
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 692–700,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Large tagset labeling using Feed Forward Neural Networks. Case
study on Romanian Language

Tiberiu Boro� Radu Ion Dan Tufi�
Research Institute for

$UWLILFLDO�,QWHOOLJHQFH�³0LKDL�

Dr�J�QHVFX´��
Romanian Academy

Research Institute for
$UWLILFLDO�,QWHOOLJHQFH�³0LKDL�

Dr�J�QHVFX´��
Romanian Academy

Research Institute for
$UWLILFLDO�,QWHOOLJHQFH�³0LKDL�

Dr�J�QHVFX´��
Romanian Academy

tibi@racai.ro radu@racai.ro tufis@racai.ro

Abstract

Standard methods for part-of-speech tagging
suffer from data sparseness when used on
highly inflectional languages (which require
large lexical tagset inventories). For this
reason, a number of alternative methods have
been proposed over the years. One of the
most successful methods used for this task,
FDOOHG�7LHUHG�7DJJLQJ��7XIL�, 1999), exploits
a reduced set of tags derived by removing
several recoverable features from the lexicon
morpho-syntactic descriptions. A second
phase is aimed at recovering the full set of
morpho-syntactic features. In this paper we
present an alternative method to Tiered
Tagging, based on local optimizations with
Neural Networks and we show how, by
properly encoding the input sequence in a
general Neural Network architecture, we
achieve results similar to the Tiered Tagging
methodology, signif icantly faster and without
requiring extensive linguistic knowledge as
implied by the previously mentioned method.

1 Introduction

Part-of-speech tagging is a key process for
various tasks such as `information extraction,
text-to-speech synthesis, word sense
disambiguation and machine translation. It is also
known as lexical ambiguity resolution and it
represents the process of assigning a uniquely
interpretable label to every word inside a
sentence. The labels are called POS tags and the
entire inventory of POS tags is called a tagset.

There are several approaches to part-of-speech
tagging, such as Hidden Markov Models (HMM)
(Brants, 2000), Maximum Entropy Classifiers
(Berger et al., 1996; Ratnaparkhi, 1996),
Bayesian Networks (Samuelsson, 1993), Neural

Networks (Marques and Lopes, 1996) and
Conditional Random Fields (CRF) (Lafferty et
al., 2001). All these methods are primarily
intended for English, which uses a relatively
small tagset inventory, compared to highly
inflectional languages. For the later mentioned
languages, the lexicon tagsets (called morpho-
syntactic descriptions (Calzolari and Monachini,
1995) or MSDs) may be 10-20 times or even
larger than the best known tagsets for English.
For instance Czech MSD tagset requires more
than 3000 labels (Colli ns et al., 1999), Slovene
more than 2000 labels (Erjavec and Krek, 2008),
and Romanian more than 1100 labels (Tufi�,
1999). The standard tagging methods, using such
large tagsets, face serious data sparseness
problems due to lack of statistical evidence,
manifested by the non-robustness of the language
models. When tagging new texts that are not in
the same domain as the training data, the
accuracy decreases significantly. Even tagging
in-domain texts may not be satisfactoril y
accurate.

One of the most successful methods used for
this taVN�� FDOOHG� 7LHUHG� 7DJJLQJ� �7XIL�, 1999),
exploits a reduced set of tags derived by
removing several recoverable features from the
lexicon morpho-syntactic descriptions.
According to the MULTEXT EAST lexical
specifications (Erjavec and Monachini, 1997),
the Romanian tagset consists of a number of 614
MSD tags (by exploiting the case and gender
regular syncretism) for wordforms and 10
punctuation tags (Tufi� et al., 1997), which is
still significantly larger than the tagset of
English. The MULTEX EAST version 4
(Erjavec, 2010) contains specifications for a total
of 16 languages: Bulgarian, Croatian, Czech,
Estonian, English, Hungarian, Romanian,

692

693

In the case of out-of-vocabulary (OOV)
words, both approaches use suffix analysis to
determine the most probable tags that can be
assigned to the current word.

