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Abstract

How good are automatic content metrics
for news summary evaluation? Here we
provide a detailed answer to this question,
with a particular focus on assessing the
ability of automatic evaluations to identify
statistically significant differences present
in manual evaluation of content. Using
four years of data from the Text Analysis
Conference, we analyze the performance
of eight ROUGE variants in terms of ac-
curacy, precision and recall in finding sig-
nificantly different systems. Our exper-
iments show that some of the neglected
variants of ROUGE, based on higher or-
der n-grams and syntactic dependencies,
are most accurate across the years; the
commonly used ROUGE-1 scores find
too many significant differences between
systems which manual evaluation would
deem comparable. We also test combina-
tions of ROUGE variants and find that they
considerably improve the accuracy of au-
tomatic prediction.

1 Introduction

ROUGE (Lin, 2004) is a suite of automatic eval-
uations for summarization and was introduced a
decade ago as a reasonable substitute for costly
and slow human evaluation. The scores it pro-
duces are based on n-gram or syntactic overlap be-
tween an automatic summary and a set of human
reference summaries. However, the field does not
have a good grasp of which of the many evalua-
tion scores is most accurate in replicating human
judgements. This state of uncertainty has led to
problems in comparing published work, as differ-
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ent researchers choose to publish different variants
of scores.

In this paper we reassess the strengths of
ROUGE variants using the data from four years
of Text Analysis Conference (TAC) evaluations,
2008 to 2011. To assess the performance of the au-
tomatic evaluations, we focus on determining sta-
tistical significance! between systems, where the
gold-standard comes from comparing the systems
using manual pyramid and responsiveness evalu-
ations. In this setting, computing correlation co-
efficients between manual and automatic scores is
not applicable as it does not take into account the
statistical significance of the differences nor does
it allow the use of more powerful statistical tests
which use pairwise comparisons of performance
on individual document sets. Instead, we report
on the accuracy of decisions on pairs of systems,
as well as the precision and recall of identifying
pairs of systems which exhibit statistically signifi-
cant differences in content selection performance.

2 Background

During 2008-2011, automatic summarization sys-
tems at TAC were required to create 100-word
summaries. Each year there were two multi-
document summarization sub-tasks, the initial
summary and the update summary, usually re-
ferred to as task A and task B, respectively. The
test inputs in each consisted of about 10 docu-
ments and the type of summary varied between
query-focused and guided. There are between 44
and 48 test inputs on which systems are compared
for each task.

In 2008 and 2009, task A was to produce a

"For the purpose of this study, we define a difference as
significant when the test statistic attains a value correspond-

3irig to a p-value less than 0.05.
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query-focused summary in response to a user in-
formation need stated both as a brief statement
and a paragraph-long description of the informa-
tion the user seeks to find. In 2010 and 2011 task
A was “guided summarization”, where the test in-
puts came from a small set of predefined domains.
These domains included accidents and natural dis-
asters, attacks, health and safety, endangered re-
sources, investigations and trials. Systems were
provided with a list of important aspects of infor-
mation for each domain and were asked to cover as
many of these aspects as possible. The writers of
the reference summaries for evaluation were given
similar instructions. In all four years, task B was
to produce an update summary for each of the in-
puts given in task A (query-focused or guided). In
each case, a new, subsequent set of documents re-
lated to the topic of the respective test set for task
A was provided to the system. The task was to
generate an update summary aimed at a user who
has already read all documents in the inputs for
task A.

The two manual evaluation approaches used in
TAC 2008-2011 are modified pyramid (Nenkova
et al., 2007) and overall responsiveness. The pyra-
mid method requires several reference summaries
for each input. These are manually analyzed to
discover content units based on meaning rather
than specific wording. Each content unit is as-
signed a weight equal to the number of reference
summaries that included that content unit. The
modified pyramid score is defined as the sum of
weights of the content units in the summary nor-
malized by the weight of an ideally informative
summary which expresses n content units, where
n is equal to the average of content units in the ref-
erence summaries. Responsiveness, on the other
hand, is based on direct human judgements, with-
out the need for reference summaries. Assessors
are presented with a statement of the user’s infor-
mation need and the summary they need to evalu-
ate. Then they rate how well they think the sum-
mary responds to the information need contained
in the topic statement. Responsiveness was rated
on a ten-point scale in 2009, and on a five-point
scale in all other years.

