
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 692–700,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Large tagset labeling using Feed Forward Neural Networks. Case 
study on Romanian Language 

 
 

Tiberiu Boro� Radu Ion Dan Tufi� 
Research Institute for 

$UWLILFLDO�,QWHOOLJHQFH�³0LKDL�

Dr�J�QHVFX´�� 
Romanian Academy 

Research Institute for 
$UWLILFLDO�,QWHOOLJHQFH�³0LKDL�

Dr�J�QHVFX´�� 
Romanian Academy 

Research Institute for 
$UWLILFLDO�,QWHOOLJHQFH�³0LKDL�

Dr�J�QHVFX´�� 
Romanian Academy 

tibi@racai.ro radu@racai.ro tufis@racai.ro 

 
 
 

Abstract 

Standard methods for part-of-speech tagging 
suffer from data sparseness when used on 
highly inflectional languages (which require 
large lexical tagset inventories). For this 
reason, a number of alternative methods have 
been proposed over the years. One of the 
most successful methods used for this task, 
FDOOHG�7LHUHG�7DJJLQJ��7XIL�, 1999), exploits 
a reduced set of tags derived by removing 
several recoverable features from the lexicon 
morpho-syntactic descriptions. A second 
phase is aimed at recovering the full set of 
morpho-syntactic features. In this paper we 
present an alternative method to Tiered 
Tagging, based on local optimizations with 
Neural Networks and we show how, by 
properly encoding the input sequence in a 
general Neural Network architecture, we 
achieve results similar to the Tiered Tagging 
methodology, signif icantly faster and without 
requiring extensive linguistic knowledge as 
implied by the previously mentioned method. 

1 Introduction 

Part-of-speech tagging is a key process for 
various tasks such as `information extraction, 
text-to-speech synthesis, word sense 
disambiguation and machine translation. It is also 
known as lexical ambiguity resolution and it 
represents the process of assigning a uniquely 
interpretable label to every word inside a 
sentence. The labels are called POS tags and the 
entire inventory of POS tags is called a tagset.  

There are several approaches to part-of-speech 
tagging, such as Hidden Markov Models (HMM) 
(Brants, 2000), Maximum Entropy Classifiers 
(Berger et al., 1996; Ratnaparkhi, 1996), 
Bayesian Networks (Samuelsson, 1993), Neural 

Networks (Marques and Lopes, 1996) and 
Conditional Random Fields (CRF) (Lafferty et 
al., 2001). All  these methods are primarily 
intended for English, which uses a relatively 
small tagset inventory, compared to highly 
inflectional languages. For the later mentioned 
languages, the lexicon tagsets (called morpho-
syntactic descriptions (Calzolari and Monachini, 
1995) or MSDs) may be 10-20 times or even 
larger than the best known tagsets for English. 
For instance Czech MSD tagset requires more 
than 3000 labels (Colli ns et al., 1999), Slovene 
more than 2000 labels (Erjavec and Krek, 2008), 
and Romanian more than 1100 labels (Tufi�, 
1999). The standard tagging methods, using such 
large tagsets, face serious data sparseness 
problems due to lack of statistical evidence, 
manifested by the non-robustness of the language 
models. When tagging new texts that are not in 
the same domain as the training data, the 
accuracy decreases significantly. Even tagging 
in-domain texts may not be satisfactoril y 
accurate. 

One of the most successful methods used for 
this taVN�� FDOOHG� 7LHUHG� 7DJJLQJ� �7XIL�, 1999), 
exploits a reduced set of tags derived by 
removing several recoverable features from the 
lexicon morpho-syntactic descriptions. 
According to the MULTEXT EAST lexical 
specifications (Erjavec and Monachini, 1997), 
the Romanian tagset consists of a number of 614 
MSD tags (by exploiting the case and gender 
regular syncretism) for wordforms and 10 
punctuation tags (Tufi� et al., 1997), which is 
still  significantly larger than the tagset of 
English. The MULTEX EAST version 4 
(Erjavec, 2010) contains specifications for a total 
of 16 languages: Bulgarian, Croatian, Czech, 
Estonian, English, Hungarian, Romanian, 
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In the case of out-of-vocabulary (OOV) 
words, both approaches use suffix analysis to 
determine the most probable tags that can be 
assigned to the current word.  

