
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 110–114,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Easy-First POS Tagging and Dependency Parsing with Beam Search

Ji Ma
†
 JingboZhu

†
 Tong Xiao

†
 Nan Yang

‡

†
Natrual Language Processing Lab., Northeastern University, Shenyang, China

‡
MOE-MS Key Lab of MCC, University of Science and Technology of China,

Hefei, China

majineu@outlook.com

{zhujingbo, xiaotong}@mail.neu.edu.cn

nyang.ustc@gmail.com

Abstract

In this paper, we combine easy-first de-

pendency parsing and POS tagging algo-

rithms with beam search and structured

perceptron. We propose a simple variant

of “early-update” to ensure valid update

in the training process. The proposed so-

lution can also be applied to combine

beam search and structured perceptron

with other systems that exhibit spurious

ambiguity. On CTB, we achieve 94.01%

tagging accuracy and 86.33% unlabeled

attachment score with a relatively small

beam width. On PTB, we also achieve

state-of-the-art performance.

1 Introduction

The easy-first dependency parsing algorithm

(Goldberg and Elhadad, 2010) is attractive due to

its good accuracy, fast speed and simplicity. The

easy-first parser has been applied to many appli-

cations (Seeker et al., 2012; Søggard and Wulff,

2012). By processing the input tokens in an easy-

to-hard order, the algorithm could make use of

structured information on both sides of the hard

token thus making more indicative predictions.

However, rich structured information also causes

exhaustive inference intractable. As an alterna-

tive, greedy search which only explores a tiny

fraction of the search space is adopted (Goldberg

and Elhadad, 2010).

 To enlarge the search space, a natural exten-

sion to greedy search is beam search. Recent

work also shows that beam search together with

perceptron-based global learning (Collins, 2002)

enable the use of non-local features that are help-

ful to improve parsing performance without

overfitting (Zhang and Nivre, 2012). Due to the-

se advantages, beam search and global learning

has been applied to many NLP tasks (Collins and

Roark 2004; Zhang and Clark, 2007). However,

to the best of our knowledge, no work in the lit-

erature has ever applied the two techniques to

easy-first dependency parsing.

While applying beam-search is relatively

straightforward, the main difficulty comes from

combining easy-first dependency parsing with

perceptron-based global learning. In particular,

one needs to guarantee that each parameter up-

date is valid, i.e., the correct action sequence has

lower model score than the predicted one
1
. The

difficulty in ensuring validity of parameter up-

date for the easy-first algorithm is caused by its

spurious ambiguity, i.e., the same result might be

derived by more than one action sequences.

For algorithms which do not exhibit spurious

ambiguity, “early update” (Collins and Roark

2004) is always valid: at the k-th step when the

single correct action sequence falls off the beam,

1 As shown by (Huang et al., 2012), only valid update guar-

antees the convergence of any perceptron-based training.

Invalid update may lead to bad learning or even make the

learning not converge at all.

Figure 1: Example of cases without/with spurious

ambiguity. The 3 × 1 table denotes a beam. “C/P”

denotes correct/predicted action sequence. The

numbers following C/P are model scores.

110

its model score must be lower than those still in

the beam (as illustrated in figure 1, also see the

proof in (Huang et al., 2012)). While for easy-

first dependency parsing, there could be multiple

action sequences that yield the gold result (C1 and

C2 in figure 1). When all correct sequences fall

off the beam, some may indeed have higher

model score than those still in the beam (C2 in

figure 1), causing invalid update.

For the purpose of valid update, we present a

simple solution which is based on early update.

The basic idea is to use one of the correct action

sequences that were pruned right at the k-th step

(C1 in figure 1) for parameter update.

The proposed solution is general and can also

be applied to other algorithms that exhibit spuri-

ous ambiguity, such as easy-first POS tagging

(Ma et al., 2012) and transition-based dependen-

cy parsing with dynamic oracle (Goldberg and

Nivre, 2012). In this paper, we report experi-

mental results on both easy-first dependency

parsing and POS tagging (Ma et al., 2012). We

show that both easy-first POS tagging and de-

pendency parsing can be improved significantly

from beam search and global learning. Specifi-

cally, on CTB we achieve 94.01% tagging accu-

racy which is the best result to date
2
 for a single

tagging model. With a relatively small beam, we

achieve 86.33% unlabeled score (assume gold

tags), better than state-of-the-art transition-based

parsers (Huang and Sagae, 2010; Zhang and

Nivre, 2011). On PTB, we also achieve good

results that are comparable to the state-of-the-art.

2 Easy-first dependency parsing

The easy-first dependency parsing algorithm

(Goldberg and Elhadad, 2010) builds a depend-

ency tree by performing two types of actions

LEFT(i) and RIGHT(i) to a list of sub-tree struc-

tures p1,…, pr. pi is initialized with the i-th word

2 Joint tagging-parsing models achieve higher accuracy, but

those models are not directly comparable to ours.

