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Abstract

Automated annotation of social behavior
in conversation is necessary for large-scale
analysis of real-world conversational data.
Important behavioral categories, though,
are often sparse and often appear only
in specific subsections of a conversation.
This makes supervised machine learning
difficult, through a combination of noisy
features and unbalanced class distribu-
tions. We propose within-instance con-
tent selection, using cue features to selec-
tively suppress sections of text and bias-
ing the remaining representation towards
minority classes. We show the effective-
ness of this technique in automated anno-
tation of empowerment language in online
support group chatrooms. Our technique
is significantly more accurate than multi-
ple baselines, especially when prioritizing
high precision.

1 Introduction

Quantitative social science research has experi-
enced a recent expansion, out of controlled set-
tings and into natural environments. With this
influx of interest comes new methodology, and
the inevitable question arises of how to move
towards testable hypotheses, using these uncon-
trolled sources of data as scientific lenses into the
real world.

The study of conversational transcripts is a key
domain in this new frontier. There are certain
social and behavioral phenomena in conversation
that cannot be easily identified through question-
naire data, self-reported surveys, or easily ex-
tracted user metadata. Examples of these social
phenomena in conversation include overt displays
of power (Prabhakaran et al., 2012) or indicators
of rapport and relationship building (Wang et al.,

2012). Manually annotating these social phenom-
ena cannot scale to large data, so researchers turn
to automated annotation of transcripts (Rosé et al.,
2008). While machine learning is highly effec-
tive for annotation tasks with relatively balanced
labels, such as sentiment analysis (Pang and Lee,
2004), more complex social functions are often
rarer. This leads to unbalanced class label distri-
butions and a much more difficult machine learn-
ing task. Moreover, features indicative of rare so-
cial annotations tend to be drowned out in favor of
features biased towards the majority class. The net
effect is that classification algorithms tend to bias
towards the majority class, giving low accuracy for
rare class detection.

Automated annotation of social phenomena also
brings opportunities for real-world applications.
For example, real-time annotation of conversation
can power adaptive intervention in collaborative
learning settings (Rummel et al., 2008; Adamson
and Rosé, 2012). However, with the considerable
power of automation comes great responsibility. It
is critical to avoid intervening in the case of er-
roneous annotations, as providing unnecessary or
inappropriate support in such a setting has been
shown to be harmful to group performance and so-
cial cohesion (Dillenbourg, 2002; Stahl, 2012).

We propose adaptations to existing machine
learning algorithms which improve recognition of
rare annotations in conversational text data. Our
primary contribution comes in the form of within-
instance content selection. We develop a novel al-
gorithm based on textual cues, suppressing infor-
mation which is likely to be irrelevant to an in-
stance’s class label. This allows features which
predict minority classes to gain prominence, help-
ing to sidestep the frequency of common features
pointing to a majority class label.

Additionally, we propose modifications to ex-
isting algorithms. First, we identify a new appli-
cation of logistic model trees to text data. Next,
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we define a modification of confidence-based en-
semble voting which encourages minority class la-
beling. Using these techniques, we demonstrate a
significant improvement in classifier performance
when recognizing the language of empowerment
in support group chatrooms, a critical application
area for researchers studying conversational inter-
actions in healthcare (Uden-Kraan et al., 2009).

The remainder of this paper is structured as fol-
lows. We introduce the domain of empowerment
in support contexts, along with previous studies on
the challenges that these annotations (and similar
others) bring to machine learning. We introduce
our new technique for improving the ability to au-
tomate this annotation, along with other optimiza-
tions to the machine learning workflow which are
tailored to this skewed class balance. We present
experimental results showing that our method is
effective, and provide a detailed analysis of the be-
havior of our model and the features it uses most.
We conclude with a discussion of particularly use-
ful applications of this work.