To clarify how these two methods work, if we
want to train the network to label the current
word, using a context window of 1 (previous tag,
current possible tags, and possible tags for the
next word) and if we have, say 100 tags in the
tagset, the input is a real valued vector of 300
sub-unit elements and the output is a vector
which contains 100 elements, also sub-unit real
numbers. As mentioned earlier, each value in the
output vector corresponds to a distinct tag from
tagset and the tag assigned to the current word is
chosen to correspond to the maximum value
inside the output vector.

The previously proposed methods still suffer
from the same issue of data sparseness when
applied to MSD tagging. However, in our
approach, we overcome the problem through a
different encoding of the input data (see section
2.1).

The power of neural networks results mainly
from their abilit y to attain activation functions
over different patterns via their learning
algorithm. By properly encoding the input
sequence, the network chooses which input
features contribute in determining the output
features for MSDs (e.g. patterns composed of
part of speech, gender, case, type etc. contribute
independently in selecting the optimal output
sequence). This way, we removed the need for
explicit MSD to CTAG conversion and MSD
recovery from CTAGs.

2.1 The MSD binary encoding scheme

A MSD language independently encodes a part
of speech (POS) with the associated lexical
attribute values as a string of positional ordered
character codes (Erjavec, 2004). The first
character is an upper case character denoting the
SDUW�RI�VSHHFK��H�J��µ1¶ IRU�QRXQV��µ9¶�IRU�YHUEV��
µ$¶� IRU� DGMHFWLYHV�� HWF��� DQG� WKH� IROORZLQJ�

FKDUDFWHUV� �ORZHU� OHWWHUV� RU� µ-µ� specify the
instantiations of the characteristic lexical
attributes of the POS. For example, the MSD
µ1FIVUQ¶�� specifies a noun (the first character is
µ1¶�� the type of ZKLFK� LV� FRPPRQ� �µF¶�� WKH�
second character), feminine gender �µI¶���VLQJXODU
number �µV¶��� LQ�QRPLQDWLYH�DFFXVDWLYH�FDVH��µU¶��
and indefinite form �µQ¶���If a specific attribute is
not relevant for a language, or for a given
combination of feature-YDOXHV��WKH�FKDUDFWHU�µ-¶�LV�
used in the corresponding position. For a

language which does not morphologically mark
the gender and definiteness features, the earlier
H[HPSOLILHG�06'�ZLOO�EH�HQFRGHG�DV�µ1F-sr-¶�

In order to derive a binary vector for each of
the 614 MSDs of Romanian we proceeded to:

1. List and sort all possible POSes of
Romanian (16 POSes) and form a binary
vector with 16 positions in which position k
is equal 1 only if the respective MSD has
the corresponding POS (i.e. the k-th POS in
the sorted list of POSes);

2. List and sort all possible values of all lexical
attributes �GLVUHJDUGLQJ�WKH�ZLOGFDUG�µ-µ� for
all POSes (94 values) and form another
binary vector with 94 positions such that the
k-th position of this vector is 1 if the
respective MSD has an attribute with the
corresponding value;

3. Concatenate the vectors from steps 1 and 2
and obtain the binary codification of a MSD
as a 110-position binary vector.

2.2 The training and tagging procedure

The tagger automatically assigns four dummy
tokens (two at the beginning and two at the end)
to the target utterance and the neural network is
trained to automatically assign a MSD given the
context (two previously assigned tags and the
possible tags for the current and following two
words) of the current word (see below for
details).

In our framework a training example consists
of the features extracted for a single word inside
an utterance as input and it¶s MSD within that
utterance as output. The features are extracted
from a window of 5 words centered on the
current word. A single word is characterized by a
vector that encodes either its assigned MSD or its
possible MSDs. To encode the possible MSDs
we use equation 2, where each possible attribute
a, has a single corresponding position inside the
encoded vector.

2:=�S; L %:Sá=;

%:S;
 (2)

Note that we changed the probability

estimates to account for attributes not tags.

