
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1517–1526,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Compositional-ly Derived Representations of
Morphologically Complex Words in Distributional Semantics

Angeliki Lazaridou and Marco Marelli and Roberto Zamparelli and Marco Baroni
Center for Mind/Brain Sciences (University of Trento, Italy)

first.last@unitn.it

Abstract
Speakers of a language can construct an
unlimited number of new words through
morphological derivation. This is a major
cause of data sparseness for corpus-based
approaches to lexical semantics, such as
distributional semantic models of word
meaning. We adapt compositional meth-
ods originally developed for phrases to the
task of deriving the distributional meaning
of morphologically complex words from
their parts. Semantic representations con-
structed in this way beat a strong baseline
and can be of higher quality than represen-
tations directly constructed from corpus
data. Our results constitute a novel evalua-
tion of the proposed composition methods,
in which the full additive model achieves
the best performance, and demonstrate the
usefulness of a compositional morphology
component in distributional semantics.

1 Introduction

Effective ways to represent word meaning are
needed in many branches of natural language pro-
cessing. In the last decades, corpus-based meth-
ods have achieved some degree of success in mod-
eling lexical semantics. Distributional semantic
models (DSMs) in particular represent the mean-
ing of a word by a vector, the dimensions of which
encode corpus-extracted co-occurrence statistics,
under the assumption that words that are semanti-
cally similar will occur in similar contexts (Turney
and Pantel, 2010). Reliable distributional vectors
can only be extracted for words that occur in many
contexts in the corpus. Not surprisingly, there is
a strong correlation between word frequency and
vector quality (Bullinaria and Levy, 2007), and
since most words occur only once even in very
large corpora (Baroni, 2009), DSMs suffer data
sparseness.

While word rarity has many sources, one of the
most common and systematic ones is the high pro-
ductivity of morphological derivation processes,
whereby an unlimited number of new words can
be constructed by adding affixes to existing stems
(Baayen, 2005; Bauer, 2001; Plag, 1999).1 For
example, in the multi-billion-word corpus we in-
troduce below, perfectly reasonable derived forms
such as lexicalizable or affixless never occur. Even
without considering the theoretically infinite num-
ber of possible derived nonce words, and restrict-
ing ourselves instead to words that are already
listed in dictionaries, complex forms cover a high
portion of the lexicon. For example, morphologi-
cally complex forms account for 55% of the lem-
mas in the CELEX English database (see Section
4.1 below). In most of these cases (80% according
to our corpus) the stem is more frequent than the
complex form (e.g., the stem build occurs 15 times
more often than the derived form rebuild, and the
latter is certainly not an unusual derived form).

DSMs ignore derivational morphology alto-
gether. Consequently, they cannot provide mean-
ing representations for new derived forms, nor can
they harness the systematic relation existing be-
tween stems and derivations (any English speaker
can infer that to rebuild is to build again, whether
they are familiar with the prefixed form or not)
in order to mitigate derived-form sparseness prob-
lems. A simple way to handle derivational mor-

1Morphological derivation constructs new words (in
the sense of lemmas) from existing lexical items (re-
source+ful→resourceful). In this work, we do not treat in-
flectional morphology, pertaining to affixes that encode gram-
matical features such as number or tense (dog+s). We use
morpheme for any component of a word (resource and -ful
are both morphemes). We use stem for the lexical item that
constitutes the base of derivation (resource) and affix (pre-
fix or suffix) for the element attached to the stem to derive
the new form (-ful). In English, stems are typically indepen-
dent words, affixes bound morphemes, i.e., they cannot stand
alone. Note that a stem can in turn be morphologically de-
rived, e.g., point+less in pointless+ly. Finally, we use mor-
phologically complex as synonymous with derived.
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phology would be to identify the stem of rare de-
rived words and use its distributional vector as a
proxy to derived-form meaning.2 The meaning of
rebuild is not that far from that of build, so the
latter might provide a reasonable surrogate. Still,
something is clearly lost (if the author of a text
felt the need to use the derived form, the stem was
not fully appropriate), and sometimes the jump in
meaning can be quite dramatic (resourceless and
resource mean very different things!).

