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Abstract

Temporal resolution systems are tradition-
ally tuned to a particular language, re-
quiring significant human effort to trans-
late them to new languages. We present
a language independent semantic parser
for learning the interpretation of tempo-
ral phrases given only a corpus of utter-
ances and the times they reference. We
make use of a latent parse that encodes
a language-flexible representation of time,
and extract rich features over both the
parse and associated temporal semantics.
The parameters of the model are learned
using a weakly supervised bootstrapping
approach, without the need for manually
tuned parameters or any other language
expertise. We achieve state-of-the-art ac-
curacy on all languages in the TempEval-
2 temporal normalization task, reporting
a 4% improvement in both English and
Spanish accuracy, and to our knowledge
the first results for four other languages.

1 Introduction

Temporal resolution is the task of mapping from
a textual phrase describing a potentially complex
time, date, or duration to a normalized (grounded)
temporal representation. For example, possibly
complex phrases such as the week before last1 are
often more useful in their grounded form – e.g.,
August 4 - August 11.

Many approaches to this problem make
use of rule-based methods, combining regular-
expression matching and hand-written interpreta-
tion functions. In contrast, we would like to learn
the interpretation of a temporal expression proba-
bilistically. This allows propagation of uncertainty
to higher-level components, and the potential to

1Spoken on, for instance, August 20.

dynamically back off to a rule-based system in the
case of low confidence parses. In addition, we
would like to use a representation of time which is
broadly applicable to multiple languages, without
the need for language-specific rules or manually
tuned parameters.

Our system requires annotated data consist-
ing only of an input phrase and an associ-
ated grounded time, relative to some reference
time; the language-flexible parse is entirely latent.
Training data of this weakly-supervised form is
generally easier to collect than the alternative of
manually creating and tuning potentially complex
interpretation rules.

A large number of languages conceptualize time
as lying on a one dimensional line. Although
the surface forms of temporal expressions differ,
the basic operations many languages use can be
mapped to operations on this time line (see Sec-
tion 3). Furthermore, many common languages
share temporal units (hours, weekdays, etc.). By
structuring a latent parse to reflect these seman-
tics, we can define a single model which performs
well on multiple languages.

A discriminative parsing model allows us to de-
fine sparse features over not only lexical cues but
also the temporal value of our prediction. For ex-
ample, it allows us to learn that we are much more
likely to express March 14th than 2pm in March –
despite the fact that both interpretations are com-
posed of similar types of components. Further-
more, it allows us to define both sparse n-gram and
denser but less informative bag-of-words features
over multi-word phrases, and allows us to handle
numbers in a flexible way.

We briefly describe our temporal representation
and grammar, followed by a description of the
learning algorithm; we conclude with experimen-
tal results on the six languages of the TempEval-2
A task.
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2 Related Work

Our approach follows the work of Angeli et al.
(2012), both in the bootstrapping training method-
ology and the temporal grammar. Our foremost
contributions over this prior work are: (i) the uti-
lization of a discriminative parser trained with rich
features; (ii) simplifications to the temporal gram-
mar which nonetheless maintain high accuracy;
and (iii) experimental results on 6 different lan-
guages, with state-of-the-art performance on both
datasets on which we know of prior work.

As in this previous work, our approach draws
inspiration from work on semantic parsing. The
latent parse parallels the formal semantics in pre-
vious work. Supervised approaches to semantic
parsing prominently include Zelle and Mooney
(1996), Zettlemoyer and Collins (2005), Kate et
al. (2005), Zettlemoyer and Collins (2007), inter
alia. For example, Zettlemoyer and Collins (2007)
learn a mapping from textual queries to a logical
form. Importantly, the logical form of these parses
contain all of the predicates and entities used in
the parse – unlike the label provided in our case,
where a grounded time can correspond to any of
a number of latent parses. Along this line, re-
cent work by Clarke et al. (2010) and Liang et al.
(2011) relax supervision to require only annotated
answers rather than full logical forms.