2 Background

We ground this paper’s discussion of machine
learning with a real problem, turning to the an-
notation of empowerment language in chat1. The
concept of empowerment, while a prolific area
of research, lacks a broad definition across pro-
fessionals, but broadly relates to “the power to
act efficaciously to bring about desired results”
(Boehm and Staples, 2002) and “experiencing per-
sonal growth as a result of developing skills and
abilities along with a more positive self-definition”
(Staples, 1990). Participants in online support
groups feel increased empowerment (Uden-Kraan
et al., 2009; Barak et al., 2008). Quantita-
tive studies have shown the effect of empower-
ment through statistical methods such as structural
equation modeling (Vauth et al., 2007), as have
qualitative methods such as deductive transcript
analysis (Owen et al., 2008) and interview studies
(Wahlin et al., 2006).

The transition between these styles of research
has been gradual. Pioneering work has demon-
strated the ability to distinguish empowerment lan-
guage in written texts, including prompted writ-
ing samples (Pennebaker and Seagal, 1999), nar-

1Definitions of empowerment are closely related to the
notion of self-efficacy (Bandura, 1997). For simplicity, we
use the former term exclusively in this paper.

Table 1: Empowerment label distribution in our
corpus.

Annotation Label # %
Self-Empowerment NA 1522 79.3

POS 202 10.5
NEG 196 10.2

Other-Empowerment NA 1560 81.3
POS 217 11.3
NEG 143 7.4

ratives in online forums (Hoybye et al., 2005), and
some preliminary analysis of synchronous discus-
sion (Ogura et al., 2008; Mayfield et al., 2012b).
These transitional works have used limited analy-
sis methodology; in the absence of sophisticated
natural language processing, their conclusions of-
ten rely on coarse measures, such as word counts
and proportions of annotations in a text.

Users, of course, do not express empowerment
in every thread in which they participate, which
leads to a challenge for machine learning. Threads
often focus on a single user’s experiences, in
which most participants in a chat are merely com-
mentators, if they participate at all, matching pre-
vious research on shifts in speaker salience over
time (Hassan et al., 2008). This leads to many
user threads which are annotated as not applicable
(N/A). We move to our proposed approach with
these skewed distributions in mind.

3 Data

Our data consists of a set of chatroom conversa-
tion transcripts from the Cancer Support Commu-
nity2. Each 90-minute conversation took place in
the context of a weekly meeting in a real-time chat,
with up to 6 participants in addition to a profes-
sional therapist facilitating the discussion. In to-
tal, 2,206 conversations were collected from 2007-
2011. This data offers potentially rich insight into
coping and social support; however, annotating
such a dataset by hand would be prohibitively ex-
pensive, even when it is already transcribed.

Twenty-one of these conversations have been
annotated, as originally described and analyzed
in (Mayfield et al., 2012b)3. This data was dis-
entangled into threads based on common themes
or topics, as in prior work (Elsner and Charniak,

2www.cancersupportcommunity.org
3All annotations were found to be adequately reliable be-

tween humans, with thread disentanglement f = 0.75 and
empowerment annotation κ > 0.7.
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Figure 1: An example mapping from a single thread’s chat lines (left) to the per-user, per-thread instances
used for classification in this paper (right), with example annotations for self-empowerment indicated.

2010; Adams and Martel, 2010). A novel per-
user, per-thread annotation was then employed
for empowerment annotation, following a coding
manual based on definitions like those in Section
2. Each user was assigned a label of positive
or negative empowerment if they exhibited such
emotions, or was left blank if they did not do so
within the context of that thread. This annotation
was performed both for their self-empowerment
as well as their attitude towards others’ situations
(other-empowerment). An example of this annota-
tion for self-empowerment is presented in Figure
1 and the distribution of labels is given in Table 1.

Most previous annotation tasks attempt to an-
notate on a per-utterance basis, such as dialogue
act tagging (Popescu-Belis, 2008), or on arbitrary
spans of text, such as in the MPQA subjectivity
corpus (Wiebe et al., 2005). However, for our task,
a per-user, per-thread annotation is more appropri-
ate, because empowerment is often indicated best
through narrative (Hoybye et al., 2005). Human
annotators are instructed to take this context into
account when annotating (Mayfield et al., 2012b).
It would therefore be nonsensical to annotate indi-
vidual lines as “embodying” empowerment. Simi-
lar arguments have been made for sentiment, espe-
cially as the field moves towards aspect-oriented
sentiment (Breck et al., 2007). Assigning labels
based on thread boundaries allows for context to
be meaningfully taken into account, without cross-
ing topic boundaries.

