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Abstract

This paper presents novel methods for
modeling numerical common sense: the
ability to infer whether a given number
(e.g., three billion) is large, small, or nor-
mal for a given context (e.g., number of
people facing a water shortage). We first
discuss the necessity of numerical com-
mon sense in solving textual entailment
problems. We explore two approaches for
acquiring numerical common sense. Both
approaches start with extracting numeri-
cal expressions and their context from the
Web. One approach estimates the distribu-
tion of numbers co-occurring within a con-
text and examines whether a given value is
large, small, or normal, based on the distri-
bution. Another approach utilizes textual
patterns with which speakers explicitly ex-
presses their judgment about the value of
a numerical expression. Experimental re-
sults demonstrate the effectiveness of both
approaches.

1 Introduction

Textual entailment recognition (RTE) involves a
wide range of semantic inferences to determine
whether the meaning of a hypothesis sentence (h)
can be inferred from another text (t) (Dagan et
al., 2006). Although several evaluation campaigns
(e.g., PASCAL/TAC RTE challenges) have made
significant progress, the RTE community recog-
nizes the necessity of a deeper understanding of
the core phenomena involved in textual inference.
Such recognition comes from the ideas that cru-
cial progress may derive from decomposing the
complex RTE task into basic phenomena and from
solving each basic phenomenon separately (Ben-
tivogli et al., 2010; Sammons et al., 2010; Cabrio
and Magnini, 2011; Toledo et al., 2012).

Given this background, we focus on solving one
of the basic phenomena in RTE: semantic infer-
ence related to numerical expressions. The spe-
cific problem we address is acquisition of numeri-
cal common sense. For example,

(1) t : Before long, 3b people will face a water
shortage in the world.

h : Before long, a serious water shortage
will occur in the world.

Although recognizing the entailment relation be-
tween t and h is frustratingly difficult, we assume
this inference is decomposable into three phases:

3b people face a water shortage.

⇔ 3,000,000,000 people face a water shortage.

|= many people face a water shortage.

|= a serious water shortage.

In the first phase, it is necessary to recognize 3b
as a numerical expression and to resolve the ex-
pression 3b into the exact amount 3,000,000,000.
The second phase is much more difficult because
we need subjective but common-sense knowledge
that 3,000,000,000 people is a large number.

In this paper, we address the first and sec-
ond phases of inference as an initial step towards
semantic processing with numerical expressions.
The contributions of this paper are four-fold.

1. We examine instances in existing RTE cor-
pora, categorize them into groups in terms of
the necessary semantic inferences, and dis-
cuss the impact of this study for solving RTE
problems with numerical expressions.

2. We describe a method of normalizing numer-
ical expressions referring to the same amount
in text into a unified semantic representation.

3. We present approaches for aggregating nu-
merical common sense from examples of nu-
merical expressions and for judging whether
a given amount is large, small, or normal.
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4. We demonstrate the effectiveness of this ap-
proach, reporting experimental results and
analyses in detail. Although it would be ideal
to evaluate the impact of this study on the
overall RTE task, we evaluate each phase sep-
arately. We do this because the existing RTE
data sets tend to exhibit very diverse linguis-
tic phenomena, and it is difficult to employ
such data for evaluating the real impact of
this study.

2 Related work

Surprisingly, NLP research has paid little atten-
tion to semantic processing of numerical expres-
sions. This is evident when we compare with tem-
poral expressions, for which corpora (e.g., ACE-
20051, TimeBank2) were developed with annota-
tion schemes (e.g., TIMEX3, TimeML4).

Several studies deal with numerical expressions
in the context of information extraction (Bakalov
et al., 2011), information retrieval (Fontoura et al.,
2006; Yoshida et al., 2010), and question answer-
ing (Moriceau, 2006). Numbers such as prod-
uct prices and weights have been common targets
of information extraction. Fontoura et al. (2006)
and Yoshida et al. (2010) presented algorithms and
data structures that allow number-range queries
for searching documents. However, these studies
do not interpret the quantity (e.g., 3,000,000,000)
of a numerical expression (e.g., 3b people), but
rather treat numerical expressions as strings.