Algorithm 1: Easy-first with beam search

Input: sentence of n words, beam width s

Output: one best dependency tree
 ()

 ()

 ()

 // top s extensions from the beam

1 // initially, empty beam
2 for 1 1 do

3 ()
4 return () // tree built by the best sequence

of the input sentence. Action LEFT(i)/RIGHT(i)

attaches pi to its left/right neighbor and then re-

moves pi from the sub-tree list. The algorithm

proceeds until only one sub-tree left which is the

dependency tree of the input sentence (see the

example in figure 2). Each step, the algorithm

chooses the highest score action to perform ac-

cording to the linear model:

 () ()

Here, is the weight vector and is the feature

representation. In particular, (()
 ()) denotes features extracted from pi.

The parsing algorithm is greedy which ex-

plores a tiny fraction of the search space. Once

an incorrect action is selected, it can never yield

the correct dependency tree. To enlarge the

search space, we introduce the beam-search ex-

tension in the next section.

3 Easy-first with beam search

In this section, we introduce easy-first with beam

search in our own notations that will be used

throughout the rest of this paper.

For a sentence x of n words, let be the action

(sub-)sequence that can be applied, in sequence,

to x and the result sub-tree list is denoted by

 () For example, suppose x is “I am valid” and

y is [RIGHT(1)], then y(x) yields figure 2(b). Let

 to be LEFT(i)/RIGHT(i) actions where 1 .
Thus, the set of all possible one-action extension

of is:

 () ()

Here, ‘ ’ means insert to the end of . Follow-

ing (Huang et al., 2012), in order to formalize

beam search, we also use the
 ()

operation which returns the top s action sequenc-

es in according to (). Here, denotes a

set of action sequences, () denotes the sum of

feature vectors of each action in

Pseudo-code of easy-first with beam search is

shown in algorithm 1. Beam search grows s

(beam width) action sequences in parallel using a

Figure 2: An example of parsing “I am valid”. Spu-

rious ambiguity: (d) can be derived by both

[RIGHT(1), LEFT(2)] and [LEFT(3), RIGHT(1)].

111

Algorithm 2: Perceptron-based training over one

training sample ()
Input: (), s, parameter

Output: new parameter

 ()
 (())

 ()

 // top correct extension from the beam

1

2 for 1 1 do

3 ̂ ()

4 ()

5 if // all correct seq. falls off the beam

6 (̂) ()

7 break

8 if () // full update

9 (̂) ()

10 return

beam , (sequences in are sorted in terms of

model score, i.e., () (1)).

At each step, the sequences in are expanded in

all possible ways and then is filled up with the

top s newly expanded sequences (line 2 ~ line 3).

Finally, it returns the dependency tree built by

the top action sequence in .

4 Training

To learn the weight vector , we use the percep-

tron-based global learning
3
 (Collins, 2002) which

updates by rewarding the feature weights fired

in the correct action sequence and punish those

fired in the predicted incorrect action sequence.

Current work (Huang et al., 2012) rigorously

explained that only valid update ensures conver-

gence of any perceptron variants. They also justi-

fied that the popular “early update” (Collins and

Roark, 2004) is valid for the systems that do not

exhibit spurious ambiguity
4
.

However, for the easy-first algorithm or more

generally, systems that exhibit spurious ambigui-

ty, even “early update” could fail to ensure valid-

ity of update (see the example in figure 1). For

validity of update, we propose a simple solution

which is based on “early update” and which can

accommodate spurious ambiguity. The basic idea

is to use the correct action sequence which was

3 Following (Zhang and Nivre, 2012), we say the training

algorithm is global if it optimizes the score of an entire ac-

tion sequence. A local learner trains a classifier which dis-

tinguishes between single actions.
4 As shown in (Goldberg and Nivre 2012), most transition-

based dependency parsers (Nivre et al., 2003; Huang and

Sagae 2010;Zhang and Clark 2008) ignores spurious ambi-

guity by using a static oracle which maps a dependency tree

to a single action sequence.

Features of (Goldberg and Elhadad, 2010)
for p in pi-1, pi, pi+1 wp-vlp, wp-vrp, tp-vlp,

tp-vrp, tlcp, trcp, wlcp, wlcp
for p in pi-2, pi-1, pi, pi+1, pi+2 tp-tlcp, tp-trcp, tp-tlcp-trcp
for p, q, r in (pi-2, pi-1, pi), (pi-

1, pi+1, pi), (pi+1, pi+2 ,pi)
tp-tq-tr, tp-tq-wr

for p, q in (pi-1, pi) tp-tlcp-tq, tp-trcp-tq, ,tp-tlcp-wq,,

 tp-trcp-wq, tp-wq-tlcq, tp-wq-trcq

Table 1: Feature templates for English dependency

parsing. wp denotes the head word of p, tp denotes the

POS tag of wp. vlp/vrp denotes the number p’s of

left/right child. lcp/rcp denotes p’s leftmost/rightmost

child. pi denotes partial tree being considered.

pruned right at the step when all correct sequence

falls off the beam (as C1 in figure 1).