Related work on interpreting temporal expres-
sions has focused on constructing hand-crafted in-
terpretation rules (Mani and Wilson, 2000; Sa-
quete et al., 2003; Puscasu, 2004; Grover et al.,
2010). Of these, HeidelTime (Strötgen and Gertz,
2010) and SUTime (Chang and Manning, 2012)
provide a strong comparison in English.

Recent probabilistic approaches to temporal
resolution include UzZaman and Allen (2010),
who employ a parser to produce deep logical
forms, in conjunction with a CRF classifier. In a
similar vein, Kolomiyets and Moens (2010) em-
ploy a maximum entropy classifier to detect the
location and temporal type of expressions; the
grounding is then done via deterministic rules.

In addition, there has been work on pars-
ing Spanish expressions; UC3M (Vicente-Dı́ez et
al., 2010) produce the strongest results on the
TempEval-2 corpus. Of the systems entered in the
original task, TIPSem (Llorens et al., 2010) was
the only system to perform bilingual interpreta-
tion for English and Spanish. Both of the above
systems rely primarily on hand-built rules.

3 Temporal Representation

We define a compositional representation of time,
similar to Angeli et al. (2012), but with a greater
focus on efficiency and simplicity. The represen-
tation makes use of a notion of temporal types
and their associated semantic values; a grammar
is constructed over these types, and is grounded
by appealing to the associated values.

A summary of the temporal type system is pro-
vided in Section 3.1; the grammar is described in
Section 3.2; key modifications from previous work
are highlighted in Section 3.3.

3.1 Temporal Types

Temporal expressions are represented either as a
Range, Sequence, or Duration. The root of a parse
tree should be one of these types. In addition,
phrases can be tagged as a Function; or, as a spe-
cial Nil type corresponding to segments without a
direct temporal interpretation. Lastly, a type is al-
located for numbers. We describe each of these
briefly below.

Range [and Instant] A period between two
dates (or times), as per an interval-based theory
of time (Allen, 1981). This includes entities such
as Today, 1987, or Now.

Sequence A sequence of Ranges, occurring at
regular but not necessarily constant intervals. This
includes entities such as Friday, November
27th, or last Friday. A Sequence is de-
fined in terms of a partial completion of calendar
fields. For example, November 27th would de-
fine a Sequence whose year is unspecified, month
is November, and day is the 27th; spanning the en-
tire range of the lower order fields (in this case, a
day). This example is illustrated in Figure 1. Note
that a Sequence implicitly selects a possibly infi-
nite number of possible Ranges.

To select a particular grounded time for a Se-
quence, we appeal to a notion of a reference time
(Reichenbach, 1947). For the TempEval-2 corpus,
we approximate this as the publication time of the
article. While this is conflating Reichenbach’s ref-
erence time with speech time, and comes at the
expense of certain mistakes (see Section 5.3), it is
nonetheless useful in practice.

To a first approximation, grounding a sequence
given a reference time corresponds to filling in the
unspecified fields of the sequence with the fully-
specified fields of the reference time. This pro-
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Sequence:
year
—

mon
Nov

day

27th – 28th

week
—

weekday
—

hour
00

min
00

sec
00

Reference Time:
year
2013

mon
Aug

day

06th

week
32

weekday
Tue

hour
03

min
25

sec
00

year
2013

mon
Nov

day

27th – 28th

week
—

weekday
—

hour
00

min
00

sec
00

Figure 1: An illustration of grounding a Sequence. When grounding the Sequence November 27th

with a reference time 2013-08-06 03:25:00, we complete the missing fields in the Sequence (the
year) with the corresponding field in the reference time (2013).

cess has a number of special cases not enumerated
here,2 but the complexity remains constant time.

Duration A period of time. This includes enti-
ties like Week, Month, and 7 days. A special
case of the Duration type is defined to represent ap-
proximate durations, such as a few years or some
days.

Function A function of arity less than or equal
to two representing some general modification to
one of the above types. This captures semantic
entities such as those implied in last x, the third x
[of y], or x days ago. The particular functions are
enumerated in Table 2.

