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Abstract

This paper presents an unsupervised ran-
dom walk approach to alleviate data spar-
sity for selectional preferences. Based on
the measure of preferences between predi-
cates and arguments, the model aggregates
all the transitions from a given predicate to
its nearby predicates, and propagates their
argument preferences as the given predi-
cate’s smoothed preferences. Experimen-
tal results show that this approach out-
performs several state-of-the-art method-
s on the pseudo-disambiguation task, and
it better correlates with human plausibility
judgements.

1 Introduction

Selectional preferences (SP) or selectional restric-
tions capture the plausibility of predicates and
their arguments for a given relation. Kaze and
Fodor (1963) describe that predicates and their
arguments have strict boolean restrictions, either
satisfied or violated. Sentences are semantically
anomalous and not consistent in reading if they
violated the restrictions. Wilks (1973) argues that
“rejecting utterances is just what humans do not.
They try to understand them.” He further states s-
electional restrictions as preferences between the
predicates and arguments, where the violation can
be less preferred, but not fatal. For instance, given
the predicate word eat, word food is likely to be
its object, iPhone is likely to be implausible for it,
and tiger is less preferred but not curious.

SP have been proven to help many natural lan-
guage processing tasks that involve attachment de-

∗Partial of this work was done when the first author vis-
iting at Language Technologies Institute of Carnegie Mellon
University sponsored by the China Scholarship Council.

cisions, such as semantic role labeling (Resnik,
1993; Gildea and Jurafsky, 2002), word sense dis-
ambiguation (Resnik, 1997), human plausibility
judgements (Spasić and Ananiadou, 2004), syn-
tactic disambiguation (Toutanova et al., 2005),
word compositionality (McCarthy et al., 2007),
textual entailment (Pantel et al., 2007) and pro-
noun resolution (Bergsma et al., 2008) etc.

A direct approach to acquire SP is to extract
triples (q, r, a) of predicates, relations, and argu-
ments from a syntactically analyzed corpus, and
then conduct maximum likelihood estimation (M-
LE) on the data. However, this strategy is infea-
sible for many plausible triples due to data spar-
sity. For example, given the relation <verb-dobj-
noun> in a corpus, we may see plausible triples:

eat - {food, cake, apple, banana, candy...}
But we may not see plausible and implausible

triples such as:

eat - {watermelon, ziti, escarole, iPhone...}
Then how to use a smooth model to alleviate

data sparsity for SP?
Random walk models have been successful-

ly applied to alleviate the data sparsity issue on
collaborative filtering in recommender systems.
Many online businesses, such as Netflix, Ama-
zon.com, and Facebook, have used recommender
systems to provide personalized suggestions on
the movies, books, or friends that the users may
prefer and interested in (Liben-Nowell and Klein-
berg, 2007; Yildirim and Krishnamoorthy, 2008).

In this paper, we present an extension of using
the random walk model to alleviate data sparsi-
ty for SP. The main intuition is to aggregate all
the transitions from a given predicate to its near-
by predicates, and propagate their preferences on
arguments as the given predicate’s smoothed argu-

1169



ment preferences. Our work and contributions are
summarized as follows:

• We present a framework of random walk ap-
proach to SP. It contains four components with
flexible configurations. Each component is cor-
responding to a specific functional operation on
the bipartite and monopartite graphs which rep-
resenting the SP data;

• We propose an adjusted preference ranking
method to measure SP based on the popularity
and association of predicate-argument pairs. It
better correlates with human plausibility judge-
ments. It also helps to discover similar predi-
cates more precisely;

• We introduce a probability function for random
walk based on the predicate distances. It con-
trols the influence of nearby and distant predi-
cates to achieve more accurate results;

• We find out that propagate the measured prefer-
ences of predicate-argument pairs is more prop-
er and natural for SP smooth. It helps to im-
prove the final performance significantly.

We conduct experiments using two sections of
the LDC English gigaword corpora as the general-
ization data. For the pseudo-disambiguation task,
we evaluate it on the Penn TreeBank-3 data. Re-
sults show that our model outperforms several pre-
vious methods. We further investigate the correla-
tions of smoothed scores with human plausibili-
ty judgements. Again our method achieves better
correlations on two third party data.

