noun, we construct a textual represen-

tation containing its syntactic dependencies (i.e.,

its syntactic context). In particular, for each syn-

tactic dependency dep(a, b) (or dep(b, a)) of a tar-

get noun a, we create an abstract token3 dep-

target-b̂ (or dep-b̂-target), where b̂ becomes the

generic string “noun” in case it is another noun;

otherwise it is equal to b. This way, the nouns are

transformed into abstract strings; on the contrary,

no abstraction is done for verbs.

For instance, let us consider the sentence “The

Albedo of an object is the extent to which it dif-

fusely reflects light from the sun”. After the Part-

Of-Speech annotation, the parser will extract a se-

ries of syntactic dependencies like “det(Albedo,

The)”, “nsubj(extent, Albedo)”, “prepof(Albedo,

object)”, where det identifies a determiner, nsubj

represents a noun phrase which is the syntac-

tic subject of a clause, and so forth4. Then,

such dependencies will be transformed in abstract

terms like “det-target-the”, “nsubj-noun-target”,

and “prepof -target-noun”. These triples represent

the feature space on which the Support Vector Ma-

chine classifiers will construct the models.

3.2 Learning phase

Our model assumes a transformation of the local

syntactic information into labelled numeric vec-

tors. More in detail, given a sentence S annotated

with the terms linked by the hypernym relation,

the system produces as many input instances as

the number of nouns contained in S. For each

noun n in S, the method produces two instances

Sn
x and Sn

y , associated to the label positive or neg-

ative depending on their presence in the target re-

lation (i.e., as x or y respectively). If a noun is

not involved in a hypernym relation, both the two

instances will have the label negative. At the end

of this process, two training sets are built, i.e., one

for each relation argument, namely the x-set and

the y-set. All the instances of both the datasets are

then transformed into numeric vectors according

3We make use of the term “abstract” to indicate that some
words are replaced with more general entity identifiers.

4A complete overview of the Stan-
ford dependencies is available at
http://nlp.stanford.edu/software/dependencies manual.pdf.

to the Vector Space Model (Salton et al., 1975),

and are finally fed into a Support Vector Machine

classifier5 (Cortes and Vapnik, 1995). We refer to

the two resulting models as the x-model and the

y-model. These models are binary classifiers that,

given the local syntactic information of a noun, es-

timate if it can be respectively an x or a y in a hy-

pernym relation.

Once the x-model and the y-model are built, we

can both classify definitional sentences and extract

hypernym relations. In the next section we deepen

our proposed strategy in that sense.

The whole set of instances of all the sentences

are fed into two Support Vector Machine classi-

fiers, one for each target label (i.e., x and y).

At this point, it is possible to classify each term

as possible x or y by querying the respective clas-

sifiers with its local syntactic information.

4 Setting of the Tasks

In this section we present how our proposed tech-

nique is able to classify definitional sentences un-

raveling hypernym relations.

4.1 Classification of definitional sentences

As already mentioned in previous sections, we la-

bel as definitional all the sentences that contain at

least one noun n classified as x, and one noun m
classified as y (where n 6= m). In this phase, it

is not further treated the case of having more than

one x or y in one single sentence. Thus, given an

input sentence:

1. we extract all the nouns (POS-tagging),

2. we extract all the syntactic dependencies of

the nouns (dependency parsing),

3. we fed each noun (i.e., its instance) to the x-

model and to the y model,

4. we check if there exist at least one noun clas-

sified as x and one noun classified as y: in

this case, we classify the sentences as defini-

tional.

4.2 Extraction of hypernym relations

Our method for extracting hypernym relations

makes use of both the x-model and the y-model

as for the the task of classifying definitional sen-

tences. If exactly one x and one y are identified

5We used the Sequential Minimal Optimization imple-
mentation of the Weka framework (Hall et al., 2009).
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in the same sentence, they are directly connected

and the relation is extracted. The only constraint

is that x and y must be connected within the same

parse tree.

Now, considering our target relation hyp(x, y),
in case the sentence contains more than one noun

that is classified as x (or y), there are two possible

scenarios:

1. there are actually more than one x (or y), or

2. the classifiers returned some false positive.

Up to now, we decided to keep all the possi-

ble combinations, without further filtering opera-

tions6. Finally, in case of multiple classifications

of both x and y, i.e., if there are multiple x and

multiple y at the same time, the problem becomes

to select which x is linked to which y7. To do this,

we simply calculate the distance between these

terms in the parse tree (the closer the terms, the

better the connection between the two). Neverthe-

less, in the used corpus, only around 1.4% of the

sentences are classified with multiple x and y.

Finally, since our method is able to extract

single nouns that can be involved in a hyper-

nym relation, we included modifiers preceded by

preposition “of”, while the other modifiers are re-

moved. For example, considering the sentence

“An Archipelago is a chain of islands”, the whole

chunk “chain of islands” is extracted from the sin-

gle triggered noun chain.