Banerjee et al. (2009) focused on quantity con-
sensus queries, in which there is uncertainty about
the quantity (e.g., weight airbus A380 pounds).
Given a query, their approach retrieves documents
relevant to the query and identifies the quantities
of numerical expressions in the retrieved docu-
ments. They also proposed methods for enumer-
ating and ranking the candidates for the consen-
sus quantity intervals. Even though our study
shares a similar spirit (modeling of consensus for
quantities) with Banerjee et al. (2009), their goal
is different: to determine ground-truth values for
queries.

In question answering, to help “sanity check”
answers with numerical values that were

1http://www.itl.nist.gov/iad/mig/
tests/ace/ace05/

2http://www.timeml.org/site/timebank/
timebank.html

3http://timex2.mitre.org/
4http://timeml.org/site/index.html

way out of common-sense ranges, IBM’s PI-
QUANT (Prager et al., 2003; Chu-Carroll et al.,
2003) used information in Cyc (Lenat, 1995).
For example, their question-answering system
rejects 200 miles as a candidate answer for the
height of Mt. Everest, since Cyc knows mountains
are between 1,000 and 30,000 ft. high. They
also consider the problem of variations in the
precision of numbers (e.g., 5 million, 5.1 million,
5,200,390) and unit conversions (e.g., square
kilometers and acres).

Some recent studies delve deeper into the se-
mantic interpretation of numerical expressions.
Aramaki et al. (2007) focused on the physical size
of an entity to predict the semantic relation be-
tween entities. For example, knowing that a book
has a physical size of 20 cm × 25 cm and that a li-
brary has a size of 10 m × 10 m, we can estimate
that a library contains a book (content-container
relation). Their method acquires knowledge about
entity size from the Web (by issuing queries like
“book (*cm x *cm)”), and integrates the knowl-
edge as features for the classification of relations.

Davidov and Rappoport (2010) presented a
method for the extraction from the Web and ap-
proximation of numerical object attributes such as
height and weight. Given an object-attribute pair,
the study expands the object into a set of compa-
rable objects and then approximates the numerical
values even when no exact value can be found in a
text. Aramaki et al. (2007) and Davidov and Rap-
poport (2010) rely on hand-crafted patterns (e.g.,
“Object is * [unit] tall”), focusing on a specific set
of numerical attributes (e.g., height, weight, size).
In contrast, this study can handle any kind of target
and situation that is quantified by numbers, e.g.,
number of people facing a water shortage.

Recently, the RTE community has started to
pay some attention to the appropriate processing
of numerical expressions. Iftene (2010) presented
an approach for matching numerical ranges ex-
pressed by a set of phrases (e.g., more than and at
least). Tsuboi et al. (2011) designed hand-crafted
rules for matching intervals expressed by temporal
expressions. However, these studies do not nec-
essarily focus on semantic processing of numeri-
cal expressions; thus, these studies do not normal-
ize units of numerical expressions nor make infer-
ences with numerical common sense.

Sammons et al. (2010) reported that most sys-
tems submitted to RTE-5 failed on examples
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where numeric reasoning was necessary. They ar-
gued the importance of aligning numerical quanti-
ties and performing numerical reasoning in RTE.
LoBue and Yates (2011) identified 20 categories
of common-sense knowledge that are prevalent in
RTE. One of the categories comprises arithmetic
knowledge (including computations, comparisons,
and rounding). They concluded that many kinds
of the common-sense knowledge have received
scarce attention from researchers even though the
knowledge is essential to RTE. These studies pro-
vided a closer look at the phenomena involved in
RTE, but they did not propose a solution for han-
dling numerical expressions.

3 Investigation of textual-entailment
pairs with numerical expressions

In this section, we investigate textual entailment
(TE) pairs in existing corpora in order to study
the core phenomena that establish an entailment
relation. We used two Japanese TE corpora:
RITE (Shima et al., 2011) and Odani et al. (2008).
RITE is an evaluation workshop of textual entail-
ment organized by NTCIR-9, and it targets the
English, Japanese, and Chinese languages. We
used the Japanese portions of the development
and training data. Odani et al. (2008) is another
Japanese corpus that was manually created. The
total numbers of text-hypothesis (T -H) pairs are
1,880 (RITE) and 2,471 (Odani).

