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Abstract

We introduce the novel task of automati-
cally generating questions that are relevant
to a text but do not appear in it. One mo-
tivating example of its application is for
increasing user engagement around news
articles by suggesting relevant compara-
ble questions, such as “is Beyonce a bet-
ter singer than Madonna?”, for the user
to answer. We present the first algorithm
for the task, which consists of: (a) of-
fline construction of a comparable ques-
tion template database; (b) ranking of rel-
evant templates to a given article; and (c)
instantiation of templates only with enti-
ties in the article whose comparison un-
der the template’s relation makes sense.
We tested the suggestions generated by
our algorithm via a Mechanical Turk ex-
periment, which showed a significant im-
provement over the strongest baseline of
more than 45% in all metrics.

1 Introduction

For companies whose revenues are mainly ad-
based, e.g. Facebook, Google and Yahoo, increas-
ing user engagement is an important goal, leading
to more time spent on site and consequently to in-
creased exposure to ads. Examples for typical en-
gaging content include other articles for the user to
read, updates from the user’s social neighborhood
and votes or comments on videos, blogs etc.

In this paper we propose a new way to increase
user engagement around news articles, namely
suggesting questions for the user to answer, which
are related to the viewed article. Our motivation
is that there are questions that are “irresistible”
because they are fun, involve emotional reaction
and expect simple answers. These are comparative
questions, such as “is Beyonce a better singer than

Madonna?”, “who is better looking, Brad Pitt or
George Clooney?”, “who is faster: Superman or
Flash?” and “which camera brand do you prefer:
Canon or Nikon?” Furthermore, such questions
are social in nature since users would be inter-
ested in reading the opinions of other users, similar
to viewing other comments (Schuth et al., 2007).
Hence, a user that provided an answer may return
to view other answers, further increasing her en-
gagement with the site.

One approach for generating comparable ques-
tions would be to employ traditional question gen-
eration, which syntactically transform assertions
in a given text into questions (Mitkov et al., 2006;
Heilman and Smith, 2010; Rus et al., 2010).
Sadly, fun and engaging comparative questions
are typically not found within the text of news
articles. A different approach would be to find
concrete relevant questions within external col-
lections of manually generated comparable ques-
tions. Such collections include Community-based
Question Answering (CQA) sites such as Yahoo!
Answers and Baidu Zhidao and sites that are spe-
cialized in polls, such as Toluna. However, it
is highly unlikely that such sources will contain
enough relevant questions for any news article due
to typical sparseness issues as well as differences
in interests between askers in CQA sites and news
reporters. To better address the motivating appli-
cation above, we propose the novel task of au-
tomatically suggesting comparative questions that
are relevant to a given input news article but do not
appear in it.

To achieve broad coverage for our task, we
present an algorithm that generates synthetic con-
crete questions from question templates, such as
“Who is a better actor: #1 or #2?”. Our algorithm
consists of two parts. An offline part constructs
a database of comparative question templates that
appear in a large question corpus. For a given
news article, an online part chooses relevant tem-
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Figure 1: An example news article from OMG!

plates for the article by matching between the ar-
ticle content and typical template contexts. The
algorithm then instantiates each relevant template
with two entities that appear in the article. Yet,
for a given template, only some of the entities are
plausible slot fillers. For example, ‘Madonna’ is
not a reasonable filler for “Who is a better dad, #1
or #2?”. Thus, our algorithm employs entity filter-
ing to exclude candidate instantiations that do not
make sense.

To test the performance of our algorithm, we
conducted a Mechanical Turk experiment that as-
sessed the quality of suggested questions for news
articles on celebrities. We compared our algo-
rithm to a random baseline and to a partial ver-
sion of our algorithm that includes a template rel-
evance component but lacks filtering of candidate
instantiations. The results show that the full al-
gorithm provided 45% more correct instantiations,
but surprisingly also 46% more relevant sugges-
tions compared to the stronger baseline. These re-
sults point at the importance of both picking rel-
evant templates and smart instantiation selection
to the quality of generated questions. In addition,
they indicate that user perception of relevance is
affected by the correctness of the question.