Nil A special Nil type denotes terms which are
not directly contributing to the semantic meaning
of the expression. This is intended for words such
as a or the, which serve as cues without bearing
temporal content themselves.

Number Lastly, a special Number type is defined
for tagging numeric expressions.

3.2 Temporal Grammar

Our approach assumes that natural language de-
scriptions of time are compositional in nature; that
is, each word attached to a temporal phrase is com-
positionally modifying the meaning of the phrase.
We define a grammar jointly over temporal types
and values. The types serve to constrain the parse
and allow for coarse features; the values encode
specific semantics, and allow for finer features.
At the root of a parse tree, we recursively apply

2Some of these special cases are caused by variable days
of the month, daylight savings time, etc. Another class arises
from pragmatically peculiar utterances; e.g., the next Monday
in August uttered in the last week of August should ground to
August of next year (rather than the reference time’s year).

the functions in the tree to obtain a final temporal
value.

This approach can be presented as a rule-to-rule
translation (Bach, 1976; Allen, 1995, p. 263), or
a constrained Synchronous PCFG (Yamada and
Knight, 2001).

Formally, we define our grammar as
G = (Σ, S,V, T,R). The alphabet Σ and start
symbol S retain their usual interpretations. We
define a set V to be the set of types, as described in
Section 3.1. For each v ∈ V we define an (infinite)
set Tv corresponding to the possible instances of
type v. Each node in the tree defines a pair (v, τ)
such that τ ∈ Tv. A rule R ∈ R is defined as
a pair R =

(
vi → vjvk, f : (Tvj , Tvk)→ Tvi

)
.

This definition is trivially adapted for the case of
unary rules.

The form of our rules reveals the synchronous
aspect of our grammar. The structure of the tree is
bound by the first part over types v – these types
are used to populate the chart, and allow for effi-
cient inference. The second part is used to eval-
uate the semantics of the parse, τ ∈ Tvi , and al-
lows partial derivations to be discriminated based
on richer information than the coarse types.

We adopt the preterminals of Angeli et al.
(2012). Each preterminal consists of a type
and a value; neither which are lexically in-
formed. That is, the word week and preterminal
(Week,Duration) are not tied in any way. A total
of 62 preterminals are defined corresponding to in-
stances of Ranges, Sequences, and Durations; these
are summarized in Table 1.

In addition, 10 functions are defined for manip-
ulating temporal expressions (see Table 2). The
majority of these mirror generic operations on in-
tervals on a timeline, or manipulations of a se-
quence. Notably, like intervals, times can be
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Type Example Instances
Range Past, Future, Yesterday,

Tomorrow, Today, Reference,
Year(n), Century(n)

Sequence Friday, January, . . .
DayOfMonth, DayOfWeek, . . .
EveryDay, EveryWeek, . . .

Duration Second, Minute, Hour,
Day, Week, Month, Quarter,
Year, Decade, Century

Table 1: The content-bearing preterminals of the
grammar, arranged by their types. Note that the
Sequence type contains more elements than enu-
merated here; however, only a few of each charac-
teristic type are shown here for brevity.

Function Description
shiftLeft Shift a Range left by a Duration
shiftRight Shift a Range right by a Duration

shrinkBegin Take the first Duration of a Range
shrinkEnd Take the last Duration of a Range

catLeft Take the Duration after a Range
catRight Take the Duration before a Range

moveLeft1 Shift a Sequence left by 1
moveRight1 Shift a Sequence right by 1
nth x of y Take the nth element in y
approximate Make a Duration approximate

Table 2: The functional preterminals of the gram-
mar. The name and a brief description of the func-
tion are given; the functions are most easily in-
terpreted as operations on either an interval or se-
quence. All operations on Ranges can equivalently
be applied to Sequences.

moved (3 weeks ago) or their size changed (the
first two days of the month), or a new interval can
be started from one of the endpoints (the last 2
days). Additionally, a sequence can be modified
by shifting its origin (last Friday), or taking the
nth element of the sequence within some bound
(fourth Sunday in November).