In the past few years there has been much in-
terest in how DSMs can scale up to represent the
meaning of larger chunks of text such as phrases
or even sentences. Trying to represent the mean-
ing of arbitrarily long constructions by directly
collecting co-occurrence statistics is obviously in-
effective and thus methods have been developed
to derive the meaning of larger constructions as a
function of the meaning of their constituents (Ba-
roni and Zamparelli, 2010; Coecke et al., 2010;
Mitchell and Lapata, 2008; Mitchell and Lapata,
2010; Socher et al., 2012). Compositional distri-
butional semantic models (cDSMs) of word units
aim at handling, compositionally, the high produc-
tivity of phrases and consequent data sparseness.
It is natural to hypothesize that the same methods
can be applied to morphology to derive the mean-
ing of complex words from the meaning of their
parts: For example, instead of harvesting a rebuild
vector directly from the corpus, the latter could be
constructed from the distributional representations
of re- and build. Besides alleviating data sparse-
ness problems, a system of this sort, that automati-
cally induces the semantic contents of morpholog-
ical processes, would also be of tremendous theo-
retical interest, given that the semantics of deriva-
tion is a central and challenging topic in linguistic
morphology (Dowty, 1979; Lieber, 2004).

In this paper, we explore, for the first time (ex-
cept for the proof-of-concept study in Guevara
(2009)), the application of cDSMs to derivational
morphology. We adapt a number of composition
methods from the literature to the morphological
setting, and we show that some of these methods
can provide better distributional representations of
derived forms than either those directly harvested
from a large corpus, or those obtained by using
the stem as a proxy to derived-form meaning. Our

2Of course, spotting and segmenting complex words is a
big research topic unto itself (Beesley and Karttunen, 2000;
Black et al., 1991; Sproat, 1992), and one we completely
sidestep here.

results suggest that exploiting morphology could
improve the quality of DSMs in general, extend
the range of tasks that cDSMs can successfully
model and support the development of new ways
to test their performance.

2 Related work

Morphological induction systems use corpus-
based methods to decide if two words are mor-
phologically related and/or to segment words into
morphemes (Dreyer and Eisner, 2011; Goldsmith,
2001; Goldwater and McClosky, 2005; Goldwater,
2006; Naradowsky and Goldwater, 2009; Wicen-
towski, 2004). Morphological induction has re-
cently received considerable attention since mor-
phological analysis can mitigate data sparseness in
domains such as parsing and machine translation
(Goldberg and Tsarfaty, 2008; Lee, 2004). Among
the cues that have been exploited there is distri-
butional similarity among morphologically related
words (Schone and Jurafsky, 2000; Yarowsky and
Wicentowski, 2000). Our work, however, dif-
fers substantially from this track of research. We
do not aim at segmenting morphological complex
words or identifying paradigms. Our goal is to
automatically construct, given distributional rep-
resentations of stems and affixes, semantic repre-
sentations for the derived words containing those
stems and affixes. A morphological induction sys-
tem, given rebuild, will segment it into re- and
build (possibly using distributional similarity be-
tween the words as a cue). Our system, given
re- and build, predicts the (distributional seman-
tic) meaning of rebuild.

Another emerging line of research uses distribu-
tional semantics to model human intuitions about
the semantic transparency of morphologically de-
rived or compound expressions and how these im-
pact various lexical processing tasks (Kuperman,
2009; Wang et al., 2012). Although these works
exploit vectors representing complex forms, they
do not attempt to generate them compositionally.

The only similar study we are aware of is that
of Guevara (2009). Guevara found a systematic
geometric relation between corpus-based vectors
of derived forms sharing an affix and their stems,
and used this finding to motivate the composition
method we term lexfunc below. However, unlike
us, he did not test alternative models, and he only
presented a qualitative analysis of the trajectories
triggered by composition with various affixes.
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3 Composition methods