To clarify how these two methods work, if we 
want to train the network to label the current 
word, using a context window of 1 (previous tag, 
current possible tags, and possible tags for the 
next word) and if we have, say 100 tags in the 
tagset, the input is a real valued vector of 300 
sub-unit elements and the output is a vector 
which contains 100 elements, also sub-unit real 
numbers. As mentioned earlier, each value in the 
output vector corresponds to a distinct tag from 
tagset and the tag assigned to the current word is 
chosen to correspond to the maximum value 
inside the output vector. 

The previously proposed methods still  suffer 
from the same issue of data sparseness when 
applied to MSD tagging. However, in our 
approach, we overcome the problem through a 
different encoding of the input data (see section 
2.1).  

The power of neural networks results mainly 
from their abilit y to attain activation functions 
over different patterns via their learning 
algorithm. By properly encoding the input 
sequence, the network chooses which input 
features contribute in determining the output 
features for MSDs (e.g. patterns composed of 
part of speech, gender, case, type etc. contribute 
independently in selecting the optimal output 
sequence). This way, we removed the need for 
explicit MSD to CTAG conversion and MSD 
recovery from CTAGs.  

2.1 The MSD binary encoding scheme 

A MSD language independently encodes a part 
of speech (POS) with the associated lexical 
attribute values as a string of positional ordered 
character codes (Erjavec, 2004). The first 
character is an upper case character denoting the 
SDUW�RI�VSHHFK��H�J��µ1¶ IRU�QRXQV��µ9¶�IRU�YHUEV��
µ$¶� IRU� DGMHFWLYHV�� HWF��� DQG� WKH� IROORZLQJ�

FKDUDFWHUV� �ORZHU� OHWWHUV� RU� µ-µ� specify the 
instantiations of the characteristic lexical 
attributes of the POS. For example, the MSD 
µ1FIVUQ¶�� specifies a noun (the first character is 
µ1¶�� the type of ZKLFK� LV� FRPPRQ� �µF¶�� WKH�
second character), feminine gender �µI¶���VLQJXODU 
number �µV¶��� LQ�QRPLQDWLYH�DFFXVDWLYH�FDVH��µU¶��
and indefinite form �µQ¶���If  a specific attribute is 
not relevant for a language, or for a given 
combination of feature-YDOXHV��WKH�FKDUDFWHU�µ-¶�LV�
used in the corresponding position. For a 

language which does not morphologically mark 
the gender and definiteness features, the earlier 
H[HPSOLILHG�06'�ZLOO�EH�HQFRGHG�DV�µ1F-sr-¶� 
 

In order to derive a binary vector for each of 
the 614 MSDs of Romanian we proceeded to: 

1. List and sort all  possible POSes of 
Romanian (16 POSes) and form a binary 
vector with 16 positions in which position k 
is equal 1 only if the respective MSD has 
the corresponding POS (i.e. the k-th POS in 
the sorted list of POSes); 

2. List and sort all possible values of all  lexical 
attributes �GLVUHJDUGLQJ�WKH�ZLOGFDUG�µ-µ� for 
all POSes (94 values) and form another 
binary vector with 94 positions such that the 
k-th position of this vector is 1 if the 
respective MSD has an attribute with the 
corresponding value; 

3. Concatenate the vectors from steps 1 and 2 
and obtain the binary codification of a MSD 
as a 110-position binary vector. 

2.2 The training and tagging procedure 

The tagger automatically assigns four dummy 
tokens (two at the beginning and two at the end) 
to the target utterance and the neural network is 
trained to automatically assign a MSD given the 
context (two previously assigned tags and the 
possible tags for the current and following two 
words) of the current word (see below for 
details).  

In our framework a training example consists 
of the features extracted for a single word inside 
an utterance as input and it¶s MSD within that 
utterance as output. The features are extracted 
from a window of 5 words centered on the 
current word. A single word is characterized by a 
vector that encodes either its assigned MSD or its 
possible MSDs. To encode the possible MSDs 
we use equation 2, where each possible attribute 
a, has a single corresponding position inside the 
encoded vector.  

 

2:=�S; L %:Sá=;

%:S;
 (2) 

 
Note that we changed the probability 

estimates to account for attributes not tags.  
 