We manually selected sentence pairs in which
one or both of the sentences contained a numerical
expression. Here, we define the term numerical
expression as an expression containing a number
or quantity represented by a numeral and a unit.
For example, 3 kilometers is a numerical expres-
sion with the numeral 3 and the unit kilometer.
Note that intensity of 4 is not a numerical expres-
sion because intensity is not a unit.

We obtained 371 pairs from the 4,351 T -H
pairs. We determined the inferences needed to
prove ENTAILMENT or CONTRADICTION of the
hypotheses, and classified the 371 pairs into 11
categories. Note that we ignored T -H pairs in
which numerical expressions were unnecessary
to prove the entailment relation (e.g., Socrates
was sentenced to death by 500 jury members and
Socrates was sentenced to death). Out of 371
pairs, we identified 114 pairs in which numerical
expressions played a central role in the entailment
relation.

Table 1 summarizes the categories of TE phe-
nomena we found in the data set. The largest cate-
gory is numerical matching (32 pairs). We can in-
fer an entailment relation in this category by align-
ing two numerical expressions, e.g., 2.2 million
|= over 800 thousand. This is the most funda-
mental task in numerical reasoning, interpreting
the amount (number, unit, and range) in a numer-
ical expression. We address this task in Section
4.1. The second largest category requires com-
mon sense about numerical amounts. In order to
recognize textual entailment of pairs in this cat-
egory, we need common-sense knowledge about
humans’ subjective judgment of numbers. We
consider this problem in Section 5.

To summarize, this study covers 37.9% of the
instances in Table 1, focusing on the first and sec-
ond categories. Due to space limitations, we omit
the explanations for the other phenomena, which
require such things as lexical knowledge, arith-
metic operations, and counting. The coverage of
this study might seem small, but it is difficult to
handle varied phenomena with a unified approach.
We believe that this study forms the basis for in-
vestigating other phenomena of numerical expres-
sions in the future.

4 Collecting numerical expressions from
the Web

In this paper, we explore two approaches to acquir-
ing numerical common sense. Both approaches
start with extracting numerical expressions and
their context from the Web. We define a context
as the verb and its arguments that appear around a
numerical expression.

For instance, the context of 3b people in the sen-
tence 3b people face a water shortage is “face”
and “water shortage.” In order to extract and
aggregate numerical expressions in various doc-
uments, we converted the numerical expressions
into semantic representations (to be described in
Section 4.1), and extracted their context (to be de-
scribed in Section 4.2).

The first approach for acquiring numerical com-
mon sense estimates the distribution of numbers
that co-occur within a context, and examines
whether a given value is large, small, or normal
based on that distribution (to be described in Sec-
tion 5.1). The second approach utilizes textual
patterns with which speakers explicitly expresses
their judgment about the value of a numerical ex-
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Category Definition Example #

Numerical matching
Aligning numerical expres-
sions in T and H, considering
differences in unit, range, etc.

t: It is said that there are about 2.2 million alcoholics in the whole country.
h: It is estimated that there are over 800 thousand people who are alcoholics. 32

Numerical common sense
Inferring by interpreting the
numerical amount (large or
small).

t: In the middle of the 21st century, 7 billion people, corresponding to 70% of the
global population, will face a water shortage.
h: It is concerning that a serious water shortage will spread around the world in the
near future.

12

Lexical knowledge Inferring by using numerical
aspects of word meanings.

t: Mr. and Ms. Sato celebrated their 25th wedding anniversary.
h: Mr. and Ms. Sato celebrated their silver wedding anniversary. 12

Arithmetic Arithmetic operations includ-
ing addition and subtraction.

t: The number of 2,000-yen bills in circulation has increased to 450 million, in
contrast with 440 million 5,000-yen bills.
h: The number of 2,000-yen bills in circulation exceeds the number of 5,000-yen
bills by 10 million bills.