However, this granularity comes with a price:
the distribution of class values in these instances
is highly skewed. In our data, the vast majority of
users’ threads are marked as not applicable to em-
powerment. Perhaps more inconveniently, while
taking context into account is important for reli-
able annotation, it leads to extraneous information
in many cases. Many threads can have multiple
lines of contributions that are topically related to
an expression of empowerment (and thus belong
in the same thread), but which do not indicate any
empowerment themselves. This exacerbates the
likelihood of instances being classified as N/A.

We choose to take advantage of these attributes
of threads. We know from research in discourse
analysis that many sections of conversations are
formulaic and rote, like introductions and greet-
ings (Schegloff, 1968). We additionally know that
polarity often shifts in dialogue through the use
of discourse connectives such as conjunctions and
transitional phrases. These issues have been ad-
dressed in work in the language technologies com-
munity, most notably through the Penn Discourse
Treebank (Prasad et al., 2008); however, their ap-
plications to noisier synchronous conversation has
beenrare in computational linguistics.

With these linguistic insights in mind, we ex-
amine how we can make best use of them for
machine learning performance. While techniques
for predicting rare events (Weiss and Hirsh, 1998)
and compensating for class imbalance (Frank and
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Bouckaert, 2006), these approaches generally fo-
cus on statistical properties of large class sets with-
out taking the nature of their datasets into account.
In the next section, we propose a new algorithm
which takes advantage specifically of the linguis-
tic phenomena in the conversation-based data that
we study for empowerment detection. As such,
our algorithm is highly suited to this data and task,
with the necessary tradeoff in uncertain generality
to new domains with unrelated data.

4 Cue Discovery for Content Selection

Our algorithm performs content selection by
learning a set of cue features. Each of these fea-
tures indicates some linguistic function within the
discourse which should downplay the importance
of features either before or after that discourse
marker. Our algorithm allows us to evaluate the
impact of rules against a baseline, and to itera-
tively judge each rule atop the changes made by
previous rules.

This algorithm fits into existing language tech-
nologies research which has attempted to partition
documents into sections which are more or less
relevant for classification. Many researchers have
attempted to make use of cue phrases (Hirschberg
and Litman, 1993), especially for segmentation
both in prose (Hearst, 1997) and conversation
(Galley et al., 2003). The approach of content se-
lection, meanwhile, has been explored for senti-
ment analysis (Pang and Lee, 2004), where indi-
vidual sentences may be less subjective and there-
fore less relevant to the sentiment classification
task. It is also similar conceptually to content
selection algorithms that have been used for text
summarization (Teufel and Moens, 2002) and text
generation (Sauper and Barzilay, 2009), both of
which rely on finding highly-relevant passages
within source texts.

Our work is distinct from these approaches.
While we have coarse-grained annotations of em-
powerment, there is no direct annotation of what
makes a good cue for content selection. With
our cues, we hope to take advantage of shallow
discourse structure in conversation, such as con-
trastive markers, making use of implicit structure
in the conversational domain.

4.1 Notation

Before describing extensions to the baseline lo-
gistic regression model, we define notation. Our

data is arranged hierarchically. We assume that
we have a collection of d training documents Tr =
{D1 . . . Dd}, each of which contains many train-
ing instances (in our task, an instance consists of
all lines of chat from one user in one thread). Our
total set of n instances I thus consists of instances
{I1, I2, . . . In}. Each document contains lines of
chat L and each instance Ii is comprised of some
subset of those lines, Li ⊆ L.

Our feature space X = {x1, x2, . . . xm} con-
sists of m unigram features representing the ob-
served vocabulary used in our corpus. Each in-
stance is associated with a feature vector x̄ con-
taining values for each x ∈ X, and each feature
x that is present in the i-th instance maintains a
“memory” of the lines in which it appeared in that
instance, Lix, where Lix ⊆ Li. Our potential out-
put labels consist of Y = {NA,NEG,POS},
though this generalizes to any nominal classifica-
tion task. Each instance I is associated with ex-
actly one y ∈ Y for self-empowerment and one
for other-empowerment; these two labels do not
interact and our tasks are treated as independent
in this paper4. We define classifiers as functions
f(x̄→ y ∈ Y); in practice, we use logistic regres-
sion via LibLINEAR (Fan et al., 2008).