To be precise, for every word wk, we obtain its 

input features by concatenating a number of 5 
vectors. The first two vectors encode the MSDs 
assigned to the previous two words (wk-1 and wk-
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2).The next three vectors are used to encode the 
possible MSDs for the current word (wk) and the 
following two words (wk+1 and wk+2).  

During training, we also compute a li st of 
suffixes with associated MSDs, which is used at 
run-time to build the possible MSDs vector for 
unknown words. When such words are found 
within the test data, we approximate their 
possible MSDs vector using a variation of the 
method proposed by Brants (2000).  

When the tagger is applied to a new utterance, 
the system iteratively calculates the output MSD 
for each individual word. Once a label has been 
assigned to a word, the ZRUG¶V�DVVRFLDWHG�YHFWRU�
is edited so it will  have the value of 1 for each 
attribute present in its newly assigned MSD.  

As a consequence of encoding each individual 
attribute separately for MSDs, the tagger can 
assign new tags (that were never associated with 
the current word in the training corpus). 
Although this is a nice behavior for dealing with 
unknown words it is often the case that it assigns 
attribute values that are not valid for the 
wordform. To overcome these types of errors we 
use an additional list of words with their allowed 
MSDs. For an OOV word, the li st is computed as 
a union from all MSDs that appeared with the 
suffixes that apply to that word. 

When the tagger has to assign a MSD to a 
given word, it selects one from the possible 
wordform¶V� MSDs in its wordform/MSDs 
associated list using a simple distance function: 

 

���
ØÐÉ

Í �KÞ F AÞ�
á

Þ@4

 (3) 

2 - 
The list of all possible MSDs 
for the given word 

J - 
The length of the MSD 
encoding (110 bits) 

K - 
The output of the Neural 
Network for the current word 

A - Binary encoding for a MSD in P 

3 Network hyperparameters 

In our experiments, we used a fully connected, 
feed forward neural network with 3 layers (1 
input layer, 1 hidden layer and 1 output layer) 

and a sigmoid activation function (equation 3). 
While other network architectures such as 
recurrent neural networks may prove to be more 
suitable for this task, they are extremely hard to 
train, thus, we traded the advantages of such 
architectures for the robustness and simplicity of 
the feed-forward networks. 
 

B:P; L s

sE A?ç (3) 

B:P; - Neuron output 

P - 
The weighted sum of all the 
neuron outputs from the 
previous layer 

 
Based on the size of the vectors used for MSD 

encoding, the output layer has 110 neurons and 
the input layer is composed of 550 (5 x 110) 
neurons. 

In order to fully characterize our system, we 
took into account the following parameters: 
accuracy, runtime speed, training speed, hidden 
layer configuration and the number of optimal 
training iterations. These parameters have 
complex dependencies and relations among each 
other. For example, the accuracy, the optimal 
number of training iterations, the training and the 
runtime speed are all  highly dependent on the 
hidden layer configuration. Small hidden layer 
give high training and runtime speeds, but often 
under-fit the data. If  the hidden layer is too large, 
it can easily over-fit the data and also has a 
negative impact on the training and runtime 
speed. The number of optimal training iterations 
changes with the size of the hidden layer (larger 
layers usually require more training iterations). 

To obtain the trade-offs between the above 
mentioned parameters we devised a series of 
experiments, in all  of which we used WKH�³����´�
MSD annotated corpus, which is composed of 
118,025 words. We randomly kept out 
approximately 1/10 (11,960 words) of the 
training corpus for building a cross-validation 
set. The baseline accuracy on the cross-validation 
set (i.e. returning the most probable tag) is 
93.29%. We also used an additional inflectional 
wordform/MSD lexicon composed of 
approximately 1 milli on hand-validated entries.  
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The first experiment was designed to 
determine the trade-off between the run-time 
speed and the size of the hidden layer. We made 
a series of experiments disregarding the tagging 
accuracy. 