11

Numeric-range expression
of verbs

Numerical ranges expressed by
verbs (e.g., exceed).

t: It is recorded that the maximum wave height reached 13.8 meters during the Sea
of Japan Earthquake Tsunami in May 1983.
h: During the Sea of Japan Earthquake, the height of the tsunami exceeded 10 meters.

9

Simple Rewrite Rule This includes various simple
rules for rewriting.

t: The strength of Taro’s grip is No. 1 in his class.
h: Taro’s grip is the strongest in his class. 7

State change Expressing the change of a
value by a multiplier or ratio.

t: Consumption of pickled plums is 1.5 times the rate of 20 years ago.
h: Consumption of pickled plums has increased. 6

Ordinal numbers Inference by interpreting ordi-
nal numbers.

t: Many precious lives were sacrificed in the Third World War.
h: So far, there have been at least three World Wars. 6

Temporal expression

Inference by interpreting tem-
poral expressions such as an-
niversary, age, and ordinal
numbers.

t: Mr. and Ms. Sato celebrate their 25th wedding anniversary.
h: Mr. and Ms. Sato got married 25 years ago. 3

Count Counting up the number of var-
ious entities.

t: In Japan, there are the Asian Triopsidae, the American Triopsidae, and the Euro-
pean Triopsidae.
h: In Japan, there are 3 types of Triopsidae.

3

Others 15

All 116

Table 1: Frequency and simple definitions for each category of the entailment phenomena in the survey.

Numerical Semantic representation
Expression Value Unit Mod.

about seven grams 7 g about
roughly 7 kg 7000 g about
as heavy as 7 tons 7 × 106 g large
as cheap as $1 1 $ small
30–40 people [30, 40] nin (people)
more than 30 cars 30 dai (cars) over
7 km per hour 7000 m/h

Table 2: Normalized representation examples

pression (to be explained in Section 5.2).
In this study, we acquired numerical common

sense from a collection of 8 billion sentences in
100 million Japanese Web pages (Shinzato et al.,
2012). For this reason, we originally designed
text patterns specialized for Japanese dependency
trees. For the sake of the readers’ understand-
ing, this paper uses examples with English trans-
lations for explaining language-independent con-
cepts, and both Japanese and English translations
for explaining language-dependent concepts.

4.1 Extracting and normalizing numerical
expressions

The first step for collecting numerical expres-
sions is to recognize when a numerical expression
is mentioned and then to normalize it into a seman-
tic representation. This is the most fundamental

String Operation
gram(s) set-unit: ‘g’
kilogram(s) set-unit: ‘g’; multiply-value: 1,000
kg set-unit: ‘g’; multiply-value: 1,000
ton(s) set-unit: ‘g’; multiply-value: 1,000,000
nin (people) set-unit: ‘nin’ (person)
about set-modifier: ‘about’
as many as set-modifier: ‘large’
as little as set-modifier: ‘small’

Table 3: An example of unit/modifier dictionary

step in numerical reasoning and has a number of
applications. For example, this step handles cases
of numerical matching, as in Table 1.

The semantic representation of a numerical ex-
pression consists of three fields: the value or range
of the real number(s)5, the unit (a string), and the
optional modifiers. Table 2 shows some exam-
ples of numerical expressions and their semantic
representations. During normalization, we identi-
fied spelling variants (e.g., kilometer and km) and
transformed auxiliary units into their correspond-
ing canonical units (e.g., 2 tons and 2,000 kg to
2,000,000 grams). When a numerical expression
is accompanied by a modifier such as over, about,
or more than, we updated the value and modifier
fields appropriately.

5Internally, all values are represented by ranges (e.g., 75
is represented by the range [75, 75]).
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We developed an extractor and a normalizer for
Japanese numerical expressions6. We will outline
the algorithm used in the normalizer with an exam-
ple sentence: “Roughly three thousand kilograms
of meats have been provided every day.”

1. Find numbers in the text by using regular ex-
pressions and convert the non-Arabic num-
bers into their corresponding Arabic num-
bers. For example, we find three thousand7

and represent it as 3, 000.