The remainder of the paper is organized as fol-
lows: Section 2 introduces related work. Section 3
briefly formulates the overall framework of our
method. Section 4 describes the detailed model
configurations, with discussions on their roles and
implications. Section 5 provides experiments on
both the pseudo-disambiguation task and human
plausibility judgements. Finally, Section 6 sum-
marizes the conclusions and future work.

2 Related Work

2.1 WordNet-based Approach
Resnik (1996) conducts the pioneer work on
corpus-driven SP induction. For a given predi-
cate q, the system firstly computes its distribution
of argument semantic classes based on WordNet.
Then for a given argument a, the system collects

the set of candidate semantic classes which con-
tain the argument a, and ensures they are seen in
q. Finally the system picks a semantic class from
the candidates with the maximal selectional asso-
ciation score, and defines the score as smoothed
score of (q, a).

Many researchers have followed the so-called
WordNet-based approach to SP. One of the key
issues is to induce the set of argument semantic
classes that are acceptable by the given predicate.
Li and Abe (1998) propose a tree cut model based
on minimal description length (MDL) principle
for the induction of semantic classes. Clark and
Weir (2002) suggest a hypothesis testing method
by ascending the noun hierarchy of WordNet. Cia-
ramita and Johnson (2000) model WordNet as a
Bayesian network to solve the “explain away” am-
biguity. Beyond induction on argument classes on-
ly, Agirre and Martinez (2001) propose a class-to-
class model that simultaneously learns SP on both
the predicate and argument classes.

WordNet-based approach produces human in-
terpretable output, but suffers the poor lexical cov-
erage problem. Gildea and Jurafsky (2002) show
that clustering-based approach has better cover-
age than WordNet-based approach. Brockman-
n and Lapata (2003) find out that sophisticated
WordNet-based methods do not always outperfor-
m simple frequency-based methods.

2.2 Distributional Models without WordNet

Alternatively, Rooth et al. (1999) propose an EM-
based clustering smooth for SP. The key idea is to
use the latent clusterings to take the place of Word-
Net semantic classes. Where the latent clusterings
are automatically derived from distributional da-
ta based on EM algorithm. Recently, more so-
phisticated methods are innovated for SP based on
topic models, where the latent variables (topics)
take the place of semantic classes and distribution-
al clusterings (Séaghdha, 2010; Ritter et al., 2010).

Without introducing semantic classes and laten-
t variables, Keller and Lapata (2003) use the web
to obtain frequencies for unseen bigrams smooth.
Pantel et al. (2007) apply a collection of rules to
filter out incorrect inferences for SP. Specifically,
Dagan et al. (1999) introduce a general similarity-
based model for word co-occurrence probabilities,
which can be interpreted for SP. Similarly, Erk et
al. propose an argument-oriented similarity model
based on semantic or syntactic vector spaces (Erk,
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2007; Erk et al., 2010). They compare several sim-
ilarity functions and weighting functions in their
model. Furthermore, instead of employing various
similarity functions, Bergsma et al. (2008) pro-
pose a discriminative approach to learn the weight-
s between the predicates, based on the verb-noun
co-occurrences and other kinds of features.

Random walk model falls into the non-class
based distributional approach. Previous literatures
have fully studied the selection of distance or sim-
ilarity functions to find out similar predicates and
arguments (Dagan et al., 1999; Erk et al., 2010), or
learn the weights between the predicates (Bergsma
et al., 2008). Instead, we put effort in following
issues: 1) how to measure SP; 2) how to trans-
fer between predicates using random walk; 3) how
to propagate the preferences for smooth. Experi-
ments show these issues are important for SP and
they should be addressed properly to achieve bet-
ter results.

3 RSP: A Random Walk Model for SP

In this section, we briefly introduce how to address
SP using random walk. We propose a framework
of RSP with four components (functions). Each of
them are flexible to be configured. In summary,
Algorithm 1 describes the overall process.