Combination rules in the grammar mirror type-
checked curried function application. For in-
stance, the function moveLeft1 applied to week
(as in last week) yields a grammar rule:

( EveryWeek -1 , Seq. )

( moveLeft1 , Seq.→Seq. ) ( EveryWeek , Seq. )

In more generality, we create grammar rules for
applying a function on either the left or the right,
for all possible type signatures of f : f(x, y) � x
or x� f(x, y).

Additionally, a grammar rule is created for in-
tersecting two Ranges or Sequences, for multiply-
ing a duration by a number, and for absorbing a Nil
span. Each of these can be though of as an implicit
function application (in the last case, the identity
function).

3.3 Differences From Previous Work

While the grammar formalism is strongly inspired
by Angeli et al. (2012), a number of key differ-
ences are implemented to both simplify the frame-
work, and make inference more efficient.

Sequence Grounding The most time-
consuming and conceptually nuanced aspect
of temporal inference in Angeli et al. (2012)
is intersecting Sequences. In particular, there
are two modes of expressing dates which resist
intersection: a day-of-month-based mode and a
week-based mode. Properly grounding a sequence
which defines both a day of the month and a day
of the week (or week of the year) requires backing
off to an expensive search problem.

To illustrate, consider the example: Friday the
13th. Although both a Friday and a 13th of the
month are easily found, the intersection of the two
requires iterating through elements of one until it
overlaps with an element of the other. At train-
ing time, a number of candidate parses are gen-
erated for each phrase. When considering that
these parses can become both complex and prag-
matically unreasonable, this can result in a notice-
able efficiency hit; e.g., during training a sentence
could have a [likely incorrect] candidate interpre-
tation of: nineteen ninety-six Friday the 13ths from
now.

In our Sequence representation, such intersec-
tions are disallowed, in the same fashion as Febru-
ary 30th would be.

Sequence Pragmatics For the sake of simplicity
the pragmatic distribution over possible ground-
ings of a sequence is replaced with the single most
likely offset, as learned empirically from the En-
glish TempEval-2 corpus by Angeli et al. (2012).

No Tag Splitting The Number and Nil types
are no longer split according to their ordinal-
ity/magnitude and subsumed phrase, respectively.
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More precisely, there is a single nonterminal (Nil),
rather than a nonterminal symbol characterizing
the phrase it is subsuming (Nil-the, Nil-a, etc.). This
information is encoded more elegantly as features.

4 Learning

The system is trained using a discriminative k-
best parser, which is able to incorporate arbi-
trary features over partial derivations. We describe
the parser below, followed by the features imple-
mented.

4.1 Parser

Inference A discriminative k-best parser was
used to allow for arbitrary features in the parse
tree. In the first stage, spans of the input sentence
are tagged as either text or numbers. A rule-based
number recognizer was used for each language
to recognize and ground numeric expressions, in-
cluding information on whether the number was
an ordinal (e.g., two versus second). Note that un-
like conventional parsing, a tag can span multiple
words. Numeric expressions are treated as if the
numeric value replaced the expression.

Each rule of the parse derivation was assigned
a score according to a log-linear factor. Specifi-
cally, each rule R = (vi → vjvk, f) with features
over the rule and derivation so far φ(R), subject to
parameters θ, is given a probability:

P (vi | vj , vk, f ; θ) ∝ eθTφ(R) (1)

Naı̈vely, this parsing algorithm gives us a com-
plexity of O(n3k2), where n is the length of the
sentence, and k is the size of the beam. However,
we can approximate the algorithm inO(n3k log k)
time with cube pruning (Chiang, 2007). With
features which are not context-free, we are not
guaranteed an optimal beam with this approach;
however, empirically the approximation yields a
significant efficiency improvement without notice-
able loss in performance.