2. Check whether the words that precede or fol-
low the number are units that are registered in
the dictionary. Transform any auxiliary units.
In the example, we find that kilograms8 is a
unit. We multiply the value 3, 000 by 1, 000,
and obtain the value 3, 000, 000 with the unit
g.

3. Check whether the words that precede or fol-
low the number have a modifier that is regis-
tered in the dictionary. Update the value and
modifier fields if necessary. In the example,
we find roughly and set about in the modifier
field.

We used a dictionary9 to perform procedures 2
and 3 (Table 3). If the words that precede or fol-
low an extracted number match an entry in the dic-
tionary, we change the semantic representation as
described in the operation.

The modifiers ‘large’ and ‘small’ require elab-
oration because the method in Section 5.2 relies
heavily on these modifiers. We activated the mod-
ifier ‘large’ when a numerical expression occurred
with the Japanese word mo, which roughly cor-
responds to as many as, as large as, or as heavy
as in English10. Similarly, we activated the modi-
fier ‘small’ when a numerical expression occurred
with the word shika, which roughly corresponds
to as little as, as small as, or as light as11. These
modifiers are important for this study, reflecting
the writer’s judgment about the amount.

6The software is available at http://www.cl.
ecei.tohoku.ac.jp/∼katsuma/software/
normalizeNumexp/

7In Japanese 3, 000 is denoted by the Chinese symbols “
三千”.

8We write kilograms as “キログラム” in Japanese.
9The dictionary is bundled with the tool. See Footnote 6.

10In Japanese, we can use the word mo with a numerical
expression to state that the amount is ‘large’ regardless of
how large it is (e.g., large, big, many, heavy).

11Similarly, we can use the word shika with any adjective.

ᙼࡣ 㖟⾜࡛ 㐩 㸱㸮㸮ࣝࢻ Ώࡓࡋ㸬

He gave to a friend$300 at the bank.

Japanese:

English:

nsubj
dobj

prep_to
prep_at

Number: {value: 300; unit: ‘$’ }

Context: {verb: ‘give’ ; nsubj: ‘he’ ; 

 prep_to: ‘friend’ ; prep_at: ‘bank’ }

Figure 1: Example of context extraction

4.2 Extraction of context

The next step in acquiring numerical common
sense is to capture the context of numerical ex-
pressions. Later, we will aggregate numbers that
share the same context (see Section 5). The con-
text of a numerical expression should provide suf-
ficient information to determine what it measures.
For example, given the sentence, “He gave $300 to
a friend at the bank,” it would be better if we could
generalize the context to someone gives money to
a friend for the numerical expression $300. How-
ever, it is a nontrivial task to design an appropriate
representation of varying contexts. For this rea-
son, we employ a simple rule to capture the con-
text of numerical expressions: we represent the
context with the verb that governs the numerical
expression and its typed arguments.

Figure 1 illustrates the procedure for extracting
the context of a numerical expression12. The com-
ponent in Section 4.1 recognizes $300 as a numer-
ical expression, then normalizes it into a semantic
representation. Because the numerical expression
is a dependent of the verb gave, we extract the verb
and its arguments (except for the numerical ex-
pression itself) as the context. After removing in-
flections and function words from the arguments,
we obtain the context representation of Figure 1.

5 Acquiring numerical common sense

In this section, we present two approaches for ac-
quiring numerical common sense from a collec-
tion of numerical expressions and their contexts.
Both approaches start with collecting the numbers
(in semantic representation) and contexts of nu-
merical expressions from a large number of sen-
tences (Shinzato et al., 2012), and storing them

12The English dependency tree might look peculiar be-
cause it is translated from the Japanese dependency tree.
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in a database. When a context and a value are
given for a prediction (hereinafter called the query
context and query value, respectively), these ap-
proaches judge whether the query value is large,
small, or normal.

5.1 Distribution-based approach

Given a query context and query value, this
approach retrieves numbers associated with the
query context and draws a distribution of normal-
ized numbers. This approach considers the dis-
tribution estimated for the query context and de-
termines if the value is within the top 5 percent
(large), within the bottom 5 percent (small), or is
located in between these regions (normal).