Distributional semantic models (DSMs), also
known as vector-space models, semantic spaces,
or by the names of famous incarnations such as
Latent Semantic Analysis or Topic Models, ap-
proximate the meaning of words with vectors that
record their patterns of co-occurrence with cor-
pus context features (often, other words). There
is an extensive literature on how to develop such
models and on their evaluation. Recent surveys
include Clark (2012), Erk (2012) and Turney and
Pantel (2010). We focus here on compositional
DSMs (cDSMs). Since the very inception of dis-
tributional semantics, there have been attempts to
compose meanings for sentences and larger pas-
sages (Landauer and Dumais, 1997), but inter-
est in compositional DSMs has skyrocketed in
the last few years, particularly since the influen-
tial work of Mitchell and Lapata (2008; 2009;
2010). For the current study, we have reimple-
mented and adapted to the morphological setting
all cDSMs we are aware of, excluding the tensor-
product-based models that Mitchell and Lapata
(2010) have shown to be empirically disappointing
and the models of Socher and colleagues (Socher
et al., 2011; Socher et al., 2012), that require com-
plex optimization procedures whose adaptation to
morphology we leave to future work.

Mitchell and Lapata proposed a set of simple
and effective models in which the composed vec-
tors are obtained through component-wise opera-
tions on the constituent vectors. Given input vec-
tors u and v, the multiplicative model (mult) re-
turns a composed vector c with: ci = uivi. In the
weighted additive model (wadd), the composed
vector is a weighted sum of the two input vectors:
c = αu + βv, where α and β are two scalars. In
the dilation model, the output vector is obtained
by first decomposing one of the input vectors, say
v, into a vector parallel to u and an orthogonal
vector. Following this, the parallel vector is dilated
by a factor λ before re-combining. This results in:
c = (λ− 1)〈u,v〉u+ 〈u,u〉v.

Guevara (2010) and Zanzotto et al. (2010) pro-
pose the full additive model (fulladd), where the
two vectors to be added are pre-multiplied by
weight matrices: c = Au+Bv

Since the Mitchell and Lapata and fulladd mod-
els were developed for phrase composition, the
two input vectors were taken to be, very straight-
forwardly, the vectors of the two words to be com-

posed into the phrase of interest. In morphological
derivation, at least one of the items to be composed
(the affix) is a bound morpheme. In our adapta-
tion of these composition models, we build bound
morpheme vectors by accumulating the contexts
in which a set of derived words containing the rel-
evant morphemes occur, e.g., the re- vector aggre-
gates co-occurrences of redo, remake, retry, etc.

Baroni and Zamparelli (2010) and Coecke et
al. (2010) take inspiration from formal semantics
to characterize composition in terms of function
application, where the distributional representa-
tion of one element in a composition (the func-
tor) is not a vector but a function. Given that
linear functions can be expressed by matrices and
their application by matrix-by-vector multiplica-
tion, in this lexical function (lexfunc) model, the
functor is represented by a matrix U to be multi-
plied with the argument vector v: c = Uv. In
the case of morphology, it is natural to treat bound
affixes as functions over stems, since affixes en-
code the systematic semantic patterns we intend
to capture. Unlike the other composition meth-
ods, lexfunc does not require the construction of
distributional vectors for affixes. A matrix repre-
sentation for every affix is instead induced directly
from examples of stems and the corresponding de-
rived forms, in line with the intuition that every af-
fix corresponds to a different pattern of change of
the stem meaning.

Finally, as already discussed in the Introduc-
tion, performing no composition at all but using
the stem vector as a surrogate of the derived form
is a reasonable strategy. We saw that morphologi-
cally derived words tend to appear less frequently
than their stems, and in many cases the meanings
are close. Consequently, we expect a stem-only
“composition” method to be a strong baseline in
the morphological setting.

