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Abstract

In this paper, we present a new collection
of open-source software libraries that pro-
vides command line binary utilities and library
classes and functions for compiling regular
expression and context-sensitive rewrite rules
into finite-state transducers, and for n-gram
language modeling. The OpenGrm libraries
use the OpenFst library to provide an efficient
encoding of grammars and general algorithms
for building, modifying and applying models.

1 Introduction

The OpenGrm libraries1 are a (growing) collec-
tion of open-source software libraries for build-
ing and applying various kinds of formal gram-
mars. The C++ libraries use the OpenFst library2

for the underlying finite-state representation, which
allows for easy inspection of the resulting grammars
and models, as well as straightforward combination
with other finite-state transducers. Like OpenFst,
there are easy-to-use command line binaries for fre-
quently used operations, as well as a C++ library
interface, allowing library users to create their own
algorithms from the basic classes and functions pro-
vided.

The libraries can be used for a range of com-
mon string processing tasks, such as text normal-
ization, as well as for building and using large sta-
tistical models for applications like speech recogni-
tion. In the rest of the paper, we will present each of
the two libraries, starting with the Thrax grammar
compiler and then the NGram library. First, though,
we will briefly present some preliminary (infor-
mal) background on weighted finite-state transduc-
ers (WFST), just as needed for this paper.

1http://www.opengrm.org/
2http://www.openfst.org/

2 Informal WFST preliminaries

A weighted finite-state transducer consists of a set
of states and transitions between states. There is an
initial state and a subset of states are final. Each tran-
sition is labeled with an input symbol from an input
alphabet; an output symbol from an output alpha-
bet; an origin state; a destination state; and a weight.
Each final state has an associated final weight. A
path in the WFST is a sequence of transitions where
each transition’s destination state is the next transi-
tion’s origin state. A valid path through the WFST is
a path where the origin state of the first transition is
an initial state, and the the last transition is to a final
state. Weights combine along the path according to
the semiring of the WFST.

If every transition in the transducer has the same
input and output symbol, then the WFST represents
a weighted finite-state automaton. In the OpenFst
library, there are a small number of special sym-
bols that can be used. The ε symbol represents the
empty string, which allows the transition to be tra-
versed without consuming any symbol. The φ (or
failure) symbol on a transition also allows it to be
traversed without consuming any symbol, but it dif-
fers from ε in only allowing traversal if the symbol
being matched does not label any other transition
leaving the same state, i.e., it encodes the semantics
of otherwise, which is useful for language models.
For a more detailed presentation of WFSTs, see Al-
lauzen et al. (2007).

3 The Thrax Grammar Compiler

The Thrax grammar compiler3 compiles grammars
that consist of regular expressions, and context-
dependent rewrite rules, into FST archives (fars) of
weighted finite state transducers. Grammars may

3The compiler is named after Dionysius Thrax (170–
90BCE), the reputed first Greek grammarian.
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be split over multiple files and imported into other
grammars. Strings in the rules may be parsed
in one of three different ways: as a sequence of
bytes (the default), as utf8 encodings, or accord-
ing to a user-provided symbol table. With the
--save symbols flag, the transducers can be
saved out into fars with appropriate symbol tables.

The Thrax libraries provide full support for dif-
ferent weight (semiring) classes. The command-line
flag --semiring allows one to set the semiring,
currently to one of: tropical (default), log or log64
semirings.

3.1 General Description
Thrax revolves around rules which, typically, con-
struct an FST based on a given input. In the simplest
case, we can just provide a string that represents a
(trivial) transducer and name it using the assignment
operator:

pear = "pear";

In this example, we have an FST consisting of the
characters “p”, “e”, “a”, and “r” in a chain, assigned
to the identifier pear:

This identifier can be used later in order to build
further FSTs, using built-in operators or using cus-
tom functions:

kiwi = "kiwi";
fruits = pear | kiwi; # union

In Thrax, string FSTs are enclosed by double-quotes
(") whereas simple strings (often used as pathnames
for functions) are enclosed in single-quotes (’).

Thrax provides a set of built-in functions that
aid in the construction of more complex expres-
sions. We have already seen the disjunction “|” in
the previous example. Other standard regular op-
erations are expr*, expr+, expr? and expr{m,n},
the latter repeating expr between m and n times,
inclusive. Composition is notated with “@” so
that expr1 @ expr2 denotes the composition of
expr1 and expr2. Rewriting is denoted with “:”
where expr1 : expr2 rewrites strings that match
expr1 into expr2. Weights can be added to expres-
sions using the notation “<>”: thus, expr<2.4>
adds weight 2.4 to expr. Various operations on
FSTs are also provided by built-in functions, includ-
ing Determinize, Minimize, Optimize and
Invert, among many others.