Training We adopt an EM-style bootstrapping
approach similar to Angeli et al. (2012), in order to
handle the task of parsing the temporal expression
without annotations for the latent parses. Each
training instance is a tuple consisting of the words
in the temporal phrase, the annotated grounded
time τ∗, and the reference time.

Given an input sentence, our parser will out-
put k possible parses; when grounded to the

reference time these correspond to k candidate
times: τ1 . . . τk, each with a normalized probabil-
ity P (τi). This corresponds to an approximate E
step in the EM algorithm, where the distribution
over latent parses is approximated by a beam of
size k. Although for long sentences the number
of parses is far greater than the beam size, as the
parameters improve, increasingly longer sentences
will have correct derivations in the beam. In this
way, a progressively larger percentage of the data
is available to be learned from at each iteration.

To approximate the M step, we define a multi-
class hinge loss l(θ) over the beam, and optimize
using Stochastic Gradient Descent with AdaGrad
(Duchi et al., 2010):

l(θ) = max
0≤i<k

1[τi 6= τ∗] + Pθ(τi)− Pθ(τ∗) (2)

We proceed to describe our features.

4.2 Features
Our framework allows us to define arbitrary fea-
tures over partial derivations. Importantly, this al-
lows us to condition not only on the PCFG proba-
bilities over types but also the partial semantics of
the derivation. We describe the features used be-
low; a summary of these features for a short phrase
is illustrated in Figure 2.

Bracketing Features A feature is defined over
every nonterminal combination, consisting of
the pair of children being combined in that
rule. In particular, let us consider a rule
R = (vi → vjvk, f) corresponding to a CFG rule
vi → vjvk over types, and a function f over the
semantic values corresponding to vj and vk: τj
and τk. Two classes of bracketing features are
extracted: features are extracted over the types
of nonterminals being combined (vj and vk), and
over the top-level semantic derivation of the non-
terminals (f , τj , and τk).

Unlike syntactic parsing, child types of a parse
tree uniquely define the parent type of the rule; this
is a direct consequence of our combination rules
being functions with domains defined in terms
of the temporal types, and therefore necessarily
projecting their inputs into a single output type.
Therefore, the first class of bracketing features –
over types – reduce to have the exact same expres-
sive power as the nonterminal CFG rules of Angeli
et al. (2012). Examples of features in this class are
features 13 and 15 in Figure 2 (b).
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Input (w,t) ( Friday of this week , August 6 2013 )

Latent
parse

FRI ∩ EveryWeek

FRI

Friday

EveryWeek

Nil

of this

EveryWeek

week

Output τ∗ August 9 2013

FRI

Friday

1. < FRI , Friday >

Nil

of this

2. < Nil , of >
3. < Nil , this >
4. < Nil , of this >
5. < nil bias >

EveryWeek

week

6. < EveryWeek , week >

EveryWeek

Nil EveryWeek

7. < Nil of , EveryWeek >

8. < Nil this , EveryWeek >

9. < Nil of this , EveryWeek >

10. < Nil of , Sequence >
11. < Nil this , Sequence >
12. < Nil of this , Sequence >
13. < Nil , Sequence >
14. < Nil , EveryWeek >

FRI ∩ EveryWeek

FRI EveryWeek

15. < Sequence , Sequence >
16. < Intersect , FRI , EveryWeek >

17. < root valid >

(a) (b)

Figure 2: An example parse of Friday of this week, along with the features extracted from the parse.
A summary of the input, latent parse, and output for a particular example is given in (a). The features
extracted for each fragment of the parse are given in (b), and described in detail in Section 4.2.

We now also have the flexibility to extract a sec-
ond class of features from the semantics of the
derivation. We define a feature bracketing the
most recent semantic function applied to each of
the two child derivations; along with the function
being applied in the rule application. If the child
is a preterminal, the semantics of the pretermi-
nal are used; otherwise, the outermost (most re-
cent) function to be applied to the derivation is
used. To illustrate, a tree fragment combining
August and 2013 into August 2013 would
yield the feature<INTERSECT, AUGUST, 2013>.
This can be read as a feature for the rule apply-
ing the intersect function to August and 2013.
Furthermore, intersecting August 2013 with
the 12th of the month would yield a feature
<INTERSECT, INTERSECT, 12th>. This can be
read as applying the intersect function to a subtree
which is the intersection of two terms, and to the
12th of the month. Features 14 and 16 in Figure 2
(b) are examples of such features.