4 Experimental setup

4.1 Morphological data

We obtained a list of stem/derived-form pairs from
the CELEX English Lexical Database, a widely
used 100K-lemma lexicon containing, among
other things, information about the derivational
structure of words (Baayen et al., 1995). For each
derivational affix present in CELEX, we extracted
from the database the full list of stem/derived
pairs matching its most common part-of-speech
signature (e.g., for -er we only considered pairs
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Affix Stem/Der. Training HQ/Tot. Avg.
POS Items Test Items SDR

-able verb/adj 177 30/50 5.96
-al noun/adj 245 41/50 5.88
-er verb/noun 824 33/50 5.51
-ful noun/adj 53 42/50 6.11
-ic noun/adj 280 43/50 5.99

-ion verb/noun 637 38/50 6.22
-ist noun/noun 244 38/50 6.16
-ity adj/noun 372 33/50 6.19
-ize noun/verb 105 40/50 5.96
-less noun/adj 122 35/50 3.72
-ly adj/adv 1847 20/50 6.33

-ment verb/noun 165 38/50 6.06
-ness adj/noun 602 33/50 6.29
-ous noun/adj 157 35/50 5.94
-y noun/adj 404 27/50 5.25
in- adj/adj 101 34/50 3.39
re- verb/verb 86 27/50 5.28
un- adj/adj 128 36/50 3.23
tot */* 6549 623/900 5.52

Table 1: Derivational morphology dataset

having a verbal stem and nominal derived form).
Since CELEX was populated by semi-automated
morphological analysis, it includes forms that are
probably not synchronically related to their stems,
such as crypt+ic or re+form. However, we did not
manually intervene on the pairs, since we are in-
terested in training and testing our methods in re-
alistic, noisy conditions. In particular, the need to
pre-process corpora to determine which forms are
“opaque”, and should thus be bypassed by our sys-
tems, would greatly reduce their usefulness. Pairs
in which either word occurred less than 20 times
in our source corpus (described in Section 4.2 be-
low) were filtered out and, in our final dataset, we
only considered the 18 affixes (3 prefixes and 15
suffixes) with at least 100 pairs meeting this con-
dition. We randomly chose 50 stem/derived pairs
(900 in total) as test data. The remaining data were
used as training items to estimate the parameters
of the composition methods. Table 1 summarizes
various characteristics of the dataset3 (the last two
columns of the table are explained in the next para-
graphs).

Annotation of quality of test vectors The qual-
ity of the corpus-based vectors representing de-
rived test items was determined by collecting hu-
man semantic similarity judgments in a crowd-
sourcing survey. In particular, we use the similar-
ity of a vector to its nearest neighbors (NNs) as a
proxy measure of quality. The underlying assump-

3Available from http://clic.cimec.unitn.it/
composes

tion is that a vector, in order to be a good represen-
tation of the meaning of the corresponding word,
should lie in a region of semantic space populated
by intuitively similar meanings, e.g., we are more
likely to have captured the meaning of car if the
NN of its vector is the automobile vector rather
than potato. Therefore, to measure the quality of
a given vector, we can look at the average simi-
larity score provided by humans when comparing
this very vector with its own NNs.

All 900 derived vectors from the test set were
matched with their three closest NNs in our se-
mantic space (see Section 4.2), thus producing a
set of 2, 700 word pairs. These pairs were admin-
istered to CrowdFlower users,4 who were asked
to judge the relatedness of the two meanings on a
7-point scale (higher for more related). In order
to ensure that participants were committed to the
task and exclude non-proficient English speakers,
we used 60 control pairs as gold standard, consist-
ing of either perfect synonyms or completely un-
related words. We obtained 30 judgments for each
derived form (10 judgments for each of 3 neighbor
comparisons), with mean participant agreement of
58%. These ratings were averaged item-wise, re-
sulting in a Gaussian distribution with a mean of
3.79 and a standard deviation of 1.31. Finally,
each test item was marked as high-quality (HQ)
if its derived form received an average score of at
least 3, as low-quality (LQ) otherwise. Table 1 re-
ports the proportion of HQ test items for each af-
fix, and Table 2 reports some examples of HQ and
LQ items with the corresponding NNs. It is worth
observing that the NNs of the LQ items, while not
as relevant as the HQ ones, are hardly random.

Annotation of similarity between stem and de-
rived forms Derived forms differ in terms of
how far their meaning is with respect to that of
their stem. Certain morphological processes have
systematically more impact than others on mean-
ing: For example, the adjectival prefix in- negates
the meaning of the stem, whereas -ly has the sole
function to convert an adjective into an adverb.
But the very same affix can affect different stems
in different ways. For example, remelt means lit-
tle more than to melt again, but rethink has subtler
implications of changing one’s way to look at a
problem, and while one of the senses of cycling is
present in recycle, it takes some effort to see their
relation.