The underlying assumption of this approach is
that the real distribution of a query (e.g., money
given to a friend) can be approximated by the dis-
tribution of numbers co-occurring with the context
(e.g., give and friend) on the Web. However, the
context space generated in Section 4.2 may be too
sparse to find numbers in the database, especially
when a query context is fine-grained. Therefore,
when no item is retrieved for the query context,
we employ a backoff strategy to drop some of the
uninformative elements in the query context: ele-
ments are dropped from the context based on the
type of argument, in this order: he (prep to), kara
(prep from), ha (nsubj), yori (prep from), made
(prep to), nite (prep at), de (prep at, prep by), ni
(prep at), wo (dobj), ga (nsubj), and verb.

5.2 Clue-based approach

This approach utilizes textual clues with which a
speaker explicitly expresses his or her judgment
about the amount of a numerical expression. We
utilize large and small modifiers (described in Sec-
tion 4.1), which correspond to textual clues mo
(as many as, as large as) and shika (only, as
few as), respectively, for detecting humans’ judg-
ments. For example, we can guess that $300 is
large if we find an evidential sentence13, He gave
as much as $100 to a friend.

Similarly to the distribution-based approach,
this approach retrieves numbers associated with
the query context. This approach computes the

13Although the sentence states a judgment about $100, we
can infer that $300 is also large because $300 > $100.

largeness L(x) of a value x:

L(x) =
pl(x)

ps(x) + pl(x)
, (1)

pl(x) =

∣∣{r|rv < x ∧ rm 3 large}
∣∣

∣∣{r|rm 3 large}
∣∣ , (2)

ps(x) =

∣∣{r|rv > x ∧ rm 3 small}
∣∣

∣∣{r|rm 3 small}
∣∣ . (3)

In these equations, r denotes a retrieved item for
the query context, and rv and rm represent the nor-
malized value and modifier flags, respectively, of
the item r. The numerator of Equation 2 counts
the number of numerical expressions that support
the judgment that x is large14, and its denominator
counts the total number of numerical expressions
with large as a modifier. Therefore, pl(x) com-
putes the ratio of times there is textual evidence
that says that x is large, to the total number of
times there is evidences with large as a modifier.
In an analogous way, ps(x) is defined to be the ra-
tio for evidence that says x is small. Hence, L(x)
approaches 1 if everyone on the Web claims that
x is large, and approaches 0 if everyone claims
that x is small. This approach predicts large if
L(x) > 0.95, small if L(x) < 0.05, and normal
otherwise.

6 Experiments

6.1 Normalizing numerical expressions
We evaluated the method that we described in Sec-
tion 4.1 for extracting and normalizing numerical
expressions. In order to prepare a gold-standard
data set, we obtained 1,041 sentences by randomly
sampling about 1% of the sentences containing
numbers (Arabic digits and/or Chinese numerical
characters) in a Japanese Web corpus (100 million
pages) (Shinzato et al., 2012). For every numer-
ical expression in these sentences, we manually
determined a tuple of the normalized value, unit,
and modifier. Here, non-numerical expressions
such as temporal expressions, telephone numbers,
and postal addresses, which were very common,
were beyond the scope of the project15. We ob-
tained 329 numerical expressions from the 1,041
sentences.

We evaluated the correctness of the extraction
and normalization by measuring the precision and

14This corresponds to the events where we find an evidence
expression “as many as rv”, where rv < x.

15If a tuple was extracted from a non-numerical expres-
sion, we regarded this as a false positive
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recall using the gold-standard data set16. Our
method performed with a precision of 0.78 and a
recall of 0.92. Most of the false negatives were
caused by the incompleteness of the unit dictio-
nary. For example, the proposed method could not
identify 1Ghz as a numerical expression because
the unit dictionary did not register Ghz but GHz.
It is trivial to improve the recall of the method by
enriching the unit dictionary.