2 Motivation and Algorithmic Overview

Before we detail our algorithm, we provide some
motivations and insights to the design choices we
took in our algorithm, which also indicate the dif-
ficulties inherent in the task.

2.1 Motivation

Given a news article, our algorithm generates a set
of comparable questions for the article from ques-
tion templates, e.g. “who is faster #1 or #2?”.
Though the template words typically do not ap-
pear in the article, they need to be relevant to it’s
content, that is they should correspond to one of
the main themes in the article or to one of the pub-

Figure 2: A high-level overview of the comparable
question generation algorithm. The offline part is
colored dark grey and the online part is colored
light blue.

lic interests of the compared entities. For example,
“who is a better dad #1 or #2?” is relevant to the
article in Figure 1, while “who is faster #1 or #2?”
is not relevant. Therefore, we need to model the
typical contents to which each template is relevant.

Looking at the structure of comparable ques-
tions, we observed that a specific comparable re-
lation, such as ‘better dad’ and ‘faster’, can usu-
ally be combined with named entities in several
syntactic ways to construct a concrete question.
We encode this information in generic compara-
ble templates, e.g. “who is a RE: #1 or #2?” and
“is #1 a RE than #2?”, where RE is a slot for a
comparable relation and #1 and #2 are slots for en-
tities. Using the above generic templates, ‘Jet Li’
and ‘Jackie Chan’ can be combined with the com-
parable relation ‘better fighter’ to generate “who
is a better fighter: Jackie Chan or Jet Li?” and “is
Jackie Chan a better fighter than Jet Li?” respec-
tively. Following, our algorithm separately main-
tains comparable relations and generic templates.

In this paper we constrain ourselves to generate
comparable questions between entities that appear
in the article. Yet, not all entities can be compared
to each other under a specific template, adding
substantial complexity to the generation of ques-
tions. Looking at Figure 1, the generated question
‘who is faster, Angelina Jolie or David Beckham?’
makes sense with respect to David Beckham, but
not with respect to Angelina Jolie, since the typi-
cal reader is rarely interested in her running skills.
Our algorithm thus needs to assess whether an in-
stantiation is correct, that is whether the compar-
ison between the two entities makes sense under
the specific template.
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Further delving into question correctness, the
above example shows the need to assess each en-
tity by itself. However, even if both entities are
independently valid for the template, their com-
parison may not make sense. For example, “who
is better looking: Will Smith or Angelina Jolie?”
doesn’t feel right, even though each entity by itself
fits the template. This is because when comparing
looks, we expect a same sex comparison.

2.2 Algorithmic Overview

The above observations led us to the design of the
automatic generation algorithm depicted in Fig-
ure 2. The algorithm’s offline part constructs, from
a large collection of questions, a database of com-
parable relations, together with their typical con-
texts. It also extracts generic templates and the
mapping to the relations that may instantiate them.
From this database, we learn: (a) a context profile
per template for relevance matching; (b) a single
entity model per template slot that identify valid
instantiations; and (c) an entity pair model that
detects pairs of entities that can be compared to-
gether under the template. In the online part, these
three models are applied to rank relevant templates
for a given article and to generate only correct
questions with respect to template instantiation.

The next two sections detail the template extrac-
tion component and the model training and appli-
cation component in our algorithm.

3 Comparable Question Mining

To suggest comparable questions our algorithm
needs a database of question templates. As dis-
cussed previously, a good source for mining such
templates are CQA sites. Specifically, in this study
we utilize all questions submitted to Yahoo! An-
swers in 2011 as our corpus. We next describe
how comparable relations and generic comparable
templates are extracted from this corpus.

3.1 Comparable Relation Extraction

An important observation for the task of compa-
rable relation extraction is that many relations are
complex multiword expressions, and thus their au-
tomatic detection is not trivial. Examples for such
relations are marked in the questions “Who is the
best rapper alive, Eminem or Jay-z?” and “Who
is the most beautiful woman in the world, Adriana
Lima or Jessica Alba?”. Therefore, we decided to
employ a Conditional Random Fields (CRF) tag-

ger (Lafferty et al., 2001) to the task, since CRF
was shown to be state-of-the-art for sequential re-
lation extraction (Mooney and Bunescu, 2005; Cu-
lotta et al., 2006; Jindal and Liu, 2006).