We define a content selection rule as a pairing
r = 〈c, t〉 between a cue feature c ∈ X and a se-
lection function t ∈ T . We created a list of possi-
ble selection functions, given a cue c, maximizing
for generality while being expressive. These are
illustrated in Figure 2 and described below:

• Ignore Local Future (A): Ignore all features
from the two lines after each occurrence of c.

• Ignore All Future (B): Ignore all features
occurring after the first occurrence of c.

• Ignore Local History (C): Ignore all features
in the two lines preceding each occurrence of
c.

• Ignore All History (D): Ignore all features
occurring only before the last occurrence of
c.

We define an ensemble member E = 〈R, fR〉 -
the ordered list of learned content selection rules
R = [r1, r2, . . . ] and a classifier fC trained on in-
stances transformed by those rules. Our final out-

4Future work may examine the interaction of jointly an-
notating multiple sparse social phenomena.
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Figure 2: Effects of content selection rules, based
on a cue feature (ovals) observed at lines m and n.

put of a trained model is a set of ensemble mem-
bers {E1, . . . , Ek}.

4.2 Algorithm

Our ensemble learning follows the paradigm
of cross-validated committees (Parmanto et al.,
1996), where k ensemble members are trained by
subdividing our training data into k subfolds. For
each ensemble classifier, cue rulesR are generated
on k − 1 subfolds (Trk) and evaluated on the re-
maining subfold (Tek). In practice, with 21 train-
ing documents, 7-fold cross-validation, and k = 3
ensemble members, each generation set consists
of 12 documents’ instances, while each evaluation
set contains instances from 6 documents.

Our full algorithm is presented in Algorithm
1, and is broken into component parts for clar-
ity. Algorithm 2 begins by measuring the base-
line classifier’s ability to recognize minority-class
labels. After training on Trk, we measure the
average probability assigned to the correct label
of instances in Tek, but only for instances whose
correct labels are minority classes (remember, be-
cause both Trk and Tek are drawn from the over-
all Tr, we have access to true class labels). We
choose this subset of only minority instances, as
we are not interested in optimizing to the majority
class.

We next enumerate all rules that we wish to
judge. To keep this problem tractable, we ignore
features which do not occur in at least 5% of train-
ing instances. For the remaining features, we cre-
ate a candidate rule for each possible pairing of
features and selection functions. For each of these
candidates, we test its utility by selecting content
as if it were an actual rule, then building a new
classifier (trained on the generation set) using in-
stances that have been altered in that way. In the
evaluation set, we measure the difference in prob-
ability of minority class labels being assigned cor-

rectly between the baseline and this altered space.
This measure of an individual rule’s impact is de-
scribed in Algorithm 3.

Once we have evaluated every possible rule
once, we select the top-ranked rule and ap-
ply it to the feature set. We then iteratively
progress through our now-ranked list of candi-
dates, each time treating the newly filtered dataset
as our new baseline. We search only top can-
didates for efficiency, following the fixed-width
search methodology for feature selection in very
high-dimensionality feature spaces (Gütlein et al.,
2009). Each ensemble classifier is finally retrained
on all training data, after applying the correspond-
ing content selection rules to that data.

5 Prediction

Our prediction algorithm begins with a stan-
dard implementation of cross-validated commit-
tees (Parmanto et al., 1996), whose results are
aggregated with a confidence voting method in-
tended to favor rare labels (Erp et al., 2002).
Cross-validated committees are an ensemble tech-
nique used to subsample training data to produce
multiple hypotheses for classification. Each clas-
sifier produced by our cue-based transformation
is trained on a subset of our training data. Each
makes predictions on all test set instances, pro-
ducing a distribution of confidence across possi-
ble labels. These values serve as inputs to a voting
method to produce a final label for each instance.