To be precise, for every word wk, we obtain its

input features by concatenating a number of 5
vectors. The first two vectors encode the MSDs
assigned to the previous two words (wk-1 and wk-

694

2).The next three vectors are used to encode the
possible MSDs for the current word (wk) and the
following two words (wk+1 and wk+2).

During training, we also compute a li st of
suffixes with associated MSDs, which is used at
run-time to build the possible MSDs vector for
unknown words. When such words are found
within the test data, we approximate their
possible MSDs vector using a variation of the
method proposed by Brants (2000).

When the tagger is applied to a new utterance,
the system iteratively calculates the output MSD
for each individual word. Once a label has been
assigned to a word, the ZRUG¶V�DVVRFLDWHG�YHFWRU�
is edited so it will have the value of 1 for each
attribute present in its newly assigned MSD.

As a consequence of encoding each individual
attribute separately for MSDs, the tagger can
assign new tags (that were never associated with
the current word in the training corpus).
Although this is a nice behavior for dealing with
unknown words it is often the case that it assigns
attribute values that are not valid for the
wordform. To overcome these types of errors we
use an additional list of words with their allowed
MSDs. For an OOV word, the li st is computed as
a union from all MSDs that appeared with the
suffixes that apply to that word.

When the tagger has to assign a MSD to a
given word, it selects one from the possible
wordform¶V� MSDs in its wordform/MSDs
associated list using a simple distance function:

���
ØÐÉ

Í �KÞ F AÞ�
á

Þ@4

 (3)

2 -
The list of all possible MSDs
for the given word

J -
The length of the MSD
encoding (110 bits)

K -
The output of the Neural
Network for the current word

A - Binary encoding for a MSD in P

3 Network hyperparameters

In our experiments, we used a fully connected,
feed forward neural network with 3 layers (1
input layer, 1 hidden layer and 1 output layer)

and a sigmoid activation function (equation 3).
While other network architectures such as
recurrent neural networks may prove to be more
suitable for this task, they are extremely hard to
train, thus, we traded the advantages of such
architectures for the robustness and simplicity of
the feed-forward networks.

B:P; L s

sE A?ç (3)

B:P; - Neuron output

P -
The weighted sum of all the
neuron outputs from the
previous layer

Based on the size of the vectors used for MSD

encoding, the output layer has 110 neurons and
the input layer is composed of 550 (5 x 110)
neurons.

In order to fully characterize our system, we
took into account the following parameters:
accuracy, runtime speed, training speed, hidden
layer configuration and the number of optimal
training iterations. These parameters have
complex dependencies and relations among each
other. For example, the accuracy, the optimal
number of training iterations, the training and the
runtime speed are all highly dependent on the
hidden layer configuration. Small hidden layer
give high training and runtime speeds, but often
under-fit the data. If the hidden layer is too large,
it can easily over-fit the data and also has a
negative impact on the training and runtime
speed. The number of optimal training iterations
changes with the size of the hidden layer (larger
layers usually require more training iterations).

To obtain the trade-offs between the above
mentioned parameters we devised a series of
experiments, in all of which we used WKH�³����´�
MSD annotated corpus, which is composed of
118,025 words. We randomly kept out
approximately 1/10 (11,960 words) of the
training corpus for building a cross-validation
set. The baseline accuracy on the cross-validation
set (i.e. returning the most probable tag) is
93.29%. We also used an additional inflectional
wordform/MSD lexicon composed of
approximately 1 milli on hand-validated entries.

695

The first experiment was designed to
determine the trade-off between the run-time
speed and the size of the hidden layer. We made
a series of experiments disregarding the tagging
accuracy.