Algorithm 1 RSP: Random walk model for SP
Require: Init bipartite graph G with raw counts

1: // Ranking on the bipartite graph G;
2: R = Ψ(G); // ranking function
3: // Project R to monopartite graph D
4: D = Φ(R); // distance function
5: // Transform D to stochastic matrix P
6: P = ∆(D); // probability function
7: // Get the convergence P̃

8: P̃ =
∑∞

t=1
(dP )t

|(dP )t| = dP (I − dP )−1;

9: return Smoothed bipartite graph R̃
10: R̃ = P̃ ∗ R; // propagation function

Bipartite Graph Construction: For a giv-
en relation r, the observed predicate-argument
pairs can be represented by a bipartite graph
G=(X,Y, E). Where X={q1 , q2 , ..., qm} are the
m predicates, and Y ={a1 , a2 , ..., an} are the n ar-
guments. We initiate the links E with the raw
co-occurrence counts of seen predicate-argument
pairs in a given generalization data. We represent
the graph by an adjacency matrix with rows repre-
senting predicates and columns as arguments. For

convenience, we use indices i, j to represent pred-
icates qi , qj , and k, l for arguments a

k
, a

l
.

We employ a preference ranking function Ψ to
measure the SP between the predicates and argu-
ments. It transforms G to a corresponding bipar-
tite graph R, with links representing the strength
of SP. Each row of the adjacency matrix R denotes
the predicate vector q⃗i or q⃗j . We discuss the selec-
tion of Ψ in section 4.1.

Ψ := G 7→ R (1)
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Figure 1: Illustration of (R) the bipartite
graph of the verb-dobj-noun relation, (Q) the
predicate-projection monopartite graph, and (A)
the argument-projection monopartite graph.

Monopartite Graph Projection: In order to
conduct random walk on the graph, we project
the bipartite graph R onto a monopartite graph
Q=(X, E) between the predicates, or A=(Y, E)
between the arguments (Zhou et al., 2007). Fig-
ure 1 illustrates the intuition of the projection. The
links in Q represent the indirect connects between
the predicates in R. Two predicates are connected
in Q if they share at least one common neighbor
argument in R. The weight of the links in Q could
be set by arbitrary distance measures. We refer D
as an instance of the projection Q by a given dis-
tance function Φ.

Φ := R 7→ D (2)

Stochastic Walking Strategy: We introduce a
probability function ∆ to transform the predicate
distances D into transition probabilities P . Where
P is a stochastic matrix, with each element pij

represents the transition probability from predicate
qi to qj . Generally speaking, nearby predicates
gain higher probabilities to be visited, while dis-
tant predicates will be penalized.

∆ := D 7→ P (3)
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Follow Equation 4, we aggregate over all orders
of the transition probabilities P as the final sta-
tionary probabilities P̃ . According to the Perron-
Frobenius theory, one can verify that it converges
to dP (I − dP )−1 when P is non-negative and
regular matrix (Li et al., 2009). Where t repre-
sents the orders: the length of the path between
two nodes in terms of edges. The damp factor
d ∈ (0, 1), and its value mainly depends on the da-
ta sparsity level. Typically d prefers small values
such as 0.005. It means higher order transitions
are much less reliable than lower orders (Liben-
Nowell and Kleinberg, 2007).

P̃ =

∞∑

t=1

(dP )t

|(dP )t| = dP (I − dP )−1 (4)

Preference Propagation: in Equation 5, we
combine the converged transition probabilities P̃
with the measured preferences R as the propa-
gation function: 1) for a given predicate, firstly
it transfers to all nearby predicates with designed
probabilities; 2) then it sums over the arguments
preferred by these predicates with quantified s-
cores to get smoothed R̃. We further describe it-
s configuration details in Section 4.4 and Equa-
tion 12 with two propagation modes.

R̃ = P̃ ∗ R (5)

4 Model Configurations

4.1 Preference Ranking: Measure the
Selectional Preferences

In collaborative filtering, usually there are explic-
it and scaled user ratings on their item prefer-
ences. For instance, a user ratings a movie with
a score∈[0,10] on IMDB site. But in SP, the pref-
erences between the predicates and arguments are
implicit: their co-occurrence counts follow the
power law distribution and vary greatly.

Therefore, we employ a ranking function Ψ to
measure the SP of the seen predicate-argument
pairs. We suppose this could bring at least two
benefits: 1) a proper measure on the preferences
can make the discovering of nearby predicates
with similar preferences to be more accurate; 2)
while propagation, we propagate the scored pref-
erences, rather than the raw counts or condition-
al probabilities, which could be more proper and
agree with the nature of SP smooth. We denote
SelPref(q, a) as Pr(q, a) for short.