Compared to other ensemble methods, cross-
validated committees as described above are a
good fit for our task, because of its unique unit of
analysis. As thread-level analysis is the set of in-
dividual participants’ turns in a conversation, we
risk overfitting if we sample from the same con-
versations for the training and testing sets. In con-
trast to standard bagging, hard sampling bound-
aries never train and test on instances drawn from
the same conversation.

To aggregate the votes from members of this en-
semble into a final prediction, we employ a variant
on Selfridge’s Pandemonium (Selfridge, 1958).
If a minority label is selected as the highest-
confidence value in any classifier in our ensem-
ble, it is selected. The majority label, by contrast,
is only selected if it is the most likely prediction
by all classifiers in our ensemble. Thus consen-
sus is required to elect the majority class, and the
strongest minority candidate is elected otherwise.
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In : generation set Trk, evaluation set Tek
Out: ensemble committee {E1 . . . Ek}
for i = 1 to k do

Rfinal ← [ ];
Xfreq ← {x ∈ X | freq(x) ∈ Trk >
5%};
R← Xfreq × T ;
R∗ ← R;
repeat

Pbase ← EvaluateClassifier(Trk,Tek);
EvaluateRules(Pbase,Trk,Tek, R∗);
Trk,Tek ← ApplyRule(R∗[0]);
R← R−R∗[0];
∆← score(R∗[0]);
Rfinal ← Rfinal +R∗[0];
R∗ ← R[0 . . . 50];

until ∆ < threshold;
Trfinal ← Trk ∪ Tek;
foreach r ∈ Rfinal do

Trfinal ← ApplyRule(Trfinal, r);
end
Train f(x̄→ y) on Trfinal;

end
Algorithm 1: LearnSelectionCues()

This approach is designed to bias the prediction
of our machine learning algorithms in favor of mi-
nority classes in a coherent manner. If there is a
plausible model that has been trained which rec-
ognizes the possibility of a rare label, it is used;
the prediction only reverts to the majority class
when no plausible minority label could be chosen.
As validation of this technique, we compare our
“minority pandemonium” approach against both
typical pandemonium and standard sum-rule con-
fidence voting (Erp et al., 2002).

5.1 Logistic Model Stumps

One characteristic of highly skewed data is that,
while minority labels may be expressed in a num-
ber of different surface forms, there are many ob-
vious cases in which they do not apply. These
cases can actually be harmful to classification of
borderline cases. Features that could be given high
weight in marginal cases may be undervalued in
“low-hanging fruit” easy cases. To remove those
obvious instances, a very simple screening heuris-
tic is often enough to eliminate frequent pheno-
types of instances where the rare annotation is
not present. Prior work has sometimes screened
training data through obvious heuristic rules, espe-

In : generation set Trk, evaluation set Tek
Out: minority class probability average Pbase

Train f(x̄→ y) on Trk;
Temin

k ← {Instance I ∈ Tek | yI 6= “NA”}
;
Pbase ← 0 ;
foreach Instance I ∈ Temin

k do
Pbase ← Pbase + P (f(x̄I) = yI)

end
Pbase = Pbase/size(Temin

k )
Algorithm 2: EvaluateClassifier()

In : Trk, Tek, rules R, base probability Pbase

Out: R sorted on each rule’s improvement
score

foreach Rule r ∈ R do
Tr′k,Te′k ← ApplyRule(Trk,Tek, r);
Palter ← EvaluateClassifier(Tr′k,Te′k);
score(r)← Palter − Pbase;

end
Sort R on score(r) from high to low;

Algorithm 3: EvaluateRules()

cially in speech recognition; for instance, training
speech recognition for words followed by a pause
separately from words followed by another word
(Franco et al., 2010), or training separate models
based on gender (Jiang et al., 1999).

We achieve this instance screening by learn-
ing logistic model tree stumps (Landwehr et al.,
2005), which allow us to quickly partition data if
there is a particularly easy heuristic that can be
learned to eliminate a large number of majority-
class labels. One challenge of this approach is
our underlying unigram feature space - tree-based
algorithms are generally poor classifiers for the
high-dimensionality, low-information features in a
lexical feature space (Han et al., 2001). To com-
pensate, we employ a smaller, denser set of binary
features for tree stump screening: instance length
thresholds and LIWC category membership.