As a pre-processing step for detecting compara-
ble relations, our extraction algorithm identifies all
the named entities of interest in our corpus, keep-
ing only questions that contain at least two entities.
In each of remaining questions, we then substitute
the entity names with the variable slots #i in the
order of their appearance. For example, “Nnamdi
Asomugha vs. Darrelle Revis? Who is the better
cornerback?” turned into “#1 vs. #2? Who is the
better cornerback?”. This transformation helps us
to design a simpler CRF than that of (Jindal and
Liu, 2006), since our CRF utilizes the known po-
sitions of the target entities in the text.

To train the CRF model, the authors manually
tagged all comparable relation words in approx-
imately 300 transformed questions in the filtered
corpus. The local and global features for the CRF,
which we induce from each question word, are
specified in Figures 3 and 4 respectively. Though
there are many questions in Yahoo! Answers con-
taining two named entities, e.g. “Is #1 dating
#2?”, our CRF tagger is trained to detect only
comparable relations like “Who is prettier #1 or
#2?”. This is due to the labeled training set, which
contains only this kind of relations, and to our fea-
tures, which capture aspects of this specific lin-
guistic structure.

The trained model was then applied to all other
questions in the filtered corpus. This tagging pro-
cess resulted in 60,000 identified question relation
occurrences. From this output we constructed a
database consisting of all occurring relations; each
relation is accompanied by its supporting ques-
tions, those questions in which the relation occur-
rences were found. To achieve a highly accurate
database, we filtered out relations with less than
50 supporting questions, ending with 295 relations
in our database1. The authors conducted a manual
evaluation of the CRF tagger performance, which
showed 80% precision per occurrence. Yet, our
filtering above of relations with low support left
us with virtually 100% precision per relation and
per occurrence.

1We intend to make this database publicly avail-
able under Yahoo! WebscopeTM (http://webscope.
sandbox.yahoo.com).

2http://nlp.stanford.edu/software/
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(a) The word itself
(b) Whether the word is capitalized
(c) The word’s suffixes of length 1,2, and 3, which helps
in detecting comparative adjectives that ends ‘est’ or ‘er’
(d) The word’s position in the sentence
(e) The word’s Part of speech (POS) tag, based on the
Stanford POS tagger2

(f) The words in a window of ±3 around the current one
(g) The adjective before the word, if exists, which helps
detecting comparative noun phrases, e.g. ‘better driver’
and ‘best singer’
(h) The shortest word distance between the word and one
of the #i variables.
(i) The shortest word distance of the word to one of the
following connectives: ‘between’, ‘out’, ‘:’, ‘,’, ‘?’

Figure 3: CRF local features for each word

(a) WH question type of the question, e.g. what, which,
who, where
(b) The average word distance between all #i variables in
the question
(c) The conjunction tokens appearing between the #i vari-
ables, such as or, vs, and

Figure 4: CRF global features for each word

3.2 Comparable Template Extraction

Our second mining task is to extract generic com-
parable templates that appear in our corpus, as
well as identifying which comparable relation can
instantiate which generic template.

To this end, we replace each recognized rela-
tion sequence with a variable RE in the support
questions annotated with #i variables. For exam-
ple, “who is the best rapper alive, #1 or #2?” is
transformed to “who is RE, #1 or #2?”. We next
count the occurrences of each templatized ques-
tion. While some questions contain many de-
tails besides the comparable generic template, oth-
ers are simpler and contain only the generic tem-
plate. Through this counting, frequently occurring
generic templates are revealed, such as “is #1 a
RE than #2?”. We retain only generic templates
which appeared more than 50 times.

Finally, for each comparable relation we mark
as applicable only generic templates that occur at
least once in the supporting questions of this rela-
tion. For example, the template “who is RE: #1 or
#2?” was found applicable for ‘funnier’, and thus
could be used to generate the concrete question
“who is funnier: Jennifer Aniston or Courteney
Cox?”. On average, each relation was associated
with 3 generic templates.