SelPref(q, a) = Ψ(q, a) (6)

Previous literatures have well studied on various
smooth models for SP. However, they vary great-
ly on the measure of preferences. It is still not
clear how to do this best. Lapata et al. investigate
the correlations between the co-occurrence counts
(CT) c(q, a), or smoothed counts with the human
plausibility judgements (Lapata et al., 1999; Lap-
ata et al., 2001). Some introduce conditional prob-
ability (CP) p(a|q) for the decision of preference
judgements (Chambers and Jurafsky, 2010; Erk et
al., 2010; Séaghdha, 2010). Meanwhile, the point-
wise mutual information (MI) is also employed
by many researchers to filter out incorrect infer-
ences (Pantel et al., 2007; Bergsma et al., 2008).

ΨCT = c(q, a) ΨMI = log
p(q, a)

p(q)p(a)

ΨCP =
c(q, a)

c(q, ∗)
ΨTD = c(q, a)log(

m

|a|)
(7)

In this paper, we present an adjusted ranking
function (AR) in Equation 8 to measure the SP of
seen predicate-argument pairs. Intuitively, it mea-
sures the preferences by combining both the pop-
ularity and association, with parameters control
the uncertainty of the trade-off between the two.
We define the popularity as the joint probability
p(q, a) based on MLE, and the association as MI.
This is potentially similar to the process of human
plausibility judgements. One may judge the plau-
sibility of a predicate-argument collocation from
two sides: 1) if it has enough evidences and com-
monly to be seen; 2) if it has strong association
according to the cognition based on kinds of back-
ground knowledge. This metric is also similar to
the TF-IDF (TD) used in information retrieval.

ΨAR(q, a) = p(q, a)α1

(
p(q, a)

p(q)p(a)

)α2

s.t. α1 , α2 ∈ [0, 1]

(8)

We verify if a metric is better by two tasks:
1) how well it correlates with human plausibility
judgements; 2) how well it helps with the smooth
inference to disambiguate plausible and implausi-
ble instances. We conduct empirical experiments
on these issues in Section 5.3 and Section 5.4.

4.2 Distance Function: Projection of the
Monopartite Graph

In Equation 9, the distance function Φ is used to
discover nearby predicates with distance dij . It
weights the links on the monopartite graph Q. It
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guides the walker to transfer between predicates.
We calculate Φ based on the vectors q⃗i, q⃗j repre-
sented by the measured preferences in R.

dij = Φ(q⃗i, q⃗j) (9)

Where Φ can be distance functions such as Eu-
clidean (norm) distance or Kullback-Leibler diver-
gence (KL) etc., or one minus the similarity func-
tions such as Jaccard and Cosine etc. The selection
of distributional functions has been fully studied
by previous work (Lee, 1999; Erk et al., 2010). In
this paper, we do not focus on this issue due to
page limits. We simply use the Cosine function:

Φcosine(q⃗i, q⃗j) = 1 − q⃗i · q⃗j

∥q⃗i∥∥q⃗j∥
(10)

4.3 Probability Function: the Walk Strategy
We define the probability function ∆ as Equa-
tion 11. Where the transition probability p(qj |qi)
in P is defined as a function of the distance dij

with a parameter δ. Intuitively, it means in a given
walk step, a predicate qj which is far away from
qi will get much less probability to be visited, and
qi has high probabilities to start walk from itself
and its nearby predicates to pursue good precision.
Once we get the transition matrix P , we can com-
pute P̃ according to Equation 4.

p(qj |qi) = ∆(dij) =
(1 − dij)

δ

Z(qi)

s.t. δ ≥ 0, dij ∈ [0, 1]

(11)

Where the parameter δ is used to control the bal-
ance of nearby and distant predicates. Z(qi) is the
normalize factor. Typically, δ around 2 can pro-
duce good enough results in most cases. We verify
the settings of δ in section 5.3.2.

4.4 Propagation Function
The propagation function in Equation 5 is repre-
sented by the matrix form. It can be expanded and
rewritten as Equation 12. Where p̃(qj |qi) is the
converged transition probability from predicate qi

to qj . Pr(ak, qj) is the measured preference of
predicate qj with argument ak.