Lexical Features The second large class of fea-
tures extracted are lexicalized features. These are
primarily used for tagging phrases with pretermi-

nals; however, they are also relevant in incorporat-
ing cues from the yield of Nil spans. To illustrate, a
week and the week have very different meanings,
despite differing by only their Nil tagged tokens.

In the first case, a feature is extracted over the
value of the preterminal being extracted, and the
phrase it is subsuming (e.g., features 1–4 and 6 in
Figure 2 (b)). As the type of the preterminal is
deterministic from the value, encoding a feature
on the type of the preterminal would be a coarser
encoding of the same information, and is empir-
ically not useful in this case. Since a multi-word
expression can parse to a single nonterminal, a fea-
ture is extracted for the entire n-gram in addition
to features for each of the individual words. For
example, the phrase of this – of type Nil – would
have features extracted: <NIL, of>, <NIL, this>,
and <NIL, of this>.

In the second case – absorbing Nil-tagged spans
– we extract features over the words under the Nil
span joined with the type and value of the other
derivation (e.g., features 7–12 in Figure 2 (b)).
As above, features are extracted for both n-grams
and for each word in the phrase. For example,
combining of this and week would yield features
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Train Test
System Type Value Type Value
GUTime 0.72 0.46 0.80 0.42
SUTime 0.85 0.69 0.94 0.71
HeidelTime 0.80 0.67 0.85 0.71
ParsingTime 0.90 0.72 0.88 0.72
OurSystem 0.94 0.81 0.91 0.76

Table 3: English results for TempEval-2 attribute
scores for our system and four previous systems.
The scores are calculated using gold extents, forc-
ing an interpretation for each parse.

Train Test
System Type Value Type Value
UC3M — — 0.79 0.72
OurSystem 0.90 0.84 0.92 0.76

Table 4: Spanish results for TempEval-2 attribute
scores for our system and the best known previ-
ous system. The scores are calculated using gold
extents, forcing an interpretation for each parse.

<of, EVERYWEEK>, <this, EVERYWEEK>,
and <of this, EVERYWEEK>.

In both cases, numbers are featurized according
to their order of magnitude, and whether they are
ordinal. Thus, the number tagged from thirty-first
would be featurized as an ordinal number of mag-
nitude 2.

Semantic Validity Although some constraints
can be imposed to help ensure that a top-level
parse will be valid, absolute guarantees are diffi-
cult. For instance, February 30 is never a valid
date; but, it would be difficult to disallow any local
rule in its derivation. To mediate this, an indicator
feature is extracted denoting whether the grounded
semantics of the derivation is valid. This is illus-
trated in Figure 2 (b) by feature 17.

Nil Bias Lastly, an indicator feature is extracted
for each Nil span tagged (feature 5 in Figure 2
(b)). In part, this discourages over-generation of
the type; in another part, it encourages Nil spans to
absorb as many adjacent words as possible.

We proceed to describe our experimental setup
and results.

5 Evaluation

We evaluate our model on all six languages in
the TempEval-2 Task A dataset (Verhagen et al.,

2010), comparing against state-of-the-art systems
for English and Spanish. New results are reported
on smaller datasets from the four other languages.
To our knowledge, there has not been any prior
work on these corpora.

We describe the TempEval-2 datasets in Sec-
tion 5.1, present experimental results in Sec-
tion 5.2, and discuss system errors in Section 5.3.

5.1 TempEval-2 Datasets

TempEval-2, from SemEval 2010, focused on re-
trieving and reasoning about temporal information
from newswire. Our system evaluates against Task
A – detecting and resolving temporal expressions.
Since we perform only the second of these, we
evaluate our system assuming gold detection.