The major cause of false positives was the se-
mantic ambiguity of expressions. For example, the
proposed method identified Seven Hills as a nu-
merical expression although it denotes a location
name. In order to reduce false positives, it may
be necessary to utilize broader contexts when lo-
cating numerical expressions; this could be done
by using, for example, a named entity recognizer.
This is the next step to pursue in future work.

However, these errors do not have a large effect
on the estimation of the distribution of the numer-
ical values that occur with specific named entities
and idiomatic phrases. Moreover, as explained in
Section 5, we draw distributions for fine-grained
contexts of numerical expressions. For these rea-
sons, we think that the current performance is suf-
ficient for acquiring numerical common sense.

6.2 Acquisition of numerical common sense

6.2.1 Preparing an evaluation set
We built a gold-standard data set for numerical
common sense. We applied the method in Sec-
tion 4.1 to sentences sampled at random from the
Japanese Web corpus (Shinzato et al., 2012), and
we extracted 2,000 numerical expressions. We
asked three human judges to annotate every nu-
merical expression with one of six labels, small,
relatively small, normal, relatively large, large,
and unsure. The label relatively small could be
applied to a numerical expression when the judge
felt that the amount was rather small (below the
normal) but hesitated to label it small. The la-
bel relatively large was defined analogously. We
gave the following criteria for labeling an item as
unsure: when the judgment was highly dependent
on the context; when the sentence was incompre-
hensible; and when it was a non-numerical expres-
sions (false positives of the method are discussed
in Section 4.1).

Table 4 reports the inter-annotator agreement.
16All fields (value, unit, modifier) of the extracted tuple

must match the gold-standard data set.

Agreement # expressions
3 annotators 735 (36.7%)
2 annotators 963 (48.2%)
no agreement 302 (15.1%)

Total 2000 (100.0%)

Table 4: Inter-annotator agreement
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Figure 2: Distributions of numbers with large and
small modifiers for the context human’s height.

For the evaluation of numerical expressions in the
data set, we used those for which at least two anno-
tators assigned the same label. After removing the
unsure instances, we obtained 640 numerical ex-
pressions (20 small, 35 relatively small, 152 nor-
mal, 263 relatively large, and 170 large) as the
evaluation set.

6.2.2 Results
The proposed method extracted about 23 million
pairs of numerical expressions and their context
from the corpus (with 100 million Web pages).
About 15% of the extracted pairs were accom-
panied by either a large or small modifier. Fig-
ure 2 depicts the distributions of the context hu-
man’s height produced by the distribution-based
and clue-based approaches. These distributions
are quite reasonable as common-sense knowledge:
we can interpret that numbers under 150 cm are
perceived as small and those above 180 cm as
large.

We measured the correctness of the proposed
methods on the gold-standard data. For this
evaluation, we employed two criteria for correct-
ness: strict and lenient. With the strict crite-
rion, the method must predict a label identical to
that in the gold-standard. With the lenient crite-
rion, the method was also allowed to predict either
large/small or normal when the gold-standard la-
bel was relatively large/small.

Table 5 reports the precision (P), recall (R), F1
(F1), and accuracy (Acc) of the proposed methods.
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No. System Gold Sentence Remark

1 small small
I think that three men can
create such a great thing in
the world.

Correct

2 normal normal I have two cats. Correct
3 large large It’s above 32 centigrade. Correct

4 large large I earned 10 million yen from
horse racing. Correct

5 small normal There are 2 reasons. Difficulty in judging small. Since a few people say, “There are
only 2 reasons,” our approach predicted a small label.

6 small large
Ten or more people came,
and my eight-mat room was
packed.

Difficulty in modeling the context because this sentence omits
the locational argument for the verb came. We should extract
the context as the number of people who came to my eight-mat
room instead of the number of people who came.

7 small normal
I have two friends who
have broken up with their
boyfriends recently.

Difficulty in modeling the context. We should extract context as
the number of friends who have broken up with their boyfriends
recently instead of the number of friends.

8 small large
Lack of knowledge. We extract the context as the number of
heads of a turtle, but no corresponding information was found
on the Web.

Table 6: Output example and error analysis. We present translations of the sentences, which were origi-
nally in Japanese.