4http://www.crowdflower.com
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Affix Type Derived form Neighbors

-ist
HQ transcendentalist mythologist, futurist, theosophist
LQ florist Harrod, wholesaler, stockist

-ity
HQ publicity publicise, press, publicize
LQ sparsity dissimilarity, contiguity, perceptibility

-ment
HQ advertisement advert, promotional, advertising
LQ inducement litigant, contractually, voluntarily

in-
HQ inaccurate misleading, incorrect, erroneous
LQ inoperable metastasis, colorectal, biopsy

re-
HQ recapture retake, besiege, capture
LQ rename defunct, officially, merge

Table 2: Examples of HQ and LQ derived vectors with their NNs

We conducted a separate crowdsourcing study
where participants were asked to rate the 900
test stem/derived pairs for the strength of their
semantic relationship on a 7-point scale. We
followed a procedure similar to the one de-
scribed for quality measurement; 7 judgments
were collected for each pair. Participants’ agree-
ment was at 60%. The last column of Ta-
ble 1 reports the average stem/derived related-
ness (SDR) for the various affixes. Note that
the affixes with systematically lower SDR are
those carrying a negative meaning (in-, un-, -less),
whereas those with highest SDR do little more
than changing the POS of the stem (-ion, -ly, -
ness). Among specific pairs with very low related-
ness we encounter hand/handy, bear/bearable and
active/activist, whereas compulsory/compulsorily,
shameless/shamelessness and chaos/chaotic have
high SDR. Since the distribution of the average
ratings was negatively skewed (mean rating: 5.52,
standard deviation: 1.26),5 we took 5 as the rating
threshold to classify items as having high (HR) or
low (LR) relatedness to their stems.

4.2 Distributional semantic space6

We use as our source corpus the concatenation of
ukWaC, the English Wikipedia (2009 dump) and
the BNC,7 for a total of about 2.8 billion tokens.
We collect co-occurrence statistics for the top 20K
content words (adjectives, adverbs, nouns, verbs)

5The negative skew is not surprising, as derived forms
must have some relation to their stems!

6Most steps of the semantic space construction
and composition pipelines were implemented using
the DISSECT toolkit: https://github.com/
composes-toolkit/dissect.

7http://wacky.sslmit.unibo.it, http:
//en.wikipedia.org, http://www.natcorp.
ox.ac.uk

in lemma format, plus any item from the mor-
phological dataset described above that was below
this rank. The top 20K content words also con-
stitute our context elements. We use a standard
bag-of-words approach, counting collocates in a
narrow 2-word before-and-after window. We ap-
ply (non-negative) Pointwise Mutual Information
as weighting scheme and dimensionality reduc-
tion by Non-negative Matrix Factorization, setting
the number of reduced-space dimensions to 350.
These settings are chosen without tuning, and are
based on previous experiments where they pro-
duced high-quality semantic spaces (Boleda et al.,
2013; Bullinaria and Levy, 2007).

4.3 Implementation of composition methods

All composition methods except mult and stem
have weights to be estimated (e.g., the λ parame-
ter of dilation or the affix matrices of lexfunc). We
adopt the estimation strategy proposed by Gue-
vara (2010) and Baroni and Zamparelli (2010),
namely we pick parameter values that optimize
the mapping between stem and derived vectors di-
rectly extracted from the corpus. To learn, say, a
lexfunc matrix representing the prefix re-, we ex-
tract vectors of V/reV pairs that occur with suffi-
cient frequency (visit/revisit, think/rethink. . . ). We
then use least-squares methods to find weights for
the re- matrix that minimize the distance between
each reV vector generated by the model given the
input V and the corresponding corpus-observed
derived vector (e.g., we try to make the model-
predicted re+visit vector as similar as possible
to the corpus-extracted one). This is a general
estimation approach that does not require task-
specific hand-labeled data, and for which simple
analytical solutions of the least-squares error prob-
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lem exist for all our composition methods. We use
only the training items from Section 4.1 for esti-
mation. Note that, unlike the test items, these have
not been annotated for quality, so we are adopting
an unsupervised (no manual labeling) but noisy es-
timation method.8