P̃r(ak, qi) =
m∑

j=1

p̃(qj |qi) · Pr(ak, qj) (12)

We employ two propagation modes (PropMode)
for the preference propagation function. One is

’CP’ mode. In this mode, we always set Pr(q, a)
as the conditional probability p(a|q) for the prop-
agation function, despite what Ψ is used for the
distance function. This mode is similar to previ-
ous methods (Dagan et al., 1999; Keller and Lap-
ata, 2003; Bergsma et al., 2008). The other is ’PP’
mode. We set ranking function Ψ=Pr(q, a) always
to be the same in both the distance function and the
propagation function. That means what we propa-
gated is the designed and scored preferences. This
could be more proper and agree with the nature
of SP smooth. We show the improvement of this
extension in section 5.3.1.

5 Experiments

5.1 Data Set

Generalization Data: We parsed the Agence
France-Presse (AFP) and New York Times (NYT)
sections of the LDC English Gigaword corpo-
ra (Parker et al., 2011), each from year 2001-2010.
The parser is provided by the Stanford CoreNLP
package1. We filter out all tokens containing
non-alphabetic characters, collect the <verb-dobj-
noun > triples from the syntactically analyzed da-
ta. Predicates (verbs) whose frequency lower than
30 and arguments (noun headwords) whose fre-
quency less than 5 are excluded out. No other fil-
ters have been done. The resulting data consist of:

• AFP: 26, 118, 892 verb-dobj-noun observa-
tions with 1, 918, 275 distinct triples, totally
4, 771 predicates and 44, 777 arguments.

• NYT: 29, 149, 574 verb-dobj-noun observa-
tions with 3, 281, 391 distinct triples, totally
5, 782 predicates and 57, 480 arguments.

Test Data: For pseudo-disambiguation, we em-
ploy Penn TreeBank-3 (PTB) as the test data (Mar-
cus et al., 1999)2. We collect the 36, 400 manu-
ally annotated verb-dobj-noun dependencies (with
23, 553 distinct ones) from PTB. We keep depen-
dencies whose predicates and arguments are seen
in the generalization data. We randomly selec-
t 20% of these dependencies as the test set. We
split the test set equally into two parts: one as the
development set and the other as the final test set.

Human Plausibility Judgements Data: We
employ two human plausibility judgements data

1http://nlp.stanford.edu/software/corenlp.shtml
2PTB includes 2, 499 stories from the Wall Street Journal

(WSJ). It is different with our two generalization data.
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for the correlation evaluation. In each they col-
lect a set of predicate-argument pairs, and anno-
tate with two kinds of human ratings: one for an
argument takes the role as the patient of a predi-
cate, and the other for the argument as the agent.
The rating values are between 1 and 7: e.g. they
assign hunter-subj-shoot with a rating 6.9 but 2.8
for shoot-dobj-hunter.

• PBP: Padó et al. (2007) develop a set of hu-
man plausibility ratings on the basis of the
Penn TreeBank and FrameNet respectively.
We refer PBP as their 212 patient ratings
from the Penn TreeBank.

• MRP: This data are originally contributed by
McRae et al. (1998). We use all their 723
patient-nn ratings.

Without explicit explanation, we remove all the
selected PTB tests and human plausibility pairs
from AFP and NYT to treat them unseen.

5.2 Comparison Methods
Since RSP falls into the unsupervised distribu-
tional approach, we compare it with previous
similarity-based methods and unsupervised gener-
ative topic model 3.

Erk et al. (Erk, 2007; Erk et al., 2010) are
the pioneers to address SP using similarity-based
method. For a given (q, a) in relation r, the mod-
el sums over the similarities between a and the
seen headwords a′ ∈ Seen(q, r). They investi-
gated several similarity functions sim(a, a′) such
as Jaccard, Cosine, Lin, and nGCM etc., and dif-
ferent weighting functions wtq,r(a

′).

S(q, r, a) =
∑

a′

wtq,r(a
′)

Zq,r
· sim(a, a′) (13)

For comparison, we suppose the primary cor-
pus and generalization corpus in their model to be
the same. We set the similarity function of their
model as nGCM, use both the FREQ and DISCR
weighting functions. The vector space is in SYN-
PRIMARY setting with 2, 000 basis elements.