For each sub-task during 2008-2011, we ana-
lyze the performance of only the top 30 systems,
which roughly corresponds to the systems that per-
formed better than or around the median according
to each manual metric. Table 1 gives the number

of significant differences among the top 30 partici-
pating systems. We keep only the best performing
systems for the analysis because we are interested
in studying how well automatic evaluation metrics
can correctly compare very good systems.

Year | Pyr A | PyrB | Resp A | Resp B
2008 82 109 68 105
2009 | 146 190 106 92
2010 | 165 139 150 128
2011 39 83 5 11

Table 1: Number of pairs of significantly different
systems among the top 30 across the years. There
is a total of 435 pairs in each year.

3 Which ROUGE is best?

In this section, we study the performance of
several ROUGE variants, including ROUGE-n,
for n 1,2,3,4, ROUGE-L, ROUGE-W-1.2,
ROUGE-SU4, and ROUGE-BE-HM (Hovy et al.,
2006). ROUGE-n measures the n-gram recall of
the evaluated summary compared to the available
reference summaries. ROUGE-L is the ratio of
the number of words in the longest common sub-
sequence between the reference and the evaluated
summary and the number of words in the refer-
ence. ROUGE-W-1.2 is a weighted version of
ROUGE-L. ROUGE-SU4 is a combination of skip
bigrams and unigrams, where the skip bigrams are
formed for all words that appear in the text with
no more than four intervening words in between.
ROUGE-BE-HM computes recall of dependency
syntactic relations between the summary and the
reference.

To evaluate how well an automatic evalua-
tion metric reproduces human judgments, we use
prediction accuracy similar to Owczarzak et al.
(2012). For each pair of systems in each subtask,
we compare the results of two Wilcoxon signed-
rank tests, one using the manual evaluation scores
for each system and one using the automatic evalu-
ation scores for each system (Rankel et al., 201 1).2
The accuracy then is simply the percent agreement
between the results of these two tests.

2We use the Wilcoxon test as it was demonstrated by
Rankel et al. (2011) to give more statistical power than un-
paired tests. As reported by Yeh (2000), other tests such as
randomized testing, may also be appropriate. There is con-
siderable variation in system performance for different inputs
(Nenkova and Louis, 2008) and paired tests remove the effect
of the input.
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Responsiveness Pyramid
Metric Acc P R BA Acc P R BA
R1 0.58 (0.61) | 0.24 | 0.64 | 0.57 || 0.62 (0.66) | 0.37 | 0.67 | 0.61
R2 0.64 (0.63) | 0.28 | 0.60 | 0.59 || 0.68 (0.69) | 0.43 | 0.63 | 0.64
R3 0.70 (0.63) | 0.31 | 0.48 | 0.60 || 0.73 (0.68) | 0.49 | 0.53 | 0.66
R4 0.73 (0.64) | 0.33 | 0.40 | 0.60 || 0.74 (0.65) | 0.50 | 0.45 | 0.65
RL 0.50 (0.59) | 0.20 | 0.56 | 0.54 || 0.54 (0.63) | 0.29 | 0.60 | 0.55
R-SU4 0.61(0.62) | 0.26 | 0.61 | 0.58 || 0.65 (0.68) | 0.40 | 0.65 | 0.63
R-W-1.2 0.52(0.62) | 0.21 | 0.54 | 0.55 || 0.57(0.64) | 0.32 | 0.62 | 0.57
R-BE-HM | 0.70 (0.63) | 0.30 | 0.49 | 0.59 || 0.74(0.68) | 0.49 | 0.56 | 0.66

Table 2: Accuracy, Precision, Recall, and Balanced Accuracy of each ROUGE variant, averaged across
all eight tasks in 2008-2011, with and (without) significance.

As can be seen in Table 1, the manual evalua-
tion metrics often did not show many significant
differences between systems.> Thus, it is clear
that the percent agreement will be high for an ap-
proach for automatic evaluation that always pre-
dicts zero significant differences. As traditionally
done when dealing which such skewed distribu-
tions of classes, we also examine the precision
and recall with respect to finding significant dif-
ferences of several ROUGE variants, to better as-
sess the quality of their prediction. To identify a
measure that is strong at both predicting signifi-
cant and non-significant differences we compute
balanced accuracy, the mean of the accuracy of
predicting significant differences and the accuracy
of predicting no significant difference.*

Each of these four measures for judging the per-
formance of ROUGE variants has direct intuitive
interpretation, unlike other opaque measures such
as correlation coefficients and F-measure which
have formal definitions which do not readily yield
to intuitive understanding.