Hidden size Time (ms) Words/sec

50 1530 7816
70 1888 6334
90 2345 5100
110 2781 4300
130 3518 3399
150 5052 2367
170 5466 2188
190 6734 1776
210 7096 1685
230 8332 1435
250 9576 1248
270 10350 1155
290 11080 1079
310 12364 967

Table 1 - Execution time vs. number of neurons on

the hidden layer

Because, for a given number of neurons in the

hidden layer, the tagging speed is independent on
the tagging accuracy, we partially trained (using
one iteration and only 1000 training sentences)
several network configurations. The first network
only had 50 neurons in the hidden layer and for
the next networks, we incremented the hidden
layer size by 20 neurons until we reached 310
neurons. The total number of tested networks is
14. After this, we measured the time it took to
tag the 1984 test corpus (11,960 words) for each
individual network, as an average of 3 tagging
runs in order to reduce the impact of the
operating system load on the tagger (Table 1
shows the figures).

Determining the optimal size of the hidden
layer is a very delicate subject and there are no
perfect solutions, most of them being based on
trial and error: small-sized hidden layers lead to
under-fitting, while large hidden layers usually
cause over-fitting. Also, because of the trade-off
between runtime speed and the size of hidden
layers, and if runtime speed is an important
factor in a particular NLP application, then
hidden layers with smaller number of neurons are
preferable, as they surely do not over-fit the data
and offer a noticeable speed boost.

hidden
layer

Train set
accuracy

Cross
validation
accuracy

50 99.18 97.95
70 99.20 98.02
90 99.27 98.03
110 99.29 98.05
130 99.35 98.12
150 99.35 98.09
170 99.41 98.07
190 99.40 98.10
210 99.40 98.21

Table 2 - Train and test accuracy rates for dif ferent

hidden layer configurations

As shown in Table 1, the runtime speed of our
system shows a constant decay when we increase
the hidden layer size. The same decay can be
seen in the training speed, only this time by an
order of magnitude larger. Because training a
single network takes a lot of time, this
experiment was designed to estimate the size of
the hidden layer which offers good performance
in tagging. To do this, we individually trained a
number of networks in 30 iterations, using
various hidden layer configurations (50, 70, 90,

0.97

0.975

0.98

0.985

0.99

0.995

1
1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Test set

Train set

Number of iterrations

Accuracy

Figure 2 - 130 hidden layer network test and train set tagging accuracy as a function of the number of iterations

696

110, 130, 150, 170, 190, and 210 neurons) and 5
initial random initializations of the weights. For
each configuration, we stored the accuracy of
reproducing the learning data (the tagging of the
training corpus) and the accuracy on the unseen
data (test sets). The results are shown in Table 2.
Although a hidden layer of 210 neurons did not
seem to over-fit the data, we stopped the
experiment, as the training time got significantly
longer.

The next experiment was designed to see how
the number of training iterations influences the
tagging performance of networks with different
hidden layer configurations. Intuitively, the
training process must be stopped when the
network begins to over-fit the data (i.e. the train
set accuracy increases, but the test set accuracy
drops). Our experiments indicate that this is not
always the case, as in some situations the
continuation of the training process leads to
better results on the cross-validation data (as
shown in Figure 2). So, the problem comes to
determining which is the most stable
configuration of the neural network (i.e. which
hidden unit size will be most li kely to return
good results on the test set) and establish the
number of iterations it takes for the system to be
trained. To do this, we ran the training procedure
for 100 iterations and for each training iteration,
we computed the accuracy rate of every
individual network on the cross-validation set
(see Table 3 for the averaged values). As shown,
the network configuration using 130 neurons on
the hidden layer is most likely to produce better
results on the cross-validation set regardless of
the number of iterations.

Although, some other configurations provided
better figures for the maximum accuracy, their
average accuracy is lower than that of the 130
hidden unit network. Other good candidates are
the 90 and 110 hidden unit networks, but not the
larger valued ones, which display a lower
average accuracy and also significantly slower
tagging speeds.

The most suitable network configuration for a
given task depends on the language, MSD
encoding size, speed and accuracy requirements.
In our own daily applications we use the 130
hidden unit network. After observing the
behavior of the various networks on the cross-
validation set we determined that a good choice
is to stop the training procedure after 40
iterations.