Approach Label P R F1 Acc
large+ 0.892 0.498 0.695

Distribution normal+ 0.753 0.935 0.844 0.760
small+ 0.273 0.250 0.262
large 0.861 0.365 0.613

Distribution normal 0.529 0.908 0.719 0.590
small 0.222 0.100 0.161
large+ 0.923 0.778 0.851

Clue normal+ 0.814 0.765 0.790 0.770
small+ 0.228 0.700 0.464
large 0.896 0.659 0.778

Clue normal 0.593 0.586 0.590 0.620
small 0.164 0.550 0.357

Table 5: Precision (P), recall (R), F1 score (F1),
and accuracy (Acc) of the acquisition of numerical
common sense.

Labels with the suffix ‘+’ correspond to the lenient
criterion. The clue-based approach achieved 0.851
F1 (for large), 0.790 F1 (for normal), and 0.464
(for small) with the lenient criterion. The perfor-
mance is surprisingly good, considering the sub-
jective nature of this task.

The clue-based approach was slightly better
than the distribution-based approach. In particu-
lar, the clue-based approach is good at predicting
large and small labels, whereas the distribution-
based approach is good at predicting normal la-
bels. We found some targets for which the distri-
bution on the Web is skewed from the ‘real’ dis-
tribution. For example, let us consider the distri-
bution of the context ”the amount of money that a
person wins in a lottery”. We can find a number
of sentences like if you won the 10-million-dollar
lottery, .... In other words, people talk about a
large amount of money even if they did not win
any money at all. In order to remedy this problem,

we may need to enrich the context representation
by introducing, for example, the factuality of an
event.

6.2.3 Discussion
Table 6 shows some examples of predictions from
the clue-based approach. Because of space limita-
tions, we mention only the false instances of this
approach.

The clue-based approach tends to predict small
even if the gold-standard label is normal. About
half of the errors of the clue-based approach were
of this type; this is why the precision for small and
the recall for normal are low. The cause of this er-
ror is exemplified by the sentence, “there are two
reasons.” Human judges label normal to the nu-
merical expression two reasons, but the method
predicts small. This is because a few people say
there are only two reasons, but no one says there
are as many as two reasons. In order to handle
these cases, we may need to incorporate the distri-
bution information with the clue-based approach.

We found a number of examples for which
modeling the context is difficult. Our approach
represents the context of a numerical expression
with the verb that governs the numerical expres-
sion and its typed arguments. However, this ap-
proach sometimes misses important information,
especially when an argument of the verb is omit-
ted (Example 6). The approach also suffers from
the relative clause in Example 7, which conveys an
essential context of the number. These are similar
to the scope-ambiguity problem such as encoun-
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tered with negation and quantification; it is diffi-
cult to model the scope when a numerical expres-
sion refers to a situation.

Furthermore, we encountered some false exam-
ples even when we were able to precisely model
the context. In Example 8, the proposed method
was unable to predict the label correctly because
no corresponding information was found on the
Web. The proposed method might more easily pre-
dict a label if we could generalize the word turtle
as animal. It may be worth considering using lan-
guage resources (e.g., WordNet) to generalize the
context.

7 Conclusions

We proposed novel approaches for acquiring nu-
merical common sense from a collection of texts.
The approaches collect numerical expressions and
their contexts from the Web, and acquire numeri-
cal common sense by considering the distributions
of normalized numbers and textual clues such as
mo (as many as) and shika (only, as few as). The
experimental results showed that our approaches
can successfully judge whether a given amount
is large, small, or normal. The implementations
and data sets used in this study are available on
the Web17. We believe that acquisition of numer-
ical common sense is an important step towards a
deeper understanding of inferences with numbers.

There are three important future directions for
this research. One is to explore a more sophis-
ticated approach for precisely modeling the con-
texts of numbers. Because we confirmed in this
paper that these two approaches have different
characteristics, it would be interesting to incorpo-
rate textual clues into the distribution-based ap-
proach by using, for example, machine learning
techniques. Finally, we are planning to address the
‘third phase’ of the example explained in Section
1: associating many people face a water shortage
with a serious water shortage.
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