3This is a somewhat surprising finding which may warrant
further investigation. One possible explanation is that differ-
ent systems generate similar summaries. Recent work has
shown that this is unlikely to be the case because the collec-
tion of summaries from several systems indicates better what
content is important than the single best summary (Louis and
Nenkova, 2013). The short summary length for which the
summarizers are compared may also contribute to the fact
that there are few significant difference. In early NIST eval-
uations manual evaluations could not distinguish automatic
and human summaries based on summaries of length 50 and
100 words and there were more significant differences be-
tween systems for 200-word summaries than for 100-word
summaries (Nenkova, 2005).

“More generally, one could define a utility function which
gives costs associated with errors and benefits to correct pre-
diction. Balanced accuracy weighs all errors as equally bad
and all correct prediction as equally good (von Neumann and
Morgenstern, 1953).

Few prior studies have taken statistical signifi-
cance into account during the assessment of auto-
matic metrics for evaluation. For this reason we
first briefly discuss ROUGE accuracy without tak-
ing significance into account. In this special case,
agreement simply means that the automatic and
manual evaluations agree on which of two systems
is better, based on each system’s average score for
all test inputs for a given task. It is very rare that
the average scores of two systems are equal, so
there is always a better system in each pair, and
random prediction would have 50% accuracy.

Many papers do not report the significance of
differences in ROUGE scores (for the ROUGE
variant of their choice), but simply claim that their
system X with higher average ROUGE score than
system Y is better than system Y. Table 2 lists
the average accuracy with significance taken into
account and then in parentheses, accuracy without
taking significance into account. The data demon-
strate that the best accuracy of the eight ROUGE
metrics is a meager 64% for responsiveness when
significance is not taken into account. So the con-
clusion about the relative merit of systems would
be different from that based on manual evaluation
in one out of three comparisons. However, the
best accuracy rises to 73% when significance is
taken into account; an incorrect conclusion will be
drawn in one out of four comparisons. The reduc-
tion in error is considerable.

Furthermore, ROUGE-3 and ROUGE-4, which
are rarely reported, are among the most accurate.
Note also, these results differ considerably from
those reported by Owczarzak et al. (2012), where
ROUGE-2 was shown to have accuracy of 81% for
responsiveness and 89% for pyramid. The wide
differences are due to the fact we are only consid-
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ering systems which scored in the top 30. This il-
lustrates that our automatic metrics are not as good
at discriminating systems near the top. These find-
ings give strong support for the idea of requiring
authors to report the significance of the difference
between their summarization system and the cho-
sen baseline; the conclusions about relative merits
of the system would be more similar to those one
would draw from manual evaluation.

In addition to accuracy, Table 2 gives precision,
recall and balanced accuracy for each of the eight
ROUGE measures when significance is taken into
account. ROUGE-1 is arguably the most widely
used score in the literature and Table 2 reveals an
interesting property: ROUGE-1 has high recall but
low precision. This means that it reports many sig-
nificant differences, most of which do not exist ac-
cording to the manual evaluations.

Balanced accuracy helps us identify which
ROUGE variants are most accurate in finding
statistical significance and correctly predicting
that two systems are not significantly different.
For the pyramid evaluation, the variants with
best balanced accuracy (66%) are ROUGE-3 and
ROUGE-BE, with ROUGE-4 just a percent lower
at 65%. For responsiveness the configuration is
similar, with ROUGE-3 and ROUGE-4 tied for
best (60%), and ROUGE-BE just a percent lower.

The good performance of higher-order n-grams
is quite surprising because these are practically
never used for reporting results in the literature.
Based on our results however, they are much more
likely to accurately reproduce conclusions that
would have been drawn from manual evaluation
of top-performing systems.