For the lexfunc model, we use the training items
separately to obtain weight matrices represent-
ing each affix, whereas for the other models all
training data are used together to globally de-
rive single sets of affix and stem weights. For
the wadd model, the learning process results in
0.16×affix+0.33× stem, i.e., the affix contributes
only half of its mass to the composition of the
derived form. For dilation, we stretch the stem
(i.e., v of the dilation equation is the stem vector),
since it should provide richer contents than the af-
fix to the derived meaning. We found that, on av-
erage across the training pairs, dilation weighted
the stem 20 times more heavily than the affix
(0.05×affix+1×stem). We then expect that the di-
lation model will have similar performance to the
baseline stem model, as confirmed below.9

For all methods, vectors were normalized be-
fore composing both in training and in generation.

5 Experiment 1: approximating
high-quality corpus-extracted vectors

The first experiment investigates to what extent
composition models can approximate high-quality
(HQ) corpus-extracted vectors representing de-
rived forms. Note that since the test items were
excluded from training, we are simulating a sce-
nario in which composition models must generate
representations for nonce derived forms.

Cosine similarity between model-generated and
corpus-extracted vectors were computed for all
models, including the stem baseline (i.e., co-
sine between stem and derived form). The first
row of Table 3 reports mean similarities. The
stem method sets the level of performance rel-
atively high, confirming its soundness. Indeed,
the parameter-free mult model performs below the
baseline.10 As expected, dilation performs simi-

8More accurately, we relied on semi-manual CELEX in-
formation to identify derived forms. A further step towards a
fully knowledge-free system would be to pre-process the cor-
pus with an unsupervised morphological induction system to
extract stem/derived pairs.

9The other models have thousands of weights to be es-
timated, so we cannot summarize the outcome of parameter
estimation here.

10This result does not necessarily contradict those of

stem mult dil. wadd fulladd lexfunc
All 0.47 0.39 0.48 0.50 0.56 0.54
HR 0.52 0.43 0.53 0.55 0.61 0.58
LR 0.32 0.28 0.33 0.38 0.41 0.42

Table 3: Mean similarity of composed vectors to
high-quality corpus-extracted derived-form vec-
tors, for all as well as high- (HR) and low-
relatedness (LR) test items

larly to the baseline, while wadd outperforms it,
although the effect does not reach significance
(p=.06).11 Both fulladd and lexfunc perform sig-
nificantly better than stem (p < .001). Lexfunc
provides a flexible way to account for affixation,
since it models it directly as a function mapping
from and onto word vectors, without requiring a
vector representation of bound affixes. The rea-
son at the base of its good performance is thus
quite straightforward. On the other hand, it is
surprising that a simple representation of bound
affixes (i.e., as vectors aggregating the contexts
of words containing them) can work so well, at
least when used in conjunction with the granular
dimension-by-dimension weights assigned by the
fulladd method. We hypothesize that these aggre-
gated contexts, by providing information about the
set of stems an affix combines with, capture the
shared semantic features that the affix operates on.

When the meaning of the derived form is far
from that of its stem, the stem baseline should no
longer constitute a suitable surrogate of derived-
form meaning. The LR cases (see Section 4.1
above) are thus crucial to understand how well
composition methods capture not only stem mean-
ing, but also affix-triggered semantics. The HR
and LR rows of Table 3 present the results for
the respective test subsets. As expected, the stem
approach undergoes a strong drop when perfor-
mance is measured on LR items. At the other ex-
treme, fulladd and lexfunc, while also finding the
LR cases more difficult, still clearly outperform
the baseline (p<.001), confirming that they cap-
ture the meaning of derived forms beyond what
their stems contribute to it. The effect of wadd,
again, approaches significance when compared to
the baseline (p= .05). Very encouragingly, both

Mitchell and Lapata and others who found mult to be highly
competitive. Due to differences in co-occurrence weighting
schemes (we use a logarithmically scaled measure, they do
not), their multiplicative model is closer to our additive one.

