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Abstract

Information Retrieval (IR) and Answer
Extraction are often designed as isolated
or loosely connected components in Ques-
tion Answering (QA), with repeated over-
engineering on IR, and not necessarily per-
formance gain for QA. We propose to
tightly integrate them by coupling auto-
matically learned features for answer ex-
traction to a shallow-structured IR model.
Our method is very quick to implement,
and significantly improves IR for QA
(measured in Mean Average Precision and
Mean Reciprocal Rank) by 10%-20%
against an uncoupled retrieval baseline
in both document and passage retrieval,
which further leads to a downstream 20%
improvement in QA F1.

1 Introduction

The overall performance of a Question Answer-
ing system is bounded by its Information Re-
trieval (IR) front end, resulting in research specif-
ically on Information Retrieval for Question An-
swering (IR4QA) (Greenwood, 2008; Sakai et al.,
2010). Common approaches such as query expan-
sion, structured retrieval, and translation models
show patterns of complicated engineering on the
IR side, or isolate the upstream passage retrieval
from downstream answer extraction. We argue
that: 1. an IR front end should deliver exactly
what a QA1 back end needs; 2. many intuitions
employed by QA should be and can be re-used in
IR, rather than re-invented. We propose a coupled
retrieval method with prior knowledge of its down-
stream QA component, that feeds QA with exactly
the information needed.

1After this point in the paper we use the term QA in a
narrow sense: QA without the IR component, i.e., answer
extraction.

As a motivating example, using the ques-
tion When was Alaska purchased from
the TREC 2002 QA track as the query to the In-
dri search engine, the top sentence retrieved from
the accompanying AQUAINT corpus is:
Eventually Alaska Airlines will

allow all travelers who have
purchased electronic tickets
through any means.

While this relates Alaska and purchased, it
is not a useful passage for the given question.2 It
is apparent that the question asks for a date. Prior
work proposed predictive annotation (Prager et al.,
2000; Prager et al., 2006): text is first annotated in
a predictive manner (of what types of questions it
might answer) with 20 answer types and then in-
dexed. A question analysis component (consisting
of 400 question templates) maps the desired an-
swer type to one of the 20 existing answer types.
Retrieval is then performed with both the question
and predicated answer types in the query.

However, predictive annotation has the limita-
tion of being labor intensive and assuming the un-
derlying NLP pipeline to be accurate. We avoid
these limitations by directly asking the down-
stream QA system for the information about which
entities answer which questions, via two steps:
1. reusing the question analysis components from
QA; 2. forming a query based on the most relevant
answer features given a question from the learned
QA model. There is no query-time overhead and
no manual template creation. Moreover, this ap-
proach is more robust against, e.g., entity recog-
nition errors, because answer typing knowledge is
learned from how the data was actually labeled,
not from how the data was assumed to be labeled
(e.g., manual templates usually assume perfect la-
beling of named entities, but often it is not the case

2Based on a non-optimized IR configuration, none of the
top 1000 returned passages contained the correct answer:
1867.
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in practice).

We use our statistically-trained QA system (Yao
et al., 2013) that recognizes the association be-
tween question type and expected answer types
through various features. The QA system employs
a linear chain Conditional Random Field (CRF)
(Lafferty et al., 2001) and tags each token as either
an answer (ANS) or not (O). This will be our off-
the-shelf QA system, which recognizes the associ-
ation between question type and expected answer
types through various features based on e.g., part-
of-speech tagging (POS) and named entity recog-
nition (NER).

With weights optimized by CRF training (Ta-
ble 1), we can learn how answer features are cor-
related with question features. These features,
whose weights are optimized by the CRF train-
ing, directly reflect what the most important an-
swer types associated with each question type are.
For instance, line 2 in Table 1 says that if there is a
when question, and the current token’s NER label
is DATE, then it is likely that this token is tagged
as ANS. IR can easily make use of this knowledge:
for a when question, IR retrieves sentences with
tokens labeled as DATE by NER, or POS tagged as
CD. The only extra processing is to pre-tag and
index the text with POS and NER labels. The ana-
lyzing power of discriminative answer features for
IR comes for free from a trained QA system. Un-
like predictive annotation, statistical evidence de-
termines the best answer features given the ques-
tion, with no manual pattern or templates needed.

To compare again predictive annotation with
our approach: predictive annotation works in a
forward mode, downstream QA is tailored for up-
stream IR, i.e., QA works on whatever IR re-
trieves. Our method works in reverse (backward):
downstream QA dictates upstream IR, i.e., IR re-
trieves what QA wants. Moreover, our approach
extends easily beyond fixed answer types such as
named entities: we are already using POS tags as a
demonstration. We can potentially use any helpful
answer features in retrieval. For instance, if the
QA system learns that in order to is highly
correlated with why question through lexicalized
features, or some certain dependency relations are
helpful in answering questions with specific struc-
tures, then it is natural and easy for the IR compo-
nent to incorporate them.