 
Hidden size Time (ms) Words/sec 

50 1530 7816 
70 1888 6334 
90 2345 5100 
110 2781 4300 
130 3518 3399 
150 5052 2367 
170 5466 2188 
190 6734 1776 
210 7096 1685 
230 8332 1435 
250 9576 1248 
270 10350 1155 
290 11080 1079 
310 12364 967 

 
Table 1 - Execution time vs. number of neurons on 

the hidden layer 
 
Because, for a given number of neurons in the 

hidden layer, the tagging speed is independent on 
the tagging accuracy, we partially trained (using 
one iteration and only 1000 training sentences) 
several network configurations. The first network 
only had 50 neurons in the hidden layer and for 
the next networks, we incremented the hidden 
layer size by 20 neurons until  we reached 310 
neurons. The total number of tested networks is 
14. After this, we measured the time it took to 
tag the 1984 test corpus (11,960 words) for each 
individual network, as an average of 3 tagging 
runs in order to reduce the impact of the 
operating system load on the tagger (Table 1 
shows the figures). 

Determining the optimal size of the hidden 
layer is a very delicate subject and there are no 
perfect solutions, most of them being based on 
trial and error: small-sized hidden layers lead to 
under-fitting, while large hidden layers usually 
cause over-fitting. Also, because of the trade-off 
between runtime speed and the size of hidden 
layers, and if runtime speed is an important 
factor in a particular NLP application, then 
hidden layers with smaller number of neurons are 
preferable, as they surely do not over-fit the data 
and offer a noticeable speed boost. 
 

hidden 
layer 

Train set 
accuracy 

Cross 
validation 
accuracy 

50 99.18 97.95 
70 99.20 98.02 
90 99.27 98.03 
110 99.29 98.05 
130 99.35 98.12 
150 99.35 98.09 
170 99.41 98.07 
190 99.40 98.10 
210 99.40 98.21 

 
Table 2 - Train and test accuracy rates for dif ferent 

hidden layer configurations 
 

As shown in Table 1, the runtime speed of our 
system shows a constant decay when we increase 
the hidden layer size. The same decay can be 
seen in the training speed, only this time by an 
order of magnitude larger. Because training a 
single network takes a lot of time, this 
experiment was designed to estimate the size of 
the hidden layer which offers good performance 
in tagging. To do this, we individually trained a 
number of networks in 30 iterations, using 
various hidden layer configurations (50, 70, 90, 
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Figure 2 - 130 hidden layer network test and train set tagging accuracy as a function of the number of iterations 
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110, 130, 150, 170, 190, and 210 neurons) and 5 
initial random initializations of the weights. For 
each configuration, we stored the accuracy of 
reproducing the learning data (the tagging of the 
training corpus) and the accuracy on the unseen 
data (test sets). The results are shown in Table 2. 
Although a hidden layer of 210 neurons did not 
seem to over-fit the data, we stopped the 
experiment, as the training time got significantly 
longer.  

The next experiment was designed to see how 
the number of training iterations influences the 
tagging performance of networks with different 
hidden layer configurations. Intuitively, the 
training process must be stopped when the 
network begins to over-fit the data (i.e. the train 
set accuracy increases, but the test set accuracy 
drops). Our experiments indicate that this is not 
always the case, as in some situations the 
continuation of the training process leads to 
better results on the cross-validation data (as 
shown in Figure 2). So, the problem comes to 
determining which is the most stable 
configuration of the neural network (i.e. which 
hidden unit size will  be most li kely to return 
good results on the test set) and establish the 
number of iterations it takes for the system to be 
trained. To do this, we ran the training procedure 
for 100 iterations and for each training iteration, 
we computed the accuracy rate of every 
individual network on the cross-validation set 
(see Table 3 for the averaged values). As shown, 
the network configuration using 130 neurons on 
the hidden layer is most likely to produce better 
results on the cross-validation set regardless of 
the number of iterations.  

Although, some other configurations provided 
better figures for the maximum accuracy, their 
average accuracy is lower than that of the 130 
hidden unit network. Other good candidates are 
the 90 and 110 hidden unit networks, but not the 
larger valued ones, which display a lower 
average accuracy and also significantly slower 
tagging speeds.  

The most suitable network configuration for a 
given task depends on the language, MSD 
encoding size, speed and accuracy requirements. 
In our own daily applications we use the 130 
hidden unit network. After observing the 
behavior of the various networks on the cross-
validation set we determined that a good choice 
is to stop the training procedure after 40 
iterations. 

 

Hidden 
units 

Avg. acc. Max. acc. St. dev. 