Algorithm 1 A high level overview of the online
part of the question generation algorithm
Input: A news article
Output: A sorted list of comparable questions
1: Identify all target named entities (NEs) in the article
2: Infer the distribution of LDA topics for the article
3: For each comparable relation R in the database, compute

its relevance score to be the similarity between the topic
distributions of R and the article

4: Rank all the relations according to their relevance score
and pick the top M as relevant

5: for each relevant relation R in the order of relevance
ranking do

6: Filter out all the target NEs that do not pass the single
entity classifier for R

7: Generate all possible NE pairs from the those that
passed the single classifier

8: Filter out all the generated NE pairs that do not pass
the entity pair classifier for R

9: Pick up the top N pairs with positive classification
score to be qualified for generation

10: Instantiate R with each chosen NE pair via a ran-
domly selected generic template

11: end for

4 Online Question Generation

The online part of our automatic generation algo-
rithm takes as input a news article and generates
concrete comparable questions for it. Its high level
description is presented in Algorithm 1. The algo-
rithm starts with identifying the comparable rela-
tions in our database that are relevant to the arti-
cle. For each relevant relation, we then generate
concrete questions by picking generic templates
that are applicable for this relation and instantiat-
ing them with pairs of named entities appearing in
the article. Yet, as discussed before, only for some
entity pairs the comparison under the specific re-
lation makes sense, a quality which we refer to as
instantiation correctness (see Section 2). To this
end, we utilize two supervised models to filter in-
correct instantiations. We next detail the two as-
pects of the online part: ranking relevant relations
and correctly instantiating relations.

4.1 Ranking relevant relations

To assess how relevant a given comparable rela-
tion is to an article, we model the relation’s typ-
ical context as a distribution over latent semantic
topics. Specifically, we utilize Latent Dirichlet Al-
location (LDA) (Blei et al., 2003) to infer latent
topics in texts.

To train an LDA model, we constructed for each
comparable relation a pseudo-document consist-
ing of all questions that contain this relation in
our corpus (the supporting questions). We then
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trained a model of 200 topics over these pseudo-
documents, resulting in a model over a lexicon of
107,835 words. An additional product of the LDA
training process is a topic distribution for each re-
lation’s pseudo-document, which we consider as
the relation’s context profile. We note that, un-
less otherwise specified, different model param-
eters were chosen based on a small held out col-
lection of articles and questions, manually anno-
tated by the authors. This collection was used to
validate that the chosen parameter values indeed
“make sense” for the task.

Given a news article, a distribution over LDA
topics is inferred from the article’s text using the
trained model. Then, a cosine similarity between
this distribution and the context profile of each
comparable relation in our database is computed
and taken as the relevance score for this relation.
Finally, we rank all relations according to their rel-
evance score and pick the top M as candidates for
instantiation (M=3 in our experiment).

4.2 Correctly instantiating relations

To generate useful questions from relevant com-
parable relations, we need to retain only correct
instantiations of these relations. To this end, we
utilize two complementing types of filters, one
for each entity by itself, and one for pairs, since
each filter considers different attributes of the en-
tities at hand. For example, for the relation ‘is
faster’, the single entity filter looks for athletes of
all kinds, for whom this comparison is of interest
to the reader. The pair filter, on the other hand, at-
tempts to pass only same sex and same profession
comparisons, e.g. male football players or female
baseball players for this relation.

We next describe the various features we ex-
tract for every entity and the supervised models
that given this feature vector representation assess
the correctness of an instantiation.

4.2.1 Entity Features
We want to represent each entity as a vector of fea-
tures that capture different aspects of entity char-
acterization. To this end, we utilize two different
broad-scale sources of information about named
entities. The first is DBPedia3, which contains
structured information on entries in Wikipedia,
many of them are named entities that appear in
news articles. The second source is the corpus of

3http://wiki.dbpedia.org/About

CQA questions, which in our study was harvested
from Yahoo! Answers (see Section 3).