Dagan et al. (1999) propose state-of-the-art
similarity based model for word co-occurrence
probabilities. Though it is not intended for SP, but
it can be interpreted and rewritten for SP as:

Pr(a|q) =
∑

q′∈Simset(q)

sim(q, q′)
Z(q)

p(a|q′) (14)

3The implementation of RSP and listed previous methods
are available at https://github.com/ZhenhuaTian/RSP

They use the k-closest nearbys as Simset(q),
with a parameter β to revise the similarity func-
tion. For comparison, we use the Jensen-Shannon
divergence (Lin, 1991) which shows the best per-
formance in their work as sim(q, q′), and optimize
the settings of k and β in our experiments.

LDA-SP: Another kind of sophisticated unsu-
pervised approaches for SP are latent variable
models based on Latent Dirichlet Allocation (L-
DA). Ó Séaghdha (2010) applies topic models
for the SP induction with three variations: LDA,
Rooth-LDA, and Dual-LDA; Ritter et al. (2010)
focus on inferring latent topics and their distribu-
tions over multiple arguments and relations (e.g.,
the subject and direct object of a verb).

In this work, we compare with Ó Séaghdha’s
original LDA approach to SP. We use the Mat-
lab Topic Modeling Toolbox4 for the inference
of latent topics. The hyper parameters are set as
suggested α=50/T and β=200/n, where T is the
number of topics and n is the number of argu-
ments. We test T=100, 200, 300, each with 1, 000
iterations of Gibbs sampling.

5.3 Pseudo-Disambiguation

Pseudo-disambiguation has been used for SP e-
valuation by many researchers (Rooth et al., 1999;
Erk, 2007; Bergsma et al., 2008; Chambers and
Jurafsky, 2010; Ritter et al., 2010). First the sys-
tem removes a portion of seen predicate-argument
pairs from the generalization data to treat them as
unseen positive tests (q, a+). Then it introduces
confounder selection to create a pseudo negative
test (q, a−) for each positive (q, a+). Finally it
evaluates a SP model by how well the model dis-
ambiguates these positive and negative tests.

Confounder Selection: for a given (q, a+), the
system selects an argument a′ from the argumen-
t vocabulary. Then by ensure (q, a′) is unseen in
the generalization data, it treats a′ as pseudo a−.
This process guarantees that (q, a−) to be negative
in real case with very high probability. Previous
work have made advances on confounder selec-
tion with random, bucket and nearest confounder-
s. Random confounder (RND) most closes to the
realistic case; While nearest confounder (NER) is
reproducible and it avoids frequency bias (Cham-
bers and Jurafsky, 2010).

In this work, we employ both RND and NER
confounders: 1) for RND, we randomly select

4psiexp.ss.uci.edu/research/programs data/toolbox.htm
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confounders according to the occurrence probabil-
ity of arguments. We sample confounders on both
the development and final test data with 100 itera-
tions. 2) for NER, firstly we sort the arguments by
their frequency. Then we select the nearest con-
founders with two iterations. One iteration selects
the confounder whose frequency is more than or
equal to a+, and the other iteration with frequency
lower than or equal to a+.

Evaluation Metric: we evaluate performance
on both the pairwise and pointwise settings:

1) On pairwise setting, we combine correspond-
ing (q, a+, a−) together as test instances. The per-
formance is evaluated based on the accuracy (AC-
C) metric. It computes the portion of test instances
(q, a+, a−) which correctly predicted by the s-
mooth model with score(q, a+) > score(q, a−).
We weight each instance equally for macroACC,
and weight each by the frequency of the positive
pair (q, a+) for microACC.

2) On pointwise setting, we use each positive
test (q, a+) or negative test (q, a−) as test in-
stances independently. We treat it as a binary
classification task, and evaluate using the standard
area-under-the-curve (AUC) metric. This metric
is firstly employed for the SP evaluation by Ritter
et al (2010). For macroAUC, we weight each in-
stance equally; for microAUC, we weight each by
its argument frequency (Bergsma et al., 2008).

Parameters Tuning: The parameters are tuned
on the PTB development set, using AFP as the
generalization data. We report the overall perfor-
mance on the final test set. While using NYT as
the generalization data, we hold the same parame-
ter settings as AFP to ensure the results are robust.
Note that indeed the parameter settings would vary
among different generalization and test data.

5.3.1 Verify Ranking Function and
Propagation Method

This experiment is conducted on the PTB devel-
opment set with RND confounders. We use AFP
and NYT as the generalization data. For compari-
son, we set the distance function Φ as Cosine, with
default d=0.005, and δ=1.