Algorithm 2 shows the pseudo-code of the

training procedure over one training sample

(), a sentence-tree pair. Here we assume to

be the set of all correct action sequences/sub-

sequences. At step k, the algorithm constructs a

correct action sequence ̂ of length k by extend-

ing those in (line 3). It also checks whether

 no longer contains any correct sequence. If so,

 ̂ together with are used for parameter up-

date (line 5 ~ line 6). It can be easily verified that

each update in line 6 is valid. Note that both

‘TOPC’ and the operation in line 5 use to check

whether an action sequence y is correct or not.

This can be efficiently implemented (without

explicitly enumerating) by checking if each

LEFT(i)/RIGHT(i) in y are compatible with ():
pi already collected all its dependents according

to t; pi is attached to the correct neighbor sug-

gested by t.

5 Experiments

For English, we use PTB as our data set. We use

the standard split for dependency parsing and the

split used by (Ratnaparkhi, 1996) for POS tag-

ging. Penn2Malt
5
 is used to convert the bracket-

ed structure into dependencies. For dependency

parsing, POS tags of the training set are generat-

ed using 10-fold jack-knifing.

For Chinese, we use CTB 5.1 and the split

suggested by (Duan et al., 2007) for both tagging

and dependency parsing. We also use Penn2Malt

and the head-finding rules of (Zhang and Clark

2008) to convert constituency trees into depend-

encies. For dependency parsing, we assume gold

segmentation and POS tags for the input.

5 http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html

112

Features used in English dependency parsing

are listed in table 1. Besides the features in

(Goldberg and Elhadad, 2010), we also include

some trigram features and valency features

which are useful for transition-based dependency

parsing (Zhang and Nivre, 2011). For English

POS tagging, we use the same features as in

(Shen et al., 2007). For Chinese POS tagging and

dependency parsing, we use the same features as

(Ma et al., 2012). All of our experiments are

conducted on a Core i7 (2.93GHz) machine, both

the tagger and parser are implemented using C++.

5.1 Effect of beam width

Tagging/parsing performances with different

beam widths on the development set are listed in

table 2 and table 3. We can see that Chinese POS

tagging, dependency parsing as well as English

dependency parsing greatly benefit from beam

search. While tagging accuracy on English only

slightly improved. This may because that the

accuracy of the greedy baseline tagger is already

very high and it is hard to get further improve-

ment. Table 2 and table 3 also show that the

speed of both tagging and dependency parsing

drops linearly with the growth of beam width.

5.2 Final results

Tagging results on the test set together with some

previous results are listed in table 4. Dependency

parsing results on CTB and PTB are listed in ta-

ble 5 and table 6, respectively.

On CTB, tagging accuracy of our greedy base-

line is already comparable to the state-of-the-art.

As the beam size grows to 5, tagging accuracy

increases to 94.01% which is 2.3% error reduc-

tion. This is also the best tagging accuracy com-

paring with previous single tagging models (For

limited space, we do not list the performance of

joint tagging-parsing models).

Parsing performances on both PTB and CTB

are significantly improved with a relatively small

beam width (s = 8). In particular, we achieve

86.33% uas on CTB which is 1.54% uas im-

provement over the greedy baseline parser.

Moreover, the performance is better than the best

transition-based parser (Zhang and Nivre, 2011)

which adopts a much larger beam width (s = 64).

6 Conclusion and related work

This work directly extends (Goldberg and El-

hadad, 2010) with beam search and global learn-

ing. We show that both the easy-first POS tagger

and dependency parser can be significantly impr-

s PTB CTB speed

1 97.17 93.91 1350

3 97.20 94.15 560

5 97.22 94.17 385

Table 2: Tagging accuracy vs beam width vs. Speed is

evaluated using the number of sentences that can be

processed in one second

s
PTB CTB

speed
uas compl uas compl

1 91.77 45.29 84.54 33.75 221

2 92.29 46.28 85.11 34.62 124

4 92.50 46.82 85.62 37.11 71

8 92.74 48.12 86.00 35.87 39

Table 3: Parsing accuracy vs beam width. ‘uas’ and

‘compl’ denote unlabeled score and complete match

rate respectively (all excluding punctuations).