11Significance assessed by means of Tukey Honestly Sig-
nificant Difference tests (Abdi and Williams, 2010)
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stem mult wadd dil. fulladd lexfunc
-less 0.22 0.23 0.30 0.24 0.38 0.44
in- 0.39 0.34 0.45 0.40 0.47 0.45
un- 0.33 0.33 0.41 0.34 0.44 0.46

Table 4: Mean similarity of composed vectors to
high-quality corpus-extracted derived-form vec-
tors with negative affixes

fulladd and lexfunc significantly outperform stem
also in the HR subset (p<.001). That is, the mod-
els provide better approximations of derived forms
even when the stem itself should already be a good
surrogate. The difference between the two models
is not significant.

We noted in Section 4.1 that forms containing
the “negative” affixes -less, un- and in- received
on average low SDR scores, since negation im-
pacts meaning more drastically than other opera-
tions. Table 4 reports the performance of the mod-
els on these affixes. Indeed, the stem baseline per-
forms quite poorly, whereas fulladd, lexfunc and,
to a lesser extent, wadd are quite effective in this
condition as well, all performing greatly above the
baseline. These results are intriguing in light of
the fact that modeling negation is a challenging
task for DSMs (Mohammad et al., 2013) as well as
cDSMs (Preller and Sadrzadeh, 2011). To the ex-
tent that our best methods have captured the negat-
ing function of a prefix such as in-, they might be
applied to tasks such as recognizing lexical op-
posites, or even simple forms of syntactic nega-
tion (modeling inoperable is just a short step away
from modeling not operable compositionally).

6 Experiment 2: Comparing the quality
of corpus-extracted and
compositionally generated words

The first experiment simulated the scenario in
which derived forms are not in our corpus, so
that directly extracting their representation from
it is not an option. The second experiment tests
if compositionally-derived representations can be
better than those extracted directly from the corpus
when the latter is a possible strategy (i.e., the de-
rived forms are attested in the source corpus). To
this purpose, we focused on those 277 test items
that were judged as low-quality (LQ, see Section
4.1), which are presumably more challenging to
generate, and where the compositional route could
be most useful.

We evaluated the derived forms generated by

corpus stem wadd fulladd lexfunc
All 2.28 3.26 4.12 3.99 3.09
HR 2.29 3.56 4.48 4.31 3.31
LR 2.22 2.48 3.14 3.12 2.52

Table 5: Average quality ratings of derived vectors

Target Model Neighbors

florist
wadd flora, fauna, ecosystem
fulladd flora, fauna, egologist
lexfunc ornithologist, naturalist, botanist

sparsity
wadd sparse, sparsely, dense
fulladd sparse, sparseness, angularity
lexfunc fragility, angularity, smallness

inducement
wadd induce, inhibit, inhibition
fulladd induce, inhibition, mediate
lexfunc impairment, cerebral, ocular

inoperable
wadd operable, palliation, biopsy
fulladd operable, inoperative, ventilator
lexfunc inoperative, unavoidably, flaw

rename
wadd name, later, namesake
fulladd name, namesake, later
lexfunc temporarily, reinstate, thereafter

Table 6: Examples of model-predicted neighbors
for words with LQ corpus-extracted vectors

the models that performed best in the first exper-
iment (fulladd, lexfunc and wadd), as well as the
stem baseline, by means of another crowdsourcing
study. We followed the same procedure used to
assess the quality of corpus-extracted vectors, that
is, we asked judges to rate the relatedness of the
target forms to their NNs (we obtained on average
29 responses per form).

The first line of Table 5 reports the average
quality (on a 7-point scale) of the representations
of the derived forms as produced by the models
and baseline, as well as of the corpus-harvested
ones (corpus column). All compositional models
produce representations that are of significantly
higher quality (p < .001) than the corpus-based
ones. The effect is also evident in qualitative
terms. Table 6 presents the NNs predicted by the
three compositional methods for the same LQ test
items whose corpus-based NNs are presented in
Table 2. These results indicate that morpheme
composition is an effective solution when the qual-
ity of corpus-extracted derived forms is low (and
the previous experiment showed that, when their
quality is high, composition can at least approxi-
mate corpus-based vectors).