There is also a distinction between our method
and the technique of learning to rank applied in

feature label weight
qword=when|POS0=CD ANS 0.86

qword=when|NER0=DATE ANS 0.79

qword=when|POS0=CD O -0.74

Table 1: Learned weights for sampled features with respect
to the label of current token (indexed by [0]) in a CRF. The
larger the weight, the more “important” is this feature to help
tag the current token with the corresponding label. For in-
stance, line 1 says when answering a when question, and
the POS of current token is CD (cardinal number), it is likely
(large weight) that the token is tagged as ANS.

QA (Bilotti et al., 2010; Agarwal et al., 2012). Our
method is a QA-driven approach that provides su-
pervision for IR from a learned QA model, while
learning to rank is essentially an IR-driven ap-
proach: the supervision for IR comes from a la-
beled ranking list of retrieval results.

Overall, we make the following contributions:
• Our proposed method tightly integrates QA

with IR and the reuse of analysis from QA does
not put extra overhead on the IR queries. This
QA-driven approach provides a holistic solution
to the task of IR4QA.

• We learn statistical evidence about what the
form of answers to different questions look like,
rather than using manually authored templates.
This provides great flexibility in using answer
features in IR queries.
We give a full spectrum evaluation of all three

stages of IR+QA: document retrieval, passage re-
trieval and answer extraction, to examine thor-
oughly the effectiveness of the method.3 All of
our code and datasets are publicly available.4

2 Background

Besides Predictive Annotation, our work is closest
to structured retrieval, which covers techniques of
dependency path mapping (Lin and Pantel, 2001;
Cui et al., 2005; Kaisser, 2012), graph matching
with Semantic Role Labeling (Shen and Lapata,
2007) and answer type checking (Pinchak et al.,
2009), etc. Specifically, Bilotti et al. (2007) pro-
posed indexing text with their semantic roles and
named entities. Queries then include constraints
of semantic roles and named entities for the pred-
icate and its arguments in the question. Improve-
ments in recall of answer-bearing sentences were
shown over the bag-of-words baseline. Zhao and

3Rarely are all three aspects presented in concert (see §2).
4http://code.google.com/p/jacana/
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Callan (2008) extended this work with approx-
imate matching and smoothing. Most research
uses parsing to assign deep structures. Com-
pared to shallow (POS, NER) structured retrieval,
deep structures need more processing power and
smoothing, but might also be more precise. 5

Most of the above (except Kaisser (2012)) only
reported on IR or QA, but not both, assuming that
improvement in one naturally improves the other.
Bilotti and Nyberg (2008) challenged this assump-
tion and called for tighter coupling between IR and
QA. This paper is aimed at that challenge.

3 Method

Table 1 already shows some examples of features
associating question types with answer types. We
store the features and their learned weights from
the trained model for IR usage.

We let the trained QA system guide the query
formulation when performing coupled retrieval
with Indri (Strohman et al., 2005), given a corpus
already annotated with POS tags and NER labels.
Then retrieval runs in four steps (Figure 1):
1. Question Analysis. The question analysis com-

ponent from QA is reused here. In this imple-
mentation, the only information we have cho-
sen to use from the question is the question
word (e.g., how, who) and the lexical answer
types (LAT) in case of what/which questions.

2. Answer Feature Selection. Given the question
word, we select the 5 highest weighted features
(e.g., POS[0]=CD for a when question).

3. Query Formulation. The original question is
combined with the top features as the query.

4. Coupled Retrieval. Indri retrieves a ranked list
of documents or passages.

As motivated in the introduction, this framework
is aimed at providing the following benefits:
Reuse of QA components on the IR side. IR
reuses both code for question analysis and top
weighted features from QA.
Statistical selection of answer features. For in-
stance, the NER tagger we used divides location
into two categories: GPE (geo locations) and LOC

5Ogilvie (2010) showed in chapter 4.3 that keyword and
named entities based retrieval actually outperformed SRL-
based structured retrieval in MAP for the answer-bearing sen-
tence retrieval task in their setting. In this paper we do not
intend to re-invent another parse-based structure matching al-
gorithm, but only use shallow structures to show the idea of
coupling QA with IR; in the future this might be extended to
incorporate “deeper” structure.

(non-GPE ). Both of them are learned to be impor-
tant to where questions.
Error tolerance along the NLP pipeline. IR
and QA share the same processing pipeline. Sys-
tematic errors made by the processing tools are
tolerated, in the sense that if the same pre-
processing error is made on both the question
and sentence, an answer may still be found.
Take the previous where question, besides
NER[0]=GPE and NER[0]=LOC, we also found
oddly NER[0]=PERSON an important feature, due
to that the NER tool sometimes mistakes PERSON

for LOC. For instance, the volcano name Mauna
Loa is labeled as a PERSON instead of a LOC. But
since the importance of this feature is recognized
by downstream QA, the upstream IR is still moti-
vated to retrieve it.