In Table 1, the evaluation metric is Accuracy.
The first 4 rows are the results of ’CP’ PropMode,
and the latter 3 rows are the ’PP’ PropMode. With
respect to the ranking function Ψ, CP performs
the worst as it considers only the popularity rather
than association. The heavy bias on frequent pred-
icates and arguments has two major drawbacks: a)

The computation of predicate distances would re-
ly much more on frequent arguments, rather than
those arguments they preferred; b) While propaga-
tion, it may bias more on frequent arguments, too.
Even these frequent arguments are less preferred
and not proper to be propagated.

Crit.
AFP NYT

macro micro macro micro
ΨCP 71.7 76.7 78.2 81.2
ΨMI 70.9 75.8 79.1 81.8
ΨTD 73.4 78.2 80.9 83.4
ΨAR 72.9 77.8 81.0 83.5
ΨMI 76.8 80.6 81.9 83.8
ΨTD 74.4 79.1 81.8 84.2
ΨAR 82.5 85.2 87.7 88.6

Table 1: Comparing different ranking functions.

For MI, it biases infrequent arguments with
strong association, without regarding to the popu-
lar arguments with more evidences. Furthermore,
the generalization data is automatically parsed and
kind of noisy, especially on infrequent predicates
and arguments. The noises could yield unreliable
estimations and decrease the performance. For T-
D, it outperforms MI method on ’CP’ PropMode,
but it not always outperforms MI on ’PP’ Prop-
Mode. It is no surprise to find out the adjusted
ranking AR achieves better results on both AFP
and NYT data, with α1=0.2 and α2=0.6. Finally,
it shows the ’PP’ mode, which propagating the de-
signed preference scores, gains significantly better
performance as discussed in Section 4.4.

5.3.2 Verify δ of the Probability Function
This experiment is conducted on the PTB develop-
ment tests with both RND and NER confounders.
The generalization data is AFP.
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Figure 2: Performance variation on different δ.

1175



Criterion
AFP NYT

RND NER RND NER
macro micro macro micro macro micro macro micro

Erk et al. FREQ 73.7 73.6 73.9 73.6 68.3 68.4 63.8 63.0
Erk et al.DISCR 76.0 78.3 79.1 78.1 83.3 84.2 82.4 82.6
Dagan et al. 80.6 82.8 84.7 85.0 87.0 87.6 86.9 87.3
LDA-SP 82.0 83.5 83.7 82.9 89.1 89.0 87.9 87.8
RSPnaive 72.6 76.4 79.4 81.1 78.5 80.4 74.8 78.0
+Rank 74.0 77.7 83.5 85.2 81.4 83.1 84.5 86.9
+Rank+PP 83.5 85.2 87.2 87.0 88.2 88.2 88.0 88.3
+Rank+PP+Delta 86.2 87.3 88.4 88.1 90.6 90.1 91.1 89.3

Table 2: Pseudo-disambiguation results of different smooth models. Macro and micro Accuracy.
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Erk et al.      microAUC=0.62
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RSP−ALL     microAUC=0.89

Figure 3: Marco and micro ROC curves of different smooth models.

We set the ranking function Ψ as AR (with
tuned α1=0.2 and α2=0.6), the distance function
Φ as Cosine, default d=0.005, and we restrict δ ∈
[0.5, 4]. Figure 2 shows δ has significant impact
on the performance. Starting from δ=0.5, the sys-
tem gains better performance while δ increasing.
It achieves good results around δ=2. This mean-
s for a given predicate, the penalty on its distant
predicates helps to get more accurate smooth. The
performance will drop if δ becomes too big. This
means closest predicates are useful for smooth. It
it not better to penalize them heavily.

5.3.3 Overall Performance

Finally we compare the overall performance of d-
ifferent models. We report the results on the PTB
final test set, with RND and NER confounders.

Table 2 shows the overall performance on Accu-
racy metric. Among previous methods in the first
4 rows, LDA-SP performs the best in most cas-
es. In the last 4 rows, RSPnaive means both the
ranking function and PropMode are set as ’CP’
and δ=1. This configuration yields poor perfor-
mance. Iteratively, by employing the adjusted

ranking function, smoothing with preference prop-
agation method, and revising the probability func-
tion with the parameter δ, RSP outperforms all
previous methods. The parameter settings of RSP-
All are α1=0.2, α2=0.6, δ=1.75 and d=0.005.