50 97.94 98.31 0.127002 
70 98.03 98.31 0.12197 
50 97.94 98.37 0.139762 
70 98.03 98.43 0.124996 
90 98.07 98.39 0.134487 
110 98.08 98.45 0.127109 
130 98.14 98.44 0.136072 
150 98.01 98.36 0.143324 
170 97.94 98.36 0.122834 

 
Table 3 - Average and maximum accuracy for various 

hidden layer configuration calculated over 100 
training iterations on the test set 

 
To obtain the accuracy of the system, in our 

last experiment we used the 130 hidden unit 
network and we performed the training/testing 
procedure on the 1984 corpus, using 10-fold 
validation and 30 random initiali zations. The 
final accuracy was computed as an average 
between all  the accuracy figures measured at the 
end of the training process (after 40 iterations). 
The first 1/10 of the 1984 corpus on which we 
tuned the hyperparameters was not included in 
the test data, but was used for training. The mean 
accuracy of the system (98.41%) was measured 
as an average of 270 values. 

4 Comparison to other methods 

,Q� KLV� ZRUN�� &HDX�u (2006) presents a 
different approach to MSD tagging using the 
Maximum Entropy framework. He presents his 
results on the same corpus we used for training 
and testing (the 1984 corpus) and he compares 
his method (98.45% accuracy) with the Tiered 
Tagging methodology (97.50%) (Tufi� and 
Dragomirescu, 2004). 

Our Neural Network approach obtained 
similar (slightly lower) results (98.41%), 
although it is arguable that our split/t rain 
procedure is not identical to the one used in his 
work (no details were given as how the 1/10 of 
the training corpus was selected). Also, our POS 
tagger detected cases where the annotation in the 
Gold Standard was erroneous. One such example 
LV� LQ� ³lame de raś � �(QJOLVK� ³UD]RU� EODGHV´��
ZKHUH�³ODPH´��English ³EODGHV´��LV�D�QRXQ��³GH´�
�³for´��LV�D�SUHSRVLWLRQ�DQG�³UDV´��³VKDYLQJ´) is a 
supine verb (with a past participle form) which 
was incorrectly annotated as a noun. 
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5 Network pattern analysis 

Using feed-forward neural networks gives the 
abilit y to outline what input features contribute to 
the selection of various MSD attribute values in 
the output layer which might help in reducing the 
tagset and thus, redesigning the network 
topology with beneficial effects both on the 
speed and accuracy.  

To determine what input features contribute to 
the selection of certain MSD attribute values, one 
can analyze the weights inside the neural 
network and extract the input Æ output links that 
are formed during training. We used the network 
with 130 units on the hidden layer, which was 
previously trained for 100 iterations. Based on 
the input encoding, we divided the features into 5 
groups (one group for each MSD inside the local 
context ± two previous MSDs, current and 
following two possible MSDs). For a target 
attribute value (noun, gender feminine, gender 
masculine, etc.) and for each input group, we 
selected the top 3 input values which support the 
decision of assigning the target value to the 
attribute (features that increase the output value) 
and the top 3 features which discourage this 
decision (features that decrease the output value). 
For clarity, we will  use the following notations 
for the groups: 

x G-2: group one ± the assigned MSD for 
the word at position i-2 

x G-1: group two ± the assigned MSD for 
the word at position i-1 

x G0: group three ± the possible MSDs for 
the word at position i 

x G1: group four± the possible MSDs for 
the word at position i+1 

x G2: group five ± the possible MSDs for 
the word at position i+2 

where i corresponds to the position of the word 
which is currently being tagged. Also, we 
classify the attribute values into two categories 
(C): (P) want to see (support the decision) and 
(N) GRQ¶W�ZDQW�WR�VHH (discourage the decision). 

 
Table 4 shows partial (G-1 G0 G1) examples of 

two target attribute values (cat=Noun and gender 
=Feminine) and their corresponding input 
features used for discrimination. 

 
Target 
value 

Group C Attribute values  

Noun G-1 P 
main (of a verb), article, 
masculine (gender of a 

noun/adjective 

N 
particle, conjunctive particle, 

auxiliary (of a verb), 
demonstrative (of a pronoun) 

G0 

P noun, common/proper (of a 
noun) 

N 
adverb, pronoun, numeral, 
interrogative/relative (of a 

pronoun) 

G1 

P 
genitive/dative (of a 

noun/adjective), particle, 
punctuation 

N 

conjunctive particle, strong (of 
a pronoun), non-definite (of a 
noun/adjective), exclamation 

mark 

Fem. 