Queries were lightly optimized using the fol-
lowing strategies:
Query Weighting In practice query words are
weighted:

#weight(1.0 When 1.0 was 1.0 Alaska 1.0 purchased
α #max(#any:CD #any:DATE))

with a weight α for the answer types tuned via
cross-validation.

Since NER and POS tags are not lexicalized
they accumulate many more counts (i.e. term fre-
quency) than individual words, thus we in gen-
eral downweight by setting α < 1.0, giving the
expected answer types “enough say” but not “too
much say”:
NER Types First We found NER labels better in-
dicators of expected answer types than POS tags.
The reasons are two-fold: 1. In general POS tags
are too coarse-grained in answer types than NER

labels. E.g., NNP can answer who and where
questions, but is not as precise as PERSON and
GPE. 2. POS tags accumulate even more counts
than NER labels, thus they need separate down-
weighting. Learning the interplay of these weights
in a joint IR/QA model, is an interesting path for
future work. If the top-weighted features are based
on NER, then we do not include POS tags for that
question. Otherwise POS tags are useful, for in-
stance, in answering how questions.
Unigram QA Model The QA system uses up to
trigram features (Table 1 shows examples of uni-
gram and bigram features). Thus it is able to learn,
for instance, that a POS sequence of IN CD NNS

is likely an answer to a when question (such as:
in 5 years). This requires that the IR queries
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When was Alaska purchased?

qword=when

qword=when|POS[0]=CD → ANS: 0.86
qword=when|NER[0]=DATE → ANS: 0.79

...

#combine(Alaska purchased 
#max(#any:CD  #any:DATE))

1. Simple question analysis
(reuse from QA)

2. Get top weighted 
features w.r.t qword

(from trained QA model)

3. Query formulation

4. Coupled retrieval

On <DATE>March 30, <CD> 1867 </CD> </DATE>, 
U.S. ... reached agreement ... to purchase ... Alaska ...
The islands were sold to the United States in 
<CD>1867</CD> with the purchase of Alaska.

…
...

Eventually Alaska Airlines will allow all travelers who 
have purchased electronic tickets ...

1

2

...

50

Figure 1: Coupled retrieval with queries directly con-
structed from highest weighted features of downstream QA.
The retrieved and ranked list of sentences is POS and NER
tagged, but only query-relevant tags are shown due to space
limit. A bag-of-words retrieval approach would have the sen-
tence shown above at rank 50 at its top position instead.

look for a consecutive IN CD NNS sequence. We
drop this strict constraint (which may need further
smoothing) and only use unigram features, not by
simply extracting “good” unigram features from
the trained model, but by re-training the model
with only unigram features. In answer extraction,
we still use up to trigram features. 6

4 Experiments

We want to measure and compare the performance
of the following retrieval techniques:
1. uncoupled retrieval with an off-the-shelf IR en-

gine by using the question as query (baseline),
2. QA-driven coupled retrieval (proposed), and
3. answer-bearing retrieval by using both the

question and known answer as query, only eval-
uated for answer extraction (upper bound),

at the three stages of question answering:
1. Document retrieval (for relevant docs from cor-

pus), measured by Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR).

2. Passage retrieval (finding relevant sentences
from the document), also by MAP and MRR.

3. Answer extraction, measured by F1.
6This is because the weights of unigram to trigram fea-

tures in a loglinear CRF model is a balanced consequence for
maximization. A unigram feature might end up with lower
weight because another trigram containing this unigram gets
a higher weight. Then we would have missed this feature
if we only used top unigram features. Thus we re-train the
model with only unigram features to make sure weights are
“assigned properly” among only unigram features.

set questions sentences
#all #pos. #all #pos.

TRAIN 2205 1756 (80%) 22043 7637 (35%)

TESTgold 99 88 (89%) 990 368 (37%)

Table 2: Statistics for AMT-collected data (total cost was
around $800 for paying three Turkers per sentence). Positive
questions are those with an answer found. Positive sentences
are those bearing an answer.

All coupled and uncoupled queries are performed
with Indri v5.3 (Strohman et al., 2005).

4.1 Data
Test Set for IR and QA The MIT109 test col-
lection by Lin and Katz (2006) contains 109
questions from TREC 2002 and provides a near-
exhaustive judgment of relevant documents for
each question. We removed 10 questions that do
not have an answer by matching the TREC answer
patterns. Then we call this test set MIT99.
Training Set for QA We used Amazon Mechani-
cal Turk to collect training data for the QA system
by issuing answer-bearing queries for TREC1999-
2003 questions. For the top 10 retrieved sen-
tences for each question, three Turkers judged
whether each sentence contained the answer. The
inter-coder agreement rate was 0.81 (Krippen-
dorff, 2004; Artstein and Poesio, 2008).