PTB CTB

(Collins, 2002) 97.11 (Hatori et al., 2012) 93.82

(Shen et al., 2007) 97.33 (Li et al., 2012) 93.88

(Huang et al., 2012) 97.35 (Ma et al., 2012) 93.84

this work 1 97.22 this work 1 93.87

this work 97.28 this work 94.01
†

Table 4: Tagging results on the test set. ‘

†
’ denotes

statistically significant over the greedy baseline by

McNemar’s test ()

Systems s uas compl

(Huang and Sagae, 2010) 8 85.20 33.72

(Zhang and Nivre, 2011) 64 86.00 36.90

(Li et al., 2012) － 86.55 －

this work 1 84.79 32.98

this work 8 86.33
†
 36.13

Table 5: Parsing results on CTB test set.

Systems s uas compl

(Huang and Sagae, 2010) 8 92.10 －

(Zhang and Nivre, 2011) 64 92.90 48.50

(Koo and Collins, 2010) － 93.04 －

this work 1 91.72 44.04

this work 8 92.47
†
 46.07

Table 6: Parsing results on PTB test set.

oved using beam search and global learning.

This work can also be considered as applying

(Huang et al., 2012) to the systems that exhibit

spurious ambiguity. One future direction might

be to apply the training method to transition-

based parsers with dynamic oracle (Goldberg and

Nivre, 2012) and potentially further advance per-

formances of state-of-the-art transition-based

parsers.

113

Shen et al., (2007) and (Shen and Joshi, 2008)

also proposed bi-directional sequential classifica-

tion with beam search for POS tagging and

LTAG dependency parsing, respectively. The

main difference is that their training method aims

to learn a classifier which distinguishes between

each local action while our training method aims

to distinguish between action sequences. Our

method can also be applied to their framework.

Acknowledgments

We would like to thank Yue Zhang, Yoav Gold-

berg and Zhenghua Li for discussions and sug-

gestions on earlier drift of this paper. We would

also like to thank the three anonymous reviewers

for their suggestions. This work was supported in

part by the National Science Foundation of Chi-

na (61073140; 61272376), Specialized Research

Fund for the Doctoral Program of Higher Educa-

tion (20100042110031) and the Fundamental

Research Funds for the Central Universities

(N100204002).

References

Collins, M. 2002. Discriminative training methods for

hidden markov models: Theory and experiments

with perceptron algorithms. In Proceedings of

EMNLP.

Duan, X., Zhao, J., , and Xu, B. 2007. Probabilistic

models for action-based Chinese dependency pars-

ing. In Proceedings of ECML/ECPPKDD.

Goldberg, Y. and Elhadad, M. 2010 An Efficient Al-

gorithm for Eash-First Non-Directional Dependen-

cy Parsing. In Proceedings of NAACL

Huang, L. and Sagae, K. 2010. Dynamic program-

ming for linear-time incremental parsing. In Pro-

ceedings of ACL.

Huang, L. Fayong, S. and Guo, Y. 2012. Structured

Perceptron with Inexact Search. In Proceedings of

NAACL.

Koo, T. and Collins, M. 2010. Efficient third-order

dependency parsers. In Proceedings of ACL.

Li, Z., Zhang, M., Che, W., Liu, T. and Chen, W.

2012. A Separately Passive-Aggressive Training

Algorithm for Joint POS Tagging and Dependency

Parsing. In Proceedings of COLING

Ma, J., Xiao, T., Zhu, J. and Ren, F. 2012. Easy-First

Chinese POS Tagging and Dependency Parsing. In

Proceedings of COLING

Rataparkhi, A. (1996) A Maximum Entropy Part-Of-

Speech Tagger. In Proceedings of EMNLP

Shen, L., Satt, G. and Joshi, A. K. (2007) Guided

Learning for Bidirectional Sequence Classification.

In Proceedings of ACL.

Shen, L. and Josh, A. K. 2008. LTAG Dependency

Parsing with Bidirectional Incremental Construc-

tion. In Proceedings of EMNLP.

Seeker, W., Farkas, R. and Bohnet, B. 2012 Data-

driven Dependency Parsing With Empty Heads. In

Proceedings of COLING

Søggard, A. and Wulff, J. 2012. An Empirical Study

of Non-lexical Extensions to Delexicalized Trans-

fer. In Proceedings of COLING

Yue Zhang and Stephen Clark. 2007 Chinese Seg-

mentation Using a Word-based Perceptron Algo-

rithm. In Proceedings of ACL.

Zhang, Y. and Clark, S. 2008. Joint word segmenta-

tion and POS tagging using a single perceptron. In

Proceedings of ACL.

Zhang, Y. and Nivre, J. 2011. Transition-based de-

pendency parsing with rich non-local features. In

Proceedings of ACL.

Zhang, Y. and Nivre, J. 2012. Analyzing the Effect of

Global Learning and Beam-Search for Transition-

Based Dependency Parsing. In Proceedings of

COLING.

114