First, we define a set of features that split based
on the number of lines an instance contains, from
1 to 10 (only a tiny fraction of instances are more
than 10 lines long). For example, a feature split-
ting on instances with lines ≤ 2 would be true
for one- and two-line instances, and false for all
others. Second, we define a feature for each cate-
gory in the Linguistic Inquiry and Word Count dic-
tionary (Tausczik and Pennebaker, 2010) - these
broad classes of words allow for more balanced
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Figure 3: Precision/recall curves for algorithms.
After 50% recall all models converge and there are
no significant differences in performance.

splits than would unigrams alone. Each category’s
feature is true if any word in that category was
used at least once in that instance.

We exhaustively sweep this feature space, and
report the most successful stump rules for each an-
notation task. In our other experiments, we report
results with and without the best rule for this pre-
processing step; we also measure its impact alone.

6 Experimental Results

All experiments were performed using LightSIDE
(Mayfield and Rosé, 2013). We use a binary uni-
gram feature space, and we perform 7-fold cross-
validation. Instances from the same chat transcript
never occur in both train and testing folds. Fur-
thermore, we assume that threads have been dis-
entangled already, and our experiments use gold
standard thread structure. While this is not a triv-
ial assumption, prior work has shown thread dis-
entanglement to be manageable (Mayfield et al.,
2012a); we consider it an acceptable simplify-
ing assumption for our experiments. We compare
our methods against baselines including a majority
baseline, a baseline logistic regression classifier
with L2 regularized features, and two common en-
semble methods, AdaBoost (Freund and Schapire,
1996) and bagging (Breiman, 1996) with logistic
regression base classifiers5.

Table 2 presents the best-performing result
from each classification method. For self-
empowerment recognition, all methods that we
introduce are significant improvements in κ, the

5These methods usually use weak, unstable base classi-
fiers; however, in our experiments, those performed poorly.

Table 2: Performance for baselines, common en-
semble algorithms, and proposed methods. Statis-
tically significant improvements over baseline are
marked (p < .01, †; p < .05, *; p < 0.1, +).

Self Other
Method % κ % κ

Majority 79.3 .000 81.3 .000
LR Baseline 81.0 .367 81.0 .270
LR + Boosting 78.1 .325 78.5 .275
LR + Bagging 81.2 .352 81.9 .265
LR + Committee 81.0 .367 81.0 .270
Learned Stumps 81.8* .385† 81.7 .293+
Content Selection 80.9 .389† 80.7 .282
Stumps+Selection 81.3 .406† 79.4 .254

Table 3: Performance of content-selection
wrapped learners, for minority voting and two
baseline voting methods.

Self Other
Method % κ % κ

Pandemonium 80.3 .283 81.4 .239
Averaged 80.6 .304 81.6 .251
Minority Voting 80.9† .389† 80.7 .282

measurement of agreement over chance, compared
to all baselines. While accuracy remains stable,
this is due to predictions shifting away from the
majority class and towards minority classes. Our
combined model using both logistic model tree
stumps and content selection is significantly better
than either alone (p < .01). To compare the mi-
nority pandemonium voting method against base-
lines of simple pandemonium and summed confi-
dence voting, Table 3 presents the results of con-
tent selection wrappers with each voting method.
Minority voting is more effective compared to
standard confidence voting, improving κ while
modestly reducing accuracy; this is typical of a
shift towards minority class predictions.

7 Discussion

These results show promise for our techniques,
which are able to distinguish features of rare la-
bels, previously awash in a sea of irrelevance. Fig-
ure 3 shows the impact of our rules as we tune
to different levels of recall, with a large boost in
precision when recall is not important; our model
converges with the baseline for high-recall, low-
precision tuning. This suggests that our method is
particularly suitable for tasks where confident la-
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Table 4: Cue rules commonly selected by the algo-
rithm. Average improvement over the LR baseline
is also shown.