3.2 Detailed Description

A Thrax grammar consists of a set of one or more
source files, each of which must have the extension
.grm. The compiler compiles each source file to a
single FST archive with the extension .far. Each
grammar file has sections: Imports and Body, each
of which is optional. The body section can include
statements interleaved with functions, as specified
below. Comments begin with a single pound sign
(#) and last until the next newline.

3.2.1 Imports
The Thrax compiler compiles source files (with

the extension .grm) into FST archive files (with
the extension .far). FST archives are an Open-
Fst storage format for a series of one or more FSTs.
The FST archive and the original source file then
form a pair which can be imported into other source
files, allowing a Python-esque include system that is
hopefully familiar to many. Instead of working with
a monolithic file, Thrax allows for a modular con-
struction of the final rule set as well as sharing of
common elements across projects.

3.2.2 Functions
Thrax has extensive support for functions that can

greatly augment the capabilities of the language.
Functions in Thrax can be specified in two ways.
The first is inline via the func keyword within grm
files. These functions can take any number of input
arguments and must return a single result (usually an
FST) to the caller via the return keyword:

func DumbPluralize[fst] {
# Concatenate with "s"...
result = fst "s";
# ...and then return to caller.
return result;

}

Alternatively, functions can be written C++ and
added to the language. Regardless of the func-
tion implementation method (inline in Thrax or
subclassed in C++), functions are integrated into
the Thrax environment and can be called directly
by using the function name and providing the
necessary arguments. Thus, assuming someone has
written a function called NetworkPluralize
that retrieves the plural of a word from some web-
site, one could write a grammar fragment as follows:

62



apple = "apple";
plural_apple = DumbPluralize[apple];

plural_tomato = NetworkPluralize[
"tomato",
’http://server:port/...’];

3.2.3 Statements
Functions can be interleaved with grammar state-

ments that generate the FSTs that are exported to the
FST archive as output. Each statement consists of an
assignment terminating with a semicolon:

foo = "abc";
export bar = foo | "xyz";

Statements preceded with the export keyword will
be written to the final output archive. Statements
lacking this keyword define temporaries that be used
later, but are themselves not output.

The basic elements of any grammar are string
FSTs, which, as mentioned earlier, are defined by
text enclosed by double quotes ("), in contrast to
raw strings, which are enclosed by single quotes (’).
String FSTs can be parsed in one of three ways,
which are denoted using a dot (.) followed by ei-
ther byte, utf8, or an identifier holding a symbol ta-
ble. Note that within strings, the backslash character
(\) is used to escape the next character. Of partic-
ular note, ‘\n’ translates into a newline, ‘\r’ into
a line feed, and ‘\t’ into the tab character. Literal
left and right square brackets also need escaping, as
they are used to generate symbols (see below). All
other characters following the backslash are unin-
terpreted, so that we can use \” and \’ to insert an
actual quote (double) quote symbol instead of termi-
nating the string.

Strings, by default, are interpreted as sequences
of bytes, each transition of the resulting FST
corresponding to a single 1-byte character of the
input. This can be specified either by leaving off the
parse mode ("abc") or by explicitly using the byte
mode ("abc".byte). The second way is to use
UTF8 parsing by using the special keyword, e.g.:

Finally, we can load a symbol table and split
the string using the fst field separator flag
(found in fst/src/lib/symbol-table.cc)
and then perform symbol table lookups. Symbol ta-
bles can be loaded using the SymbolTable built-in
function:

arctic_symbol_table =
SymbolTable[’/path/to/bears.symtab’];

pb = "polar bear".arctic_symbol_table;

One can also create temporary symbols on the
fly by enclosing a symbol name inside brackets
within an FST string. All of the text inside the
brackets will be taken to be part of the symbol
name, and future encounters of the same symbol
name will map to the same label. By default, la-
bels use “Private Use Area B” of the unicode ta-
ble (0x100000 - 0x10FFFD), except that the last two
code points 0x10FFFC and 0x10FFFD are reserved
for the “[BOS]” and “[EOS]” tags discussed below.
cross_pos = "cross" ("" : "_[s_noun]");
pluralize_nouns = "_[s_noun]" : "es";

3.3 Standard Library Functions and
Operations

Built-in functions are provided that operate on FSTs
and perform most of the operations that are available
in the OpenFst library. These include: closure, con-
catenation, difference, composition and union. In
most cases the notation of these functions follows
standard conventions. Thus, for example, for clo-
sure, the following syntax applies: fst* (accepts fst
0 or more times); fst+ (accepts fst 1 or more times);
fst? (accepts fst 0 or 1 times) fst{x,y} (accepts fst at
least x but no more than y times).