The dataset annotates six languages: English,
Spanish, Italian, French, Chinese, and Korean; of
these, English and Spanish are the most mature.
We describe each of these languages, along with
relevant quirks, below:

English The English dataset consists of 1052
training examples, and 156 test examples. Evalu-
ation was done using the official evaluation script,
which checks for exact match between TIMEX3
tags. Note that this is stricter than our training ob-
jective; for instance, 24 hours and a day have the
same interpretation, but have different TIMEX3
strings. System output was heuristically converted
to the TIMEX3 format; where ambiguities arose,
the convention which maximized training accu-
racy was chosen.

Spanish The Spanish dataset consists of 1092
training examples, and 198 test examples. Evalua-
tion was identical to the English, with the heuristic
TIMEX3 conversion adapted somewhat.

Italian The Italian dataset consists of 523 train-
ing examples, and 126 test examples. Evaluation
was identical to English and Spanish.

Chinese The Chinese dataset consists of 744
training examples, and 190 test examples. Of
these, only 659 training and 143 test examples had
a temporal value marked; the remaining examples
had a type but no value, and are therefore impossi-
ble to predict. Results are also reported on a clean
corpus with these impossible examples omitted.

The Chinese, Korean, and French corpora had
noticeable inconsistencies in the TIMEX3 anno-
tation. Thus, evaluations are reported according
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Train Test
Language # examples Type Value # examples Type Value
English 1052 0.94 0.81 156 0.91 0.76
Spanish 1092 0.90 0.84 198 0.92 0.76
Italian 523 0.89 0.85 126 0.84 0.38
Chinese† 744 0.95 0.65 190 0.87 0.48
Chinese (clean)† 659 0.97 0.73 143 0.97 0.60
Korean† 247 0.83 0.67 91 0.82 0.42
French† 206 0.78 0.76 83 0.78 0.35

Table 5: Our system’s accuracy on all 6 languages of the TempEval-2 corpus. Chinese is divided into two
results: one for the entire corpus, and one which considers only examples for which a temporal value
is annotated. Languages with a dagger (†) were evaluated based on semantic rather than string-match
correctness.

to the training objective: if two TIMEX3 values
ground to the same grounded time, they are con-
sidered equal. For example, in the example above,
24 hours and a day would be marked identical de-
spite having different TIMEX3 strings.

Most TIMEX3 values convert naturally to
a grounded representation; values with wild-
cards representing Sequences (e.g., 1998-QX or
1998-XX-12) ground to the same value as the
Sequence encoding that value would. For instance,
1998-QX is parsed as every quarter in 1998.

Korean The Korean dataset consists of 287
training examples, and 91 test examples. 40 of
the training examples encoded dates as a long in-
teger For example: 003000000200001131951006
grounds to January 13, 2000 at the time 19:51.
These were removed from the training set, yield-
ing 247 examples; however, all three such exam-
ples were left in the test set. Evaluation was done
identically to the Chinese data.

French Lastly, a dataset for French temporal
expressions was compiled from the TempEval-2
data. Unlike the other 5 languages, the French
data included only the raw TIMEX3 annotated
newswire documents, encoded as XML. These
documents were scraped to recover 206 training
examples and 83 test examples. Evaluation was
done identically to the Chinese and Korean data.

We proceed to describe our experimental results
on these datasets.

5.2 Results

We compare our system with state-of-the-art sys-
tems for both English and Spanish. To the best of
our knowledge, no prior work exists for the other

four languages.
We evaluate in the same framework as Angeli et

al. (2012). We compare to previous system scores
when constrained to make a prediction on every
example; if no guess is made, the output is consid-
ered incorrect. This in general yields lower results
for those systems, as the system is not allowed to
abstain on expressions it does not recognize.

The systems compared against are:

• GUTime (Mani and Wilson, 2000), a widely
used, older rule-based system.