Self-Empowerment
Cue Transformation ∆%

and,but Ignore Local Future +5.0
have Ignore All History +4.3

! Ignore All History +4.2
me,my Ignore All History +3.4
Other-Empowerment

Cue Transformation ∆%
and,but Ignore Local Future +5.5

you Ignore Local History +5.2
’s Ignore Local History +4.1

that Ignore Local History +3.9

beling of a few instances is more important than
labeling as many instances as possible. This is
common when tasks have a high cost or carry high
risk (for instance, providing real-time conversa-
tional supports with an agent, where inappropriate
intervention could be disruptive). Other low-recall
applications include exploration large corpora for
exemplar instances, where the most confident pre-
dictions for a given label should be presented first
for analyst use. In the rest of this section, we
examine notable within-instance and per-instance
rules selected by our methods. These rules are
summarized in Tables 4 and 5.

For both self- and other-empowerment, we find
pronoun rules that match the task (first-person and
second-person pronouns for self-Empowerment
and other-Empowerment respectively). In both
tasks, we find cue rules that suppress the context
preceding personal pronouns. These, as well as
the possessive suffix ’s, echo the per-instance ef-
fect of the Self and You splits, anticipating that
what follows such a personal reference is likely to
bear an evaluation of empowerment. Exclamation
marks may indicate strong emotion - we find many
instances where what precedes a line with an ex-
clamation is more objective, and what follows in-
cludes an assessment. Conjunctions but and and
are selected as cue rules suppressing the two lines
that follow the occurrence - suggesting, as sus-
pected, that connective discourse markers play a
role in indicating empowerment (Fraser, 1999).

The best-performing stump splits for the Self-
Empowerment annotation are Line Length ≤ 1
and the LIWC word-categories Article, Swear, and

Table 5: Best decision rules for logistic model
stumps. Significant improvement (p < 0.05) in-
dicated with *.

Self-Empowerment
Split Rule κ ∆κ % ∆%
Split ≤ 1 * 0.385 +.018 81.8 +0.8
LIWC-Article 0.379 +.012 81.6 +0.6
LIWC-Swear * 0.376 +.009 81.4 +0.4
LIWC-Self * 0.376 +.009 81.5 +0.5
Other-Empowerment
Split Rule κ ∆κ % ∆%
LIWC-You 0.293 +.023 81.7 +0.7
LIWC-Eating * 0.283 +.013 81.6 +0.6
LIWC-Negate * 0.282 +.012 82.3 +1.3
LIWC-Present 0.281 +.011 81.6 +0.6

Self. The split on line length corresponds to the
observation that longer instances provide greater
opportunity for personal narrative self-assessment
to occur (95% of single-line instances are labeled
NA). The Article category may serve as a proxy for
content length - article-less instances in our corpus
include one-line social greetings and exchanges
of contact information. Swear words may be a
cue for awareness of self-empowerment - a recent
study of women coping with illness reported that
swearing in the presence of others, but not alone,
was related to potentially harmful outcomes (Rob-
bins et al., 2011). Among other- oriented split
rules, Eating stands out as non-obvious, although
medical literature has suggested a link between
dietary behavior and empowerment attitudes in a
study of women with cancer (Pinto et al., 2002).

8 Conclusion

We have demonstrated an algorithm for improv-
ing automated classification accuracy on highly
skewed tasks for conversational data. This algo-
rithm, particularly its focus on content selection, is
rooted in the structural format of our data, which
can generalize to many tasks involving conversa-
tional data. Our experiments show that this model
significantly improves machine learning perfor-
mance. Our algorithm is taking advantage of
structural facets of discourse markers, lending ba-
sic sociolinguistic validity to its behavior. Though
we have treated each of these rarely-occurring la-
bels as independent thus far, in practice we know
that this is not the case. Joint prediction of labels
through structured modeling is an obvious next
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step for improving classification accuracy.
This is an important step towards large-scale

analysis of the impact of support groups on pa-
tients and caregivers. Our method can be used to
confidently highlight occurrences of rare labels in
large data sets. This has real-world implications
for professional intervention in social conversa-
tional domains, especially in scenarios where such
an intervention is likely to be associated with a
high cost or high risk. With the construction of
more accurate classifiers, we open the possibility
of automating annotation on large conversational
datasets, enabling new directions for researchers
with domain expertise.
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