For named entities with a DBPedia en-
try, we extract all the DBPedia properties of
classes subject and type as indicator features.
Some example features for Brad Pitt include
Actors from Oklahoma, AmericanAtheists, Artist
and American film producers.

One property that is currently missing from DB-
Pedia is gender, a feature that was found to be very
useful in our experiments. We automatically in-
duce this feature from the Wikipedia abstract in
each DBPedia entry. Specifically, we construct a
histogram of male and female pronouns: he and
his vs. she and her. The majority pronoun sex is
then chosen to be the gender of the named entity,
or none if the histogram is empty.

One way to utilize the CQA question corpus
could be to extract co-occurring words with each
target entity as relevant contexts. Yet, since
our questions come from Yahoo! Answers, we
decided to use another attribute of the ques-
tions, the category to which the question is as-
signed, within a hierarchy of 1,669 categories
(e.g. ‘Sports>Baseball’ and ‘Pets>Dogs’). For
each named entity, we construct a histogram of
the number of questions containing it that are as-
signed to each category. This histogram is normal-
ized into a probability distribution with Laplace
smoothing of 0.03, to incorporate the uncertainty
that lies in named entities that appear only very
few times. The categories and their probabilities
are added as features, providing a high level rep-
resentation of relevant contexts for the entity.

4.2.2 Single entity filtering
We view the task of single entity filtering as a clas-
sification task. To this end, we trained a classifier
per relation, constructing a different labeled train-
ing set for each relation. Positive examples are the
entities that instantiate this relation in our CQA
corpus. As negative examples, we take named en-
tities that were never seen instantiating the relation
in the corpus, but still occurred in some questions.
We note that our named entity tagger could recog-
nize more than 200,000 named entities, and most
of them are negative for a given relation.

For each relation we select negative examples
by sampling uniformly from its negative entity list,
assuming that the probability of hitting false neg-
atives is low for such a long list. It is known
that better classification performance is typically
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achieved for a balanced training set (Provost,
2000). In our case, we over sample to help the
classifier explore the large space of negative ex-
amples. Specifically, we sample 2,000 negative
examples and duplicate the positive set to reach
a similar number.

We utilize the Support Vector Machines (SVM)
implementation of LIBSVM (Chang and Lin,
2011) with a linear kernel as our classifier. The
feature vector of each named entity was induced
as described in Section 4.2.1. We split the labeled
dataset into 70% training set and 30% validation
set. Feature selection using information gain was
performed on the training set to throw out non-
significant features (Mitchell, 1997). The average
accuracy of the single classifiers, measured over
the validation sets, was 91%.

4.2.3 Entity pair filtering
Similar to single entity filtering, we view the task
of filtering entity pairs as a classification task,
training a separate classifier for each relation. En-
tity pairs that instantiate the given relation in the
question corpus are considered positive examples.
Yet, the space of all the pairs that never instanti-
ated the relation is huge, and the set of positive
examples is relatively much smaller compared to
the situation in the single entity classifier. In our
study, uniform negative example sampling turned
the training into a trivial task, preventing from
the classifier to choose an useful discriminative
boundary. Therefore, we generate negative exam-
ples by sampling only from pairs of named enti-
ties that both pass the single entity filter for this
relation. The risk here is that we may sample false
negative examples. Still, this sampling scheme en-
abled the classifier to identify better discriminative
features.

To generate features for a candidate pair, we
take the two feature vectors of the two entities
and induce families of pair features by compar-
ing between the two vectors. Figure 5 describes
the various features we generate. We utilize LIB-
SVM with an RBF kernel for this task, splitting
the examples into 70% training set and 30% vali-
dation set. We over sampled the positive examples
to reach up to 100 examples.