• HeidelTime (Strötgen and Gertz, 2010), the
top system at the TempEval-2 task for En-
glish.

• SUTime (Chang and Manning, 2012), a more
recent rule-based system for English.

• ParsingTime (Angeli et al., 2012), a seman-
tic parser for temporal expressions, similar to
this system (see Section 2).

• UC3M (Vicente-Dı́ez et al., 2010), a rule-
based system for Spanish.

Results for the English corpus are shown in Ta-
ble 3. Results for Spanish are shown in Table 4.
Lastly, a summary of results in all six languages is
shown in Table 5.

A salient trend emerges from the results – while
training accuracy is consistently high, test accu-
racy drops sharply for the data-impoverished lan-
guages. This is consistent with what would be
expected from a discriminatively trained model
in data-impoverished settings; however, the con-
sistent training accuracy suggests that the model
nonetheless captures the phenomena it sees in
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Error Class English Spanish
Pragmatics 29% 23%
Type error 16% 5%
Incorrect number 10% 5%
Relative Range 7% 2%
Incorrect parse 19% 36%

Missing context 16% 23%
Bad reference time 3% 6%

Table 6: A summary of errors of our system,
by percentage of incorrect examples for the En-
glish and Spanish datasets. The top section de-
scribes errors which could be handled in our
framework, while the bottom section describes ex-
amples which are either ambiguous (missing con-
text), or are annotated inconsistently relative the
reference time.

training. This suggests the possibility for improv-
ing accuracy further by making use of more data
during training.

5.3 Discussion

We characterize the examples our system parses
incorrectly on the English and Spanish datasets in
Table 6, expanding on each class of error below.

Pragmatics This class of errors is a result of
pragmatic ambiguity over possible groundings of
a sequence – for instance, it is often ambiguous
whether next weekend refers to the coming or sub-
sequent weekend. These errors manifest in either
dropping a function (next, last), or imagining one
that is not supported by the text (e.g., this week
parsed as next week).

Type error Another large class of errors – par-
ticularly in the English dataset – arise from not
matching the annotation’s type, but otherwise pro-
ducing a reasonable response. For instance, the
system may mistake a day on the calendar (a
Range), with a day, the period of time.

Incorrect number A class of mistakes arises
from either omitting numbers from the parse, or
incorrectly parsing numbers – the second case is
particularly prevalent for written years, such as
seventeen seventy-six.

Relative Range These errors arise from attempt-
ing to parse a grounded Range by applying func-
tions to the reference time. For example, from
a reference time of August 8th, it is possible to

“correctly” parse the phrase August 1 as a week
ago; but, naturally, this parse does not general-
ize well. This class of errors, although relatively
small, merits special designation as it suggests a
class of correct responses which are correct for the
wrong reasons. Future work could explore miti-
gating these errors for domains where the text is
further removed from the events it is describing
than most news stories are.

Incorrect parse Errors in this class are a result
of failing to find the correct parse, for a number of
reasons not individually identified. A small sub-
set of these errors (notably, 6% on the Spanish
dataset) are a result of the grammar being insuf-
ficiently expressive with the preterminals we de-
fined. For instance, we cannot capture fractional
units, such as in half an hour.

Missing context A fairly large percentage of our
errors arise from failing to classify inputs which
express ambiguous or poorly defined times. For
example, from time to time (annotated as the fu-
ture), or that time (annotated as 5 years). Many
of these require either some sort of inference or a
broader understanding of the context in which the
temporal phrase is uttered, which our system does
not attempt to capture.

Bad reference time The last class of errors
cover cases where the temporal phrase is clear,
but annotation differs from our judgment of what
would be reasonable. These are a result of assum-
ing that the reference time of an utterance is the
publication time of the article.

6 Conclusion

We have presented a discriminative, multilingual
approach to resolving temporal expressions, using
a language-flexible latent parse and rich features
on both the types and values of partial derivations
in the parse. We showed state-of-the-art results
on both languages in TempEval-2 with prior work,
and presented results on four additional languages.
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