Hidden
units

Avg. acc. Max. acc. St. dev.

50 97.94 98.31 0.127002
70 98.03 98.31 0.12197
50 97.94 98.37 0.139762
70 98.03 98.43 0.124996
90 98.07 98.39 0.134487
110 98.08 98.45 0.127109
130 98.14 98.44 0.136072
150 98.01 98.36 0.143324
170 97.94 98.36 0.122834

Table 3 - Average and maximum accuracy for various

hidden layer configuration calculated over 100
training iterations on the test set

To obtain the accuracy of the system, in our

last experiment we used the 130 hidden unit
network and we performed the training/testing
procedure on the 1984 corpus, using 10-fold
validation and 30 random initiali zations. The
final accuracy was computed as an average
between all the accuracy figures measured at the
end of the training process (after 40 iterations).
The first 1/10 of the 1984 corpus on which we
tuned the hyperparameters was not included in
the test data, but was used for training. The mean
accuracy of the system (98.41%) was measured
as an average of 270 values.

4 Comparison to other methods

,Q� KLV� ZRUN�� &HDX�u (2006) presents a
different approach to MSD tagging using the
Maximum Entropy framework. He presents his
results on the same corpus we used for training
and testing (the 1984 corpus) and he compares
his method (98.45% accuracy) with the Tiered
Tagging methodology (97.50%) (Tufi� and
Dragomirescu, 2004).

Our Neural Network approach obtained
similar (slightly lower) results (98.41%),
although it is arguable that our split/t rain
procedure is not identical to the one used in his
work (no details were given as how the 1/10 of
the training corpus was selected). Also, our POS
tagger detected cases where the annotation in the
Gold Standard was erroneous. One such example
LV� LQ� ³lame de raś � �(QJOLVK� ³UD]RU� EODGHV´��
ZKHUH�³ODPH´��English ³EODGHV´��LV�D�QRXQ��³GH´�
�³for´��LV�D�SUHSRVLWLRQ�DQG�³UDV´��³VKDYLQJ´) is a
supine verb (with a past participle form) which
was incorrectly annotated as a noun.

697

5 Network pattern analysis

Using feed-forward neural networks gives the
abilit y to outline what input features contribute to
the selection of various MSD attribute values in
the output layer which might help in reducing the
tagset and thus, redesigning the network
topology with beneficial effects both on the
speed and accuracy.

To determine what input features contribute to
the selection of certain MSD attribute values, one
can analyze the weights inside the neural
network and extract the input Æ output links that
are formed during training. We used the network
with 130 units on the hidden layer, which was
previously trained for 100 iterations. Based on
the input encoding, we divided the features into 5
groups (one group for each MSD inside the local
context ± two previous MSDs, current and
following two possible MSDs). For a target
attribute value (noun, gender feminine, gender
masculine, etc.) and for each input group, we
selected the top 3 input values which support the
decision of assigning the target value to the
attribute (features that increase the output value)
and the top 3 features which discourage this
decision (features that decrease the output value).
For clarity, we will use the following notations
for the groups:

x G-2: group one ± the assigned MSD for
the word at position i-2

x G-1: group two ± the assigned MSD for
the word at position i-1

x G0: group three ± the possible MSDs for
the word at position i

x G1: group four± the possible MSDs for
the word at position i+1

x G2: group five ± the possible MSDs for
the word at position i+2

where i corresponds to the position of the word
which is currently being tagged. Also, we
classify the attribute values into two categories
(C): (P) want to see (support the decision) and
(N) GRQ¶W�ZDQW�WR�VHH (discourage the decision).

Table 4 shows partial (G-1 G0 G1) examples of

two target attribute values (cat=Noun and gender
=Feminine) and their corresponding input
features used for discrimination.