The average accuracy of the pair classifiers on
the validation set was 83%. For example, named
entities that pass the single entity filtering for
“be funny”, include Jay Leno, David Letterman
(American TV hosts), Jim Carrey, and Steve Mar-

(a) All shared DBPedia indicator features in the two vec-
tors: fDBPedia

a ∩ fDBPedia
b , indicating them as shared,

e.g. ‘FilmMaker s’
(b) All DBPedia features that appear only in one of the
vectors, termed one-side features: fDBPedia

a \ fDBPedia
b

and fDBPedia
b \ fDBPedia

a , indicating them as such, e.g.
‘FilmMaker o’
(c) Wikipedia categories that are ancestors of at least two
one-side features that appear in the training set. For ex-
ample, a common ancestor of ‘Spanish actors’ and ‘Rus-
sian actors’ is ‘European actors’. These features provide
a high level perspective on one-side features
(d) The Yahoo! Answers categories in which both named
entities appear
(e) Hellinger distance (Pollard, 2001) between the proba-
bility distributions over categories of the two entities
(f) Three indicator gender features: whether both named
entities are males, both are females or are different

Figure 5: The entity pair features generated from
two single entity feature vectors fa and fb

tin (actors). The pair classifier assigned positive
scores only to {Jay Leno, David Letterman} (TV
hosts) and {Jim Carrey, Steve Martin} (actors) but
not to other pairings of these entities.

5 Evaluation

5.1 Experimental Settings

To evaluate our algorithm’s performance, we de-
signed a Mechanical Turk (MTurk) experiment in
which human annotators assess the quality of the
questions that our algorithm generates for a sam-
ple of news articles. As the source of test arti-
cles, we chose the OMG! website4, which contains
news articles on celebrities.

Test articles were selected by first randomly
sampling 5,000 news article from those that were
posted on OMG! in 2011. We then filtered out ar-
ticles that are longer than 4,000 characters, which
were found to be tiresome for annotators to read,
and those that are shorter than 300 characters,
which consist mainly of video and photos. We
were left with a pool of 1,016 articles from which
we randomly sampled 100 as the test set.

For each test article our algorithm obtained the
top three relevant comparable relations, and for
each relation selected the best instantiation (if ex-
ists). We used two baselines for performance com-
parison. The first random baseline chooses a rela-
tion randomly out of all possible relations in the
database and then instantiates it with a random
pair of entities that appear in the article. The sec-
ond relevance baseline chooses the most relevant

4http://www.omg.com/
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Relevance Correctness
Random baseline 29% 43%
Relevance baseline 37% 53%
Full algorithm 54% 77%

Table 1: Relevance and correctness percentage by
tested algorithm

relation to the article based on our algorithm, but
still instantiates it with a random pair. For each test
article, we presented to the evaluators the ques-
tions generated by the three tested algorithms in
a random order to avoid any bias. We note that
our second baseline enabled us to measure the
stand-alone contribution of the LDA-based rele-
vance model. In addition, it enabled us to measure
the relative contribution of the instantiation mod-
els on top of relevance model.

Each article was evaluated by 10 MTurk work-
ers, which were asked to mark for each displayed
question whether it is relevant and whether it is
correct (see Section 2 for relevance and correct-
ness definitions). The workers were given pre-
cise instructions along with examples before they
started the test. A control story was used to filter
out dishonest or incapable workers5.

5.2 Results

For each tested algorithm, we separately counted
the percentage of annotations that marked each
question as relevant and the percentage of anno-
tations that marked each question as instantiated
correctly, denoted relevance score and correctness
score. We then averaged these scores over all
questions that were displayed for the test articles.
The results are presented in Table 1. The differ-
ences between the full algorithm and the baselines
are statistically significant at p < 0.01 and between
baselines the differences are statistically signifi-
cant at p < 0.05 using the Wilcoxon double-sided
signed-ranks test (Wilcoxon, 1945).

Our main result is that our full algorithm sub-
stantially outperforms the stronger relevance base-
line. It improves the correctness score by 45%,
which points at the effectiveness of our two step
filtering of incorrect instantiations. It’s perfor-
mance is just under 80%, showing high quality
entity pair selection for relations. Yet, we did not
expect to see an increase of 46% in the relevance

5We intend to make the tested articles, the instructions
to annotators and their annotations publicly available under
Yahoo! WebscopeTM (http://webscope.sandbox.
yahoo.com).

metric, since both the full algorithm and the rele-
vance baseline use the same relevance component
to rank relations by. One explanation for this is
that sometimes the instantiation filter eliminates
all possible entity pairs for some relation that is
incorrectly considered relevant by the algorithm.
Thus, the filtering of entities provides also an ad-
ditional filtering perspective on relevance. In ad-
dition, it may be that humans tend to be more
permissive when assessing the relevance of a cor-
rectly instantiated question.