5 Evaluation

In this section we present the evaluation of our

approach, that we carried out on an annotated

dataset of definitional sentences (Navigli et al.,

2010). The corpus contains 4,619 sentences ex-

tracted from Wikipedia, and only 1,908 are anno-

tated as definitional. On a first instance, we test the

classifiers on the extraction of hyponyms (x) and

hypernyms (y) from the definitional sentences, in-

dependently. Then, we evaluate the classification

of definitional sentences. Finally, we evaluate the

ability of our technique when extracting whole hy-

pernym relations. With the used dataset, the con-

structed training sets for the two classifiers (x-set

and y-set) resulted to have approximately 1,500

features.

6We only used the constraint that x has to be different
from y.

7Notice that this is different from the case in which a sin-
gle noun is labeled as both x and y.

Alg. P R F Acc

WCL-3 98.8% 60.7% 75.2 % 83.4 %

Star P. 86.7% 66.1% 75.0 % 81.8 %

Bigrams 66.7% 82.7% 73.8 % 75.8 %

Our sys. 88.0% 76.0% 81.6% 89.6%

Table 1: Evaluation results for the classification of

definitional sentences, in terms of Precision (P ),

Recall (R), F-Measure (F ), and Accuracy (Acc),
using 10-folds cross validation. For the WCL-3

approach and the Star Patterns see (Navigli and

Velardi, 2010), and (Cui et al., 2007) for Bigrams.

Algorithm P R F

WCL-3 78.58% 60.74% * 68.56%

Our system 83.05% 68.64% 75.16%

Table 2: Evaluation results for the hypernym re-

lation extraction, in terms of Precision (P ), Re-

call (R), and F-Measure (F ). For the WCL-3 ap-

proach, see (Navigli and Velardi, 2010). These re-

sults are obtained using 10-folds cross validation

(* Recall has been inherited from the definition

classification task, since no indication has been re-

ported in their contribution).

5.1 Results

In this section we present the evaluation of our

technique on both the tasks of classifying def-

initional sentences and extracting hypernym re-

lations. Notice that our approach is susceptible

from the errors given by the POS-tagger8 and the

syntactic parser9 . In spite of this, our approach

demonstrates how syntax can be more robust for

identifying semantic relations. Our approach does

not make use of the full parse tree, and we are not

dependent on a complete and correct result of the

parser.

The goal of our evaluation is twofold: first, we

evaluate the ability of classifying definitional sen-

tences; finally, we measure the accuracy of the hy-

pernym relation extraction.

A definitional sentences is extracted only if at

least one x and one y are found in the same sen-

tence. Table 1 shows the accuracy of the ap-

proach for this task. As can be seen, our pro-

posed approach has a high Precision, with a high

Recall. Although Precision is lower than the pat-

8http://nlp.stanford.edu/software/tagger.shtml
9http://www-nlp.stanford.edu/software/lex-parser.shtml
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tern matching approach proposed by (Navigli and

Velardi, 2010), our Recall is higher, leading to an

higher overall F-Measure.

Table 2 shows the results of the extraction of

the whole hypernym relations. Note that our ap-

proach has high levels of accuracy. In particular,

even in this task, our system outperforms the pat-

tern matching algorithm proposed by (Navigli and

Velardi, 2010) in terms of Precision and Recall.

6 Conclusion and Future Work

We presented an approach to reveal definitions and

extract underlying hypernym relations from plain

text, making use of local syntactic information fed

into a Support Vector Machine classifier. The aim

of this work was to revisit these tasks as classical

supervised learning problems that usually carry to

high accuracy levels with high performance when

faced with standard Machine Learning techniques.

Our first results on this method highlight the va-

lidity of the approach by significantly improving

current state-of-the-art techniques in the classifi-

cation of definitional sentences as well as in the

extraction of hypernym relations from text. In fu-

ture works, we aim at using larger syntactic con-

texts. In fact, currently, the detection does not

surpass the sentence level, while taxonomical in-

formation can be even contained in different sen-

tences or paragraphs. We also aim at evaluating

our approach on the construction of entire tax-

onomies starting from domain-specific text cor-

pora, as in (Navigli et al., 2011; Velardi et al.,

2012). Finally, the desired result of the task of ex-

tracting hypernym relations from text (as for any

semantic relationships in general) depends on the

domain and the specific later application. Thus,

we think that a precise evaluation and comparison

of any systems strictly depends on these factors.

For instance, given a sentence like “In mathemat-

ics, computing, linguistics and related disciplines,

an algorithm is a sequence of instructions” one

could want to extract only “instructions” as hyper-

nym (as done in the annotation), rather than the en-

tire chunk “sequence of instructions” (as extracted

by our technique). Both results can be valid, and

a further discrimination can only be done if a spe-

cific application or use of this knowlege is taken

into consideration.
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