With respect to Experiment 1, we obtain a dif-
ferent ranking of the models, with lexfunc being
outperformed by both wadd and fulladd (p<.001),
that are statistically indistinguishable. The wadd
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composition is dominated by the stem, and by
looking at the examples in Table 6 we notice that
both this model and fulladd tend to feature the
stem as NN (100% of the cases for wadd, 73%
for fulladd in the complete test set). The question
thus arises as to whether the good performance of
these composition techniques is simply due to the
fact that they produce derived forms that are near
their stems, with no added semantic value from the
affix (a “stemploitation” strategy).

However, the stemploitation hypothesis is dis-
pelled by the observation that both models signifi-
cantly outperform the stem baseline (p<.001), de-
spite the fact that the latter, again, has good per-
formance, significantly outperforming the corpus-
derived vectors (p < .001). Thus, we confirm
that compositional models provide higher qual-
ity vectors that are capturing the meaning of de-
rived forms beyond the information provided by
the stem.

Indeed, if we focus on the third row of Ta-
ble 5, reporting performance on low stem-derived
relatedness (LR) items (annotated as described in
Section 4.1), fulladd and wadd still significantly
outperform the corpus representations (p<.001),
whereas the quality of the stem representations of
LR items is not significantly different form that of
the corpus-derived ones. Interestingly, lexfunc dis-
plays the smallest drop in performance when re-
stricting evaluation to LR items; however, since it
does not significantly outperform the LQ corpus
representations, this is arguably due to a floor ef-
fect.

7 Conclusion and future work

We investigated to what extent cDSMs can gener-
ate effective meaning representations of complex
words through morpheme composition. Several
state-of-the-art composition models were adapted
and evaluated on this novel task. Our results sug-
gest that morpheme composition can indeed pro-
vide high-quality vectors for complex forms, im-
proving both on vectors directly extracted from the
corpus and on a stem-backoff strategy. This re-
sult is of practical importance for distributional se-
mantics, as it paves the way to address one of the
main causes of data sparseness, and it confirms the
usefulness of the compositional approach in a new
domain. Overall, fulladd emerged as the best per-
forming model, with both lexfunc and the simple
wadd approach constituting strong rivals. The ef-

fectiveness of the best models extended also to the
challenging cases where the meaning of derived
forms is far from that of the stem, including nega-
tive affixes.

The fulladd method requires a vector represen-
tation for bound morphemes. A first direction for
future work will thus be to investigate which as-
pects of the meaning of bound morphemes are
captured by our current simple-minded approach
to populating their vectors, and to explore alterna-
tive ways to construct them, seeing if they further
improve fulladd performance.

A natural extension of our research is to ad-
dress morpheme composition and morphological
induction jointly, trying to model the intuition that
good candidate morphemes should have coherent
semantic representations. Relatedly, in the cur-
rent setting we generate complex forms from their
parts. We want to investigate the inverse route,
namely “de-composing” complex words to de-
rive representations of their stems, especially for
cases where the complex words are more frequent
(e.g. comfort/comfortable).

We would also like to apply composition to in-
flectional morphology (that currently lies outside
the scope of distributional semantics), to capture
the nuances of meaning that, for example, distin-
guish singular and plural nouns (consider, e.g., the
difference between the mass singular tea and the
plural teas, which coerces the noun into a count
interpretation (Katz and Zamparelli, 2012)).

Finally, in our current setup we focus on a single
composition step, e.g., we derive the meaning of
inoperable by composing the morphemes in- and
operable. But operable is in turn composed of op-
erate and -able. In the future, we will explore re-
cursive morpheme composition, especially since
we would like to apply these methods to more
complex morphological systems (e.g., agglutina-
tive languages) where multiple morphemes are the
norm.

8 Acknowledgments

We thank Georgiana Dinu and Nghia The Pham
for helping out with DISSECT-ion and the review-
ers for helpful feedback. This research was sup-
ported by the ERC 2011 Starting Independent Re-
search Grant n. 283554 (COMPOSES).

1524



References
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