Figure 3 show the macro (left) and micro (right)
receiver-operating-characteristic (ROC) curves of
different models, using AFP as the generalization
data and RND confounders. For each kind of
previous methods, we show the best AUC they
achieved. RASP-All still performs the best on
the terms of AUC metric, achieving macroAUC
at 84% and microAUC at 89%. We also verified
the AUC metric using NYT as the generalization
data. The results are similar to the AFP data. It
is also interesting to find out that the ACC met-
ric is not always bring into correspondence with
the AUC metric. The difference mainly raise on
the pointwise and pairwise test settings of pseudo-
disambiguation.

5.4 Human Plausibility Judgements

We conduct empirical studies on the correla-
tions between different preference ranking func-
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Criterion
AFP NYT

Spearman’s ρ Kendall’s τ Spearman’s ρ Kendall’s τ
PBP MRP PBP MRP PBP MRP PBP MRP

CT 0.49 0.36 0.37 0.28 0.54 0.44 0.41 0.34
CP 0.47 0.39 0.35 0.30 0.51 0.48 0.39 0.37
MI 0.56 0.39 0.43 0.31 0.54 0.49 0.41 0.38
TD 0.53 0.36 0.39 0.28 0.56 0.45 0.42 0.34
AR 0.58 0.40 0.44 0.31 0.58 0.50 0.44 0.39
Erk et al. FREQ 0.30 0.08 0.22 0.06 0.25 0.09 0.18 0.06
Erk et al.DISCR 0.06 0.21 0.04 0.15 0.16 0.23 0.11 0.16
Dagan et al. 0.32 0.24 0.24 0.18 0.46 0.29 0.34 0.21
LDA-SP 0.31 0.32 0.23 0.23 0.38 0.38 0.28 0.28
LDA-SP+Bayes 0.39 0.25 0.30 0.18 0.40 0.32 0.30 0.23
RSP-All 0.46 0.31 0.34 0.23 0.53 0.38 0.40 0.28

Table 3: Correlation results on the human plausibility judgements data.

tions and human ratings. Follow Lapata et
al. (2001), we first collect the co-occurrence
counts of predicate-argument pairs in the human
plausibility data from AFP and NYT (before re-
moving them as unseen pairs). Then we score
them with different ranking functions (described
in Section 4.1) based on MLE. Inspired by Erk et
al. (2010), we do not suppose linear correlations
between the estimated scores and human ratings.
We use the Spearman’s ρ and Kendal’s τ rank
correlation coefficient.

We also compare the correlations between the
smoothed scores of different models with human
ratings. With respect to upper bounds, Padó et
al. (2007) suggest that the typical agreement of
human participants is around a correlation of 0.7
on their plausibility data. We hold that automatic
models of plausibility can not be expected to sur-
pass this upper bound.

In Table 3, all coefficients are verified at signif-
icant level p<0.01. The first 5 rows are the corre-
lations between the preference ranking function-
s and human ratings based on MLE. On both the
PBP and MRP data, the proposed AR metric better
correlates with human ratings than others, with α2

>0.5 and α1 around [0.2, 0.35]. The latter 6 rows
are the results of smooth models. It shows LDA-
SP performs good correlation with human ratings,
where LDA-SP+Bayes refers to the Bayes predic-
tion method of Ritter et al. (2010). RSP model
gains the best correlation on the two plausibility
data in most cases, where the parameter settings
are the same as pseudo-disambiguation.

6 Conclusions and Future Work

In this work we present an random walk approach
to SP. Experiments show it is efficient and effec-
tive to address data sparsity for SP. It is also flex-
ible to be applied to new data. We find out that a
proper measure on SP between the predicates and
arguments is important for SP. It helps with the
discovering of nearby predicates and it makes the
preference propagation to be more accurate. An-
other issue is that it is not good enough to direct-
ly applies the similarity or distance functions for
smooth. Potential future work including but not
limited to follows: investigate argument-oriented
and personalized random walk, extend the model
in heterogenous network with multiple link types,
discover soft clusters using random walk for se-
mantic induction, and combine it with discrimina-
tive learning approach etc.
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