Target
value

Group C Attribute values

Noun G-1 P
main (of a verb), article,
masculine (gender of a

noun/adjective

N
particle, conjunctive particle,

auxiliary (of a verb),
demonstrative (of a pronoun)

G0

P noun, common/proper (of a
noun)

N
adverb, pronoun, numeral,
interrogative/relative (of a

pronoun)

G1

P
genitive/dative (of a

noun/adjective), particle,
punctuation

N

conjunctive particle, strong (of
a pronoun), non-definite (of a
noun/adjective), exclamation

mark

Fem.

G-1
P

main (of a verb), preposition,
feminine (of a

noun/adjective)

N
auxiliary (of a verb), particle,
demonstrative (of a pronoun)

G0

P

feminine (of a
noun/adjective),

nominative/accusative (of a
noun/adjective), past (of a

verb)

N

masculine (of a
noun/adjective), auxiliary (of a
verb), interrogative/relative (of

a pronoun), adverb

G1

P

dative/genitive (of a
noun/adjective), indicative (of

a verb), feminine (of a
noun/adjective)

N
conjunctive particle, future

particle, nominative/accusative
(of a noun/adjective)

Table 4 ± P/N features for various attribute

values.

For instance, when deciding on whether to give a
noun (N) label to current position (G0), we can
see that the neural network has learned some
interesting dependencies: at position G-1 we find
an article (which frequently determines a noun)
and at the current position it is very important for
the word being tagged to actually be a common
or proper noun (either by lexicon lookup or by
suffix guessing) and not be an adverb, pronoun
or numeral (POSes that cannot be found in the
typical ambiguity class of a noun). At the next
position of the target (G1) we also find a noun in
genitive or dative, corresponding to a frequent
construction in Romanian, H�J�� ³PD�ina
E�LDWXOXL´� EHLQJ� D� VHTXHQFH� RI� WZR nouns, the
second at genitive/dative.

If the neural network outputs the feminine
gender to its current MSD, one may see that it

698

has actually learned the agreement rules (at least
locally): the feminine gender is present both
before (G-1) the target word as well as after it
(G1).

6 Conclusions and future work

We presented a new approach for large tagset
part-of-speech tagging using neural networks. An
advantage of using this methodology is that it
does not require extensive knowledge about the
grammar of the target language. When building a
new MSD tagger for a new language one is only
required to provide the training data and create
an appropriate MSD encoding system and as
shown, the MSD encoding algorithm is fairly
simple and our proposed version works for any
other MSD compatible encoding, regardless of
the language.

Observing which features do not participate in
any decision helps design custom topologies for
the Neural Network, and provides enhancements
in both speed and accuracy. The configurable
nature of our system allows users to provide their
own MSD encodings, which permits them to
mask certain features that are not useful for a
given NLP application.

If one wants to process a large amount of text
and is interested only in assigning grammatical
categories to words, he can use a MSD encoding
in which he strips off all unnecessary features.
Thus, the number of necessary neurons would
decrease, which assures faster training and
tagging. This is of course possible in any other
tagging approaches, but our framework supports
this by masking attributes inside the MSD
encoding configuration file, without having to
change anything else in the training corpus.
During testing the system only verifies if the
MSD encodings are identical and the displayed
accuracy directly reflects the performance of the
system on the simplified tagging schema.

We also proposed a methodology for selecting
a network configurations (i.e. number of hidden
units), which best suites the application
requirements. In our daily applications we use a
network with 130 hidden units, as it provides an
optimal speed/accuracy trade-off (approx. 3400
words per second with very good average
accuracy).

The tagger is implemented as part of a larger
application that is primarily intended for text-to-
speech (TTS) synthesis. The system is free for
non-commercial use and we provide both web
and desktop user-interfaces. It is part of the

METASHARE platform and available online2.
Our primary goal was to keep the system
language independent, thus all our design choices
are based on the necessity to avoid using
language specific knowledge, when possible. The
application supports various NLP related tasks
such as lexical stress prediction, syllabification,
letter-to-sound conversion, lemmatization,
diacritic restoration, prosody prediction from text
and the speech synthesizer uses unit-selection.