To illustrate the differences between baselines
and the full algorithm, Table 2 presents an exam-
ple article together with the suggested generated
questions by each algorithm. The random baseline
picked an irrelevant relation, and while the rele-
vance baseline selected a relevant relation, “a bet-
ter president”, it was instantiated incorrectly. The
full algorithm, on the other hand, both chose rel-
evant relations for all three questions and instan-
tiated them correctly. Especially, the incorrectly
instantiated relation in the relevance baseline is
now correctly instantiated with plausible presiden-
tial candidates.

Comparing between baselines, the relevance
baseline beats the random baseline by 28% in
terms of relevance. This is not surprising, since
this was the focus of this baseline. Yet, it also im-
proved correctness by 23% over the random base-
line. This is an unexpected result that indicates
that when users view relevant relations, they may
be more forgiving in their perception of unreason-
able instantiations.

For each article, our full algorithm attempts to
generate three questions, one for each of the top
three relevant questions. It is possible that for
some articles not all three questions will be gen-
erated, due to instantiation filtering. We found
that for 85% of the articles all three questions
were generated. For the remaining 15% at least
one question was always generated, and for 1

3 of
them two questions were composed. Furthermore,
we found that the relevance and correctness scores
were not affected by the position of the question.
In the case of instantiation correctness, since the
best pair was picked for each relation and this
component is quite accurate, this is somewhat ex-
pected. In the case of relevance, this indicates that
there are usually several relations in our database
that are relevant to the article.
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Ron Livingston is teaming up with Tom Hanks and HBO again after their successful 2001 collaboration on Band of Broth-
ers. The actor has been cast in HBO’s upcoming film Game Change that centers on the 2008 presidential campaign,
Deadline reports. He joins Ed Harris, Julianne Moore and Woody Harrelson. The Jay Roach-directed movie follows John
McCain (Harris) as he selects Alaska Gov. Sarah Palin (Moore) as his running mate, throughout the campaign and to their
ultimate defeat to Barack Obama. Livingston will play Mark Wallace, one of the campaign’s senior advisors and the man
who prepped Palin for her debate. Harrelson will play campaign strategist Steve Schmidt. . .

Algorithm Question
Random baseline Who is a better singer, Sarah Palin or Barack Obama ?
Relevance baseline Would Ron Livingston be a better president than Julianne Moore ?
Full algorithm Who has the best movies Tom Hanks or Julianne Moore ?
Full algorithm Is John Mccain a better leader than Barack Obama ?
Full algorithm Would Sarah Palin be a better president than John Mccain ?

Table 2: Automatically generated questions by the baselines and the full algorithm to an example article

5.3 Error Analysis

To better understand the performance of our algo-
rithm, we looked at some low quality questions
that were generated, either due to incorrect instan-
tiation or due to irrelevance to the article.

Starting with relevance, one of the repeating
mistakes was promoting relations that are related
to a list of named entities in the article, but not to
its main theme. For example, the relation ‘who is
a better actor’ was incorrectly ranked high for an
article about Ricky Gervais claiming that he has
been asked to host Globes again after he offended
Angelina Jolie, Johnny Depp, Robert Downey
Jr. and Charlie Sheen, among others during last
Globes ceremony. The reason for this mistake is
that many named entities appear as frequent terms
in LDA topics, and thus mentioning many names
that belong to a single topic drives LDA to as-
sign this topic a high probability. Yet, unlike other
cases, here entity filtering does not help ignoring
such errors, since the same entities that triggered
the ranking of the relation are also valid instantia-
tions for it.