4 Multiple hypothesis tests to combine
ROUGE variants

We now consider a method to combine multiple
evaluation scores in order to obtain a stronger en-
semble metric. The idea of combining ROUGE
variants has been explored in the prior litera-
ture. Conroy and Dang (2008), for example, pro-
posed taking linear combinations of ROUGE met-
rics. This approach was extended by Rankel et al.
(2012) by including measures of linguistic quality.
Recently, Amigé et al. (2012) applied the “hetero-
geneity principle” and combined ROUGE scores
to improve the precision relative to a human evalu-
ation metric. Their results demonstrate that a con-
sensus among ROUGE scores can predict more ac-

curately if an improvement in a human evaluation
metric will be achieved.

Along the lines of these investigations, we ex-
amine the performance of a simple combination
of variants: Call the difference between two sys-
tems significant only when all the variants in the
combination indicate significance. As in the sec-
tion above, a paired Wilcoxon signed-rank test is
used to determine the level of significance.

ROUGE Combination | Acc | Prec | Rec | BA
R1_R2_R4 RBE 0.76 | 0.77 | 0.36 | 0.76
R1_R4_RBE 0.76 | 0.76 | 0.36 | 0.76
R2_R4_RBE 0.76 | 0.74 | 0.40 | 0.75
R4 _RBE 0.76 | 0.73 | 0.41 | 0.75
R1_R2_R4 0.76 | 0.71 | 0.40 | 0.74
R1_R4 0.75 | 0.70 | 0.40 | 0.73
R2 R4 0.75 | 0.68 | 0.44 | 0.73
R1_R2_RBE 0.75 | 0.66 | 0.48 | 0.72
R2_RBE 0.75 | 0.64 | 0.52 | 0.72
R4 0.74 | 0.62 | 0.47 | 0.70
R1_RBE 0.74 | 0.62 | 0.49 | 0.70
R1_R2 0.73 | 0.57 | 0.62 | 0.70
RBE 0.73 | 0.57 | 0.58 | 0.68
R2 0.71 | 0.53 | 0.69 | 0.68
R1 0.62 | 0.43 | 0.69 | 0.63

Table 3: Accuracy, Precision, Recall, and Bal-
anced Accuracy of each ROUGE combination on
TAC 2008-2010 pyramid.

We considered all possible combinations of four
ROUGE metrics that exhibited good properties
in the analyses presented so far: ROUGE-1 (be-
cause of its high recall), ROUGE-2 (because of
high accuracy when significance is not taken into
account) and ROUGE-4 and ROUGE-BE, which
showed good balanced accuracy.

The performance of these combinations for re-
producing the decisions in TAC 2008-2010 based
on the pyramid® evaluation are given in Table 3.
The best balanced accuracy (76%) is for the com-
bination of all four variants. As more variants are
combined, precision increases but recalls drops.

5 Comparison with automatic
evaluations from AESOP 2011

In 2009-2011, TAC ran the task of Automatically
Evaluating Summaries of Peers (AESOP), to com-

The ordering of the metric combinations relative to re-
sponsiveness was almost identical to the ordering relative to
the pyramid evaluation, and precision and recall exhibited the
same trend as more metrics were added to the combination.



Pyramid A Pyramid B Responsiveness A Responsiveness B
Evaluation Metric | Acc P R BA | Acc P R BA | Acc P R BA | Acc P R BA
CLASSY1 0.60 | 0.02 | 0.60 | 0.50 | 0.84 | 0.03 | 0.18 | 0.50 | 0.61 | 0.14 | 0.64 | 0.54 | 0.70 | 0.21 | 0.22 | 0.52
DemokritosGR1 | 0.59 | 0.01 | 0.20 | 0.50 | 0.79 | 0.07 | 0.55 | 0.53 | 0.66 | 0.18 | 0.79 | 0.58 | 0.64 | 0.17 | 0.24 | 0.49
uOttawa3 0.44 | 0.01 | 0.60 | 0.50 | 0.48 | 0.02 | 0.36 | 0.50 | 0.52 | 0.13 | 0.77 | 0.55 | 0.43 | 0.13 | 0.36 | 0.46
DemokritosGR2 | 0.78 | 0.01 | 0.20 | 0.50 | 0.76 | 0.06 | 0.55 | 0.52 | 0.76 | 0.23 | 0.69 | 0.60 | 0.67 | 0.22 | 0.29 | 0.52
C-S-1IITH4 0.69 | 0.01 | 0.20 | 0.50 | 0.77 | 0.07 | 0.64 | 0.53 | 0.82 | 0.29 | 0.74 | 0.63 | 0.60 | 0.15 | 0.24 | 0.47
C-S-IITH1 0.60 | 0.01 | 0.40 | 0.50 | 0.70 | 0.06 | 0.82 | 0.53 | 0.69 | 0.20 | 0.79 | 0.59 | 0.60 | 0.22 | 0.42 | 0.52
BEwWT-E 0.73 | 0.01 | 0.20 | 0.50 | 0.80 | 0.01 | 0.09 | 0.49 | 0.79 | 0.25 | 0.72 | 0.61 | 0.72 | 0.31 | 0.39 | 0.58
R1-R2-R4-RBE | 0.89 | 0.40 | 0.44 | 0.67 | 0.76 | 0.27 | 0.17 | 0.55 | 0.88 | 0.00 | 0.00 | 0.49 | 0.91 | 0.03 | 0.09 | 0.50
R1-R4-RBE 0.89 | 0.40 | 0.44 | 0.67 | 0.77 | 0.35 | 0.24 | 0.59 | 0.88 | 0.00 | 0.00 | 0.49 | 0.90 | 0.03 | 0.09 | 0.50
All ROUGEs 0.89 | 0.40 | 0.44 | 0.67 | 0.75 | 0.26 | 0.16 | 0.54 | 0.88 | 0.00 | 0.00 | 0.49 | 0.91 | 0.04 | 0.09 | 0.51