From the tagging perspective, our future plans
include testing the system on other highly
inflectional languages such as Czech and
Slovene and investigating different methods for
automatically determining a more suitable
custom network topology, such as genetic
algorithms.

Acknowledgments

The work reported here was funded by the
project METANET4U by the European
Commission under the Grant Agreement No
270893

2 http://ws.racai.ro:9191

699

References

Berger, A. L., Pietra, V. J. D. and Pietra, S. A. D.

1996. A maximum entropy approach to natural

language processing. Computational linguistics,

22(1), 39-71.

Brants, T. 2000. TnT: a statistical part-of-speech

tagger. In Proceedings of the sixth conference on

applied natural language processing (pp. 224-231).

Association for Computational Linguistics.

Calzolari, N. and Monachini M. (eds.). 1995.
Common Specifications and Notation for Lexicon
Encoding and Preliminary Proposal for the
Tagsets. MULTEXT Report, March.

&HDX�u, A. 2006. Maximum entropy tiered tagging. In

Proceedings of the 11th ESSLLI Student Session

(pp. 173-179).

CollinV��0���5DPVKDZ��/���+DMLþ��-��DQG�7LOOPDQQ��&��

1999. A statistical parser for Czech. In Proceedings

of the 37th annual meeting of the Association for

Computational Linguistics on Computational

Linguistics (pp. 505-512). Association for

Computational Linguistics.

Erjavec, T. and Monachini, M. (Eds.). 1997.

Specifications and Notation for Lexicon Encoding.

Deliverable D1.1 F. Multext-East Project COP-

106.

Erjavec, T. 2004. MULTEXT-East version 3:

Multilingual morphosyntactic specifications,

lexicons and corpora. In Fourth International

Conference on Language Resources and

Evaluation, LREC (Vol. 4, pp. 1535-1538).

Erjavec, T. and Krek, S. 2008. The JOS

morphosyntactically tagged corpus of Slovene. In

Proceedings of the Sixth International Conference

RQ�/DQJXDJH�5HVRXUFHV�DQG�(YDOXDWLRQ��/5(&¶���

Erjavec, T. 2010. MULTEXT-East Version 4:

Multilingual Morphosyntactic Specifications,

Lexicons and Corpora. In Proceedings of the

Seventh International Conference on Language

Resources and Evaluation (LREC'10), Valletta,

Malta. European Language Resources Association

(ELRA) ISBN 2-9517408-6-7.

Lafferty, J., McCallum, A. and Pereira, F. C. 2001.

Conditional random fields: Probabilistic models

for segmenting and labeling sequence data.

Marques, N. C. and Lopes, G. P. 1996. A neural

network approach to part-of-speech tagging. In

Proceedings of the 2nd Meeting for Computational

Processing of Spoken and Written Portuguese (pp.

21-22).

Ratnaparkhi, A. 1996. A maximum entropy model for

part-of-speech tagging. In Proceedings of the

conference on empirical methods in natural

language processing (Vol. 1, pp. 133-142).

Samuelsson, C. 1993. Morphological tagging based

entirely on Bayesian inference. In 9th Nordic

Conference on Computational Linguistics.

Schmid, H. 1994. Part-of-speech tagging with neural

networks. In Proceedings of the 15th conference on

Computational linguistics-Volume 1 (pp. 172-176).

Association for Computational Linguistics.

Tufi�, D., Barbu A.M.,

3�WUDúFX� 9���Rotariu G. and

Popescu C. 1997. Corpora and Corpus-Based

Morpho-Lexical Processing. In Recent Advances

in Romanian Language Technology, (pp. 35-56).

Romanian Academy Publishing House, ISBN 973-

27-0626-0.

7XIL�, D. 1999. Tiered tagging and combined

language models classifiers. In Text, Speech and

Dialogue (pp. 843-843). Springer

Berlin/Heidelberg.

Tufi�, D., and Dragomirescu, L. 2004. Tiered tagging

revisited. In Proceedings of the 4th LREC

Conference (pp. 39-42).

700