G-1 
P 

main (of a verb), preposition, 
feminine (of a 

noun/adjective) 

N 
auxiliary (of a verb), particle, 
demonstrative (of a pronoun) 

G0 

P 

feminine (of a 
noun/adjective), 

nominative/accusative (of a 
noun/adjective), past (of a 

verb) 

N 

masculine (of a 
noun/adjective), auxiliary (of a 
verb), interrogative/relative (of 

a pronoun), adverb 

G1 

P 

dative/genitive (of a 
noun/adjective), indicative (of 

a verb), feminine (of a 
noun/adjective) 

N 
conjunctive particle, future 

particle, nominative/accusative 
(of a noun/adjective) 

 
Table 4 ± P/N features for various attribute 

values. 
 
For instance, when deciding on whether to give a 
noun (N) label to current position (G0), we can 
see that the neural network has learned some 
interesting dependencies: at position G-1 we find 
an article (which frequently determines a noun) 
and at the current position it is very important for 
the word being tagged to actually be a common 
or proper noun (either by lexicon lookup or by 
suffix guessing) and not be an adverb, pronoun 
or numeral (POSes that cannot be found in the 
typical ambiguity class of a noun). At the next 
position of the target (G1) we also find a noun in 
genitive or dative, corresponding to a frequent 
construction in Romanian, H�J�� ³PD�ina 
E�LDWXOXL´� EHLQJ� D� VHTXHQFH� RI� WZR nouns, the 
second at genitive/dative. 

If  the neural network outputs the feminine 
gender to its current MSD, one may see that it 
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has actually learned the agreement rules (at least 
locally): the feminine gender is present both 
before (G-1) the target word as well as after it 
(G1). 

6 Conclusions and future work 

We presented a new approach for large tagset 
part-of-speech tagging using neural networks. An 
advantage of using this methodology is that it 
does not require extensive knowledge about the 
grammar of the target language. When building a 
new MSD tagger for a new language one is only 
required to provide the training data and create 
an appropriate MSD encoding system and as 
shown, the MSD encoding algorithm is fairly 
simple and our proposed version works for any 
other MSD compatible encoding, regardless of 
the language.  

Observing which features do not participate in 
any decision helps design custom topologies for 
the Neural Network, and provides enhancements 
in both speed and accuracy. The configurable 
nature of our system allows users to provide their 
own MSD encodings, which permits them to 
mask certain features that are not useful for a 
given NLP application.  

If  one wants to process a large amount of text 
and is interested only in assigning grammatical 
categories to words, he can use a MSD encoding 
in which he strips off  all unnecessary features. 
Thus, the number of necessary neurons would 
decrease, which assures faster training and 
tagging. This is of course possible in any other 
tagging approaches, but our framework supports 
this by masking attributes inside the MSD 
encoding configuration file, without having to 
change anything else in the training corpus. 
During testing the system only verifies if the 
MSD encodings are identical and the displayed 
accuracy directly reflects the performance of the 
system on the simplified tagging schema. 

We also proposed a methodology for selecting 
a network configurations (i.e. number of hidden 
units), which best suites the application 
requirements. In our daily applications we use a 
network with 130 hidden units, as it provides an 
optimal speed/accuracy trade-off (approx. 3400 
words per second with very good average 
accuracy).  

The tagger is implemented as part of a larger 
application that is primarily intended for text-to-
speech (TTS) synthesis. The system is free for 
non-commercial use and we provide both web 
and desktop user-interfaces. It is part of the 

METASHARE platform and available online2. 
Our primary goal was to keep the system 
language independent, thus all our design choices 
are based on the necessity to avoid using 
language specific knowledge, when possible. The 
application supports various NLP related tasks 
such as lexical stress prediction, syllabification, 
letter-to-sound conversion, lemmatization, 
diacritic restoration, prosody prediction from text 
and the speech synthesizer uses unit-selection. 

From the tagging perspective, our future plans 
include testing the system on other highly 
inflectional languages such as Czech and 
Slovene and investigating different methods for 
automatically determining a more suitable 
custom network topology, such as genetic 
algorithms. 
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