Table 4: Best performing AESOP systems from TAC 2011; Scores within the 95% confidence interval

of the best are in bold face.

pare automatic evaluation methods for automatic
summarization. Here we show how the submit-
ted AESOP metrics compare to the best ROUGE
variants that we have established so far. We report
the results on 2011 only, because even when the
same team participated in more than one year, the
metrics submitted were different and the 2011 re-
sults represent the best effort of these teams. How-
ever, as we saw in Table 1, in 2011 there were very
few significant differences between the top sum-
marization systems. In this sense the tasks that
year represent a challenging dataset for testing au-
tomatic evaluations.

The results for the best AESOP systems (ac-
cording to one or more measures), and the cor-
responding results for the ROUGE combinations
are shown in Table 4. These AESOP systems are:
CLASSY1 (Conroy et al., 2011; Rankel et al.,
2012), DemokritosGR1 and 2 (Giannakopoulos et
al., 2008; Giannakopoulos et al., 2010), uOttawa3
(Kennedy et al., 2011), C-S-IITH1 and 4 (Kumar
et al.,, 2011; Kumar et al., 2012), and BEwWT-E
(Tratz and Hovy, 2008).° The combination metrics
achieve the highest accuracy by generally predict-
ing correctly when there are no significant differ-
ences between the systems. In addition, for 2008-
2010, where far more differences between systems
occur, the results of Table 3 show the combina-
tion metrics outperformed use of a single metric
and are competitive with the best metrics of AE-
SOP 2011. Thus, the combination metrics have
the ability to discriminate under both conditions
giving good prediction of human evaluation.

®To perform the comparison in the table the scores for
each system and document set were needed. Some systems
have changed after TAC 2011, but the data needed for these
comparisons were not available. BEwT-E did not participate
in AESOP 2011 and these data were provided by Stephen
Tratz. Special thanks to Stephen for providing these data.

6 Conclusion

We have tested the best-known automatic evalu-
ation metrics (ROUGE) on several years of TAC
data and compared their performance with re-
cently developed AESOP metrics. We discovered
that some of the rarely used variants of ROUGE
perform surprisingly well, and that by combin-
ing different ROUGEs together, one can create
an evaluation metric that is extremely competi-
tive with metrics submitted to the latest AESOP
task. Our results were reported in terms of sev-
eral different measures, and in each case, com-
pared how well the automatic metric predicted sig-
nificant differences found in manual evaluation.
We believe strongly that developers should include
statistical significance when reporting differences
in ROUGE scores of theirs and other systems,
as this improves the accuracy and credibility of
their results. Significant improvement in multi-
ple ROUGE scores is a significantly stronger in-
dicator that the developers have made a notewor-
thy improvement in text summarization. Systems
that report significant improvement using a com-
bination of ROUGE-BE (or its improved version
BEWT-E) in conjunction with ROUGE-1, 2, and
4, are more likely to give rise to summaries that
humans would judge as significantly better.
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