The 99 questions of MIT99 were extracted from
the Turk collection as our TESTgold with the re-
maining as TRAIN, with statistics shown in Table
2. Note that only 88 questions out of MIT99 have
an answer from the top 10 query results.

Finally both the training and test data were
sentence-segmented and word-tokenized by
NLTK (Bird and Loper, 2004), dependency-
parsed by the Stanford Parser (Klein and
Manning, 2003), and NER-tagged by the Illinois
Named Entity Tagger (Ratinov and Roth, 2009)
with an 18-label type set.
Corpus Preprocessing for IR The AQUAINT
(LDC2002T31) corpus, on which the MIT99
questions are based, was processed in exactly the
same manner as was the QA training set. But
only sentence boundaries, POS tags and NER la-
bels were kept as the annotation of the corpus.

4.2 Document and Passage Retrieval
We issued uncoupled queries consisting of ques-
tion words, and QA-driven coupled queries con-
sisting of both the question and expected answer
types, then retrieved the top 1000 documents, and
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type
coupled uncoupled

MAP MRR MAP MRR
document 0.2524 0.4835 0.2110 0.4298

sentence 0.1375 0.2987 0.1200 0.2544

Table 3: Coupled vs. uncoupled document/sentence re-
trieval in MAP and MRR on MIT99. Significance level
(Smucker et al., 2007) for both MAP: p < 0.001 and for
both MRR: p < 0.05.

finally computed MAP and MRR against the gold-
standard MIT99 per-document judgment.

To find the best weighting α for coupled re-
trieval, we used 5-fold cross-validation and final-
ized at α = 0.1. Table 3 shows the results.
Coupled retrieval outperforms (20% by MAP with
p < 0.001 and 12% by MRR with p < 0.01) un-
coupled retrieval significantly according to paired
randomization test (Smucker et al., 2007).

For passage retrieval, we extracted relevant sin-
gle sentences. Recall that MIT99 only contains
document-level judgment. To generate a test set
for sentence retrieval, we matched each sentence
from relevant documents provided by MIT99 for
each question against the TREC answer patterns.

We found no significant difference between re-
trieving sentences from the documents returned
by document retrieval or directly from the corpus.
Numbers of the latter are shown in Table 3. Still,
coupled retrieval is significantly better by about
10% in MAP and 17% in MRR.

4.3 Answer Extraction

Lastly we sent the sentences to the downstream
QA engine (trained on TRAIN) and computed F1

per K for the top K retrieved sentences, 7 shown
in Figure 2. The best F1 with coupled sentence re-
trieval is 0.231, 20% better than F1 of 0.192 with
uncoupled retrieval, both at K = 1.

The two descending lines at the bottom reflect
the fact that the majority-voting mechanism from
the QA system was too simple: F1 drops as K in-
creases. Thus we also computed F1’s assuming
perfect voting: a voting oracle that always selects
the correct answer as long as the QA system pro-
duces one, thus the two ascending lines in the cen-
ter of Figure 2. Still, F1 with coupled retrieval is
always better: reiterating the fact that coupled re-
trieval covers more answer-bearing sentences.

7Lin (2007), Zhang et al. (2007), and Kaisser (2012) also
evaluated on MIT109. However their QA engines used web-
based search engines, thus leading to results that are neither
reproducible nor directly comparable with ours.

Finally, to find the upper bound for QA, we
drew the two upper lines, testing on TESTgold de-
scribed in Table 2. The test sentences were ob-
tained with answer-bearing queries. This is as-
suming almost perfect IR. The gap between the
top two and other lines signals more room for im-
provements for IR in terms of better coverage and
better rank for answer-bearing sentences.
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F1

Coupled (0.231)
Uncoupled (0.192)

Gold Oracle (0.755)
Gold (0.596)
Coupled Oracle (0.609)
Uncoupled Oracle (0.569)

Figure 2: F1 values for answer extraction on MIT99. Best
F1’s for each method are parenthesized in the legend. “Or-
acle” methods assumed perfect voting of answer candidates
(a question is answered correctly if the system ever produced
one correct answer for it). “Gold” was tested on TESTgold.

5 Conclusion

We described a method to perform coupled in-
formation retrieval with a prior knowledge of the
downstream QA system. Specifically, we coupled
IR queries with automatically learned answer fea-
tures from QA and observed significant improve-
ments in document/passage retrieval and boosted
F1 in answer extraction. This method has the mer-
its of not requiring hand-built question and answer
templates and being flexible in incorporating vari-
ous answer features automatically learned and op-
timized from the downstream QA system.
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