Analyzing incorrect instantiations, many mis-
takes are due to mismatches between the two com-
pared entities that were too fine grained for our al-
gorithm to catch. For example, “who’s the better
guitarist: Paul McCartney or Ringo Starr?” was
generated since our algorithm failed to identify
that Ringo Starr is a drummer rather than a gui-
tarist, though both participants in the relation are
musicians. In other cases, strong co-occurrence of
the two celebs in our question corpus convinced
the classifiers that they can be matched. For ex-
ample, “who is a better dancer Michael Jackson
or Debbie Rowe?” was incorrectly generated,
since Debbie Rowe is not a dancer. Yet, she was
Michael Jackson’s wife and they appear together

in a lot of questions in our corpus.

6 Related Work

Traditionally, question generation focuses on con-
verting assertions in a text into question forms
(Brown et al., 2005; Mitkov et al., 2006; Myller,
2007; Heilman and Smith, 2010; Rus et al., 2010;
Agarwal et al., 2011; Olney et al., 2012). To
the best of our knowledge, there is no prior work
on our task, which is to generate relevant syn-
thetic questions whose content, except for the ar-
guments, might not appear in the text.

Our extraction of comparable relations falls
within the field of Relation Extraction, in which
CRF is a state-of-the-art method (Mooney and
Bunescu, 2005; Culotta et al., 2006). We note
that in the works of Jindal and Liu (2006) and
Li et. al. (2010) comparative questions are iden-
tified as an intermediate step for the task of ex-
tracting compared entities, which are unknown in
their setting. We, on the other hand, detect the
compared entities in a pre-processing step, and our
target is the extraction of the comparable relations
given known candidate entities.

Our algorithm ranks relevant templates based
on the similarity between an article’s content and
the typical context of each relation. Prior work
rank relevant concrete questions to a given in-
put question, focusing on strong lexical similari-
ties (Jeon et al., 2005; Cai et al., 2011; Hao and
Agichtein, 2012). We, however, do not expect to
find direct lexical similarities between candidate
relations and the article. Instead, we are interested
in a higher level topical similarity to the input ar-
ticle, for which LDA topics were shown to help
(Celikyilmaz et al., 2010).

Finally, several works present unsupervised
methods for ranking proper template instantia-
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tions, mainly as selectional preferences (Light and
Greiff, 2002; Erk, 2007; Ritter et al., 2010). How-
ever, we eventually choose instantiation candi-
dates, and thus preferred supervised methods that
enable filtering and not just ranking. Furthermore,
we target a more subtle discrimination between
entities than prior work, e.g. between quarter-
backs, singers and actors. Machine learning nat-
urally incorporates the many features that capture
different aspects of entity characterization.

7 Conclusions

We introduced the novel task of automatically gen-
erating synthetic comparable questions that are
relevant to a given news article but do not neces-
sarily appear in it. To this end, we proposed an
algorithm that consists of two parts. The offline
part identifies comparable relations in a large col-
lection of questions. Its output is a database of
comparable relations together with a context pro-
file for each relation and models that detect cor-
rect instantiations of this relation, all learned from
the question corpus. In the online part, given a
news article, the algorithm identifies relevant com-
parable relations based on the similarity between
the article content and each relation’s context pro-
file. Then, relevant relations are instantiated only
with pairs of named entities from the article whose
comparison makes sense by applying the instanti-
ation correctness models to candidate pairs.

We assessed the performance of our algorithm
via a Mechanical Turk experiment. A partial ver-
sion of our algorithm, without instantiation filter-
ing, was our strongest baseline. The full algorithm
outperformed this baseline by 45% on question
correctness, but surprisingly also by 46% on ques-
tion relevance. These results show that our super-
vised filtering methods are successful in keeping
only correct pairs, but they also serve as an ad-
ditional filtering for relevant relations, on top of
context matching.

In future work, we want to generate more di-
verse and intriguing questions by selecting rele-
vant named entities for template instantiation that
do not appear in the article. Another direction
would be take a supervised approach, training
classifiers over a labeled dataset for filtering irrel-
evant templates and incorrect instantiations. Fi-
nally, it would be interesting to see how our algo-
rithm performs on other news domains.
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