The operator “@” is used for composition: a @
b denotes a composed with b. A “:” is used to de-
note rewrite, where a : b denotes a transducer
that deletes a and inserts b. Most functions can also
be expressed using functional notation:
b = Rewrite["abc", "def"];

The delimiters< and> add a weight to an expres-
sion in the chosen semiring: a<3> adds the weight
3 (in the tropical semiring by default) to a.

Functions lacking operators (hence only called
by function name) include: ArcSort, Connect,
Determinize, RmEpsilon, Minimize,
Optimize, Invert, Project and Reverse.
Most of these call the obvious underlying OpenFst
function.

One function in particular, CDRewrite is worth
further discussion. This function takes a transducer
and two context acceptors (and the alphabet ma-
chine), and generates a new FST that performs a
context dependent rewrite everywhere in the pro-
vided contexts. The context-dependent rewrite algo-
rithm used is that of Mohri and Sproat (1996), and
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see also Kaplan and Kay (1994). The fourth argu-
ment (sigma star) needs to be a minimized ma-
chine. The fifth argument selects the direction of
rewrite; we can either rewrite left-to-right or right-
to-left or simultaneously. The sixth argument selects
whether the rewrite is optional.

CDRewrite[tau, lambda, rho,
sigma_star,
’ltr’|’rtl’|’sim’,
’obl’|’opt’]

For context-dependent rewrite rules, two built-in
symbols “[BOS]” and “[EOS]” have a special mean-
ing in the context specifications: they refer to the
beginning and end of string, respectively.

There are also built-in functions that perform
other tasks. In the interest of space we concentrate
here on the StringFile function, which loads a
file consisting of a list of strings, or tab-separated
pairs of strings, and compiles them to an acceptor
that represents the union of the strings.

StringFile[’strings_file’]

While it is equivalent to the union of the individual
string (pairs), StringFile uses an efficient algo-
rithm for constructing a prefix tree (trie) from the
list and can be significantly more efficient than com-
puting a union for large lists. If a line consists of a
tab-separated pair of strings a, b, a transducer equiv-
alent to Rewrite[a, b] is compiled.

The optional keywords byte (default), utf8 or
the name of a symbol table can be used to specify
the parsing mode for the strings. Thus

StringFile[’strings_file’, utf8, my_symtab]

would parse a sequence of tab-separated pairs, using
utf8 parsing for the left-hand string, and the symbol
table my symtab for the right-hand string.

4 NGram Library

The OpenGrm NGram library contains tools for
building, manipulating and using n-gram language
models represented as weighted finite-state trans-
ducers. The same finite-state topology is used to en-
code raw counts as well as smoothed models. Here
we briefly present this structure, followed by details
on the operations manipulating it.

An n-gram is a sequence of n symbols: w1 . . . wn.
Each state in the model represents a prefix history
of the n-gram (w1 . . . wn−1), and transitions in the
model represent either n-grams or backoff transi-
tions following that history. Figure 1 lists conven-
tions for states and transitions used to encode the
n-grams as a WFST.

This representation is similar to that used in other
WFST-based n-gram software libraries, such as the
AT&T GRM library (Allauzen et al., 2005). One
key difference is the implicit representation of <s>
and </s>, as opposed to encoding them as symbols
in the grammar. This has the benefit of including all
start and stop symbol functionality while avoiding
common pitfalls that arise with explicit symbols.

Another difference from the GRM library repre-
sentation is explicit inclusion of failure links from
states to their backoff states even in the raw count
files. The OpenGrm n-gram FST format is consis-
tent through all stages of building the models, mean-
ing that model manipulation (e.g., merging of two

Figure 1: List of state and transition conventions used to encode collection of n-grams in WFST.
An n-gram is a sequence of n symbols: w1 . . . wn. Its proper prefixes include all sequences w1 . . . wk for k < n.
• There is a unigram state in every model, representing the empty string.
• Every proper prefix of every n-gram in the model has an associated state in the model.
• The state associated with an n-gram w1...wn has a backoff transition (labeled with ε) to the state associated

with its suffix w2...wn.
• An n-gram w1...wn is represented as a transition, labeled with wn, from the state associated with its prefix
w1...wn−1 to a destination state defined as follows:

– If w1...wn is a proper prefix of an n-gram in the model, then the destination of the transition is the state
associated with w1...wn

– Otherwise, the destination of the transition is the state associated with the suffix w2...wn.
• Start and end of the sequence are not represented via transitions in the automaton or symbols in the symbol

table. Rather
– The start state of the automaton encodes the “start of sequence” n-gram prefix (commonly denoted<s>).
– The end of the sequence (often denoted </s>) is included in the model through state final weights, i.e.,

for a state associated with an n-gram prefix w1...wn, the final weight of that state represents the weight
of the n-gram w1...wn</s>.
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(a)

ε

ε

ε

a/0

a/-1.1

b/-1.1

b/0

b/-0.69
a/-0.690

0

(b)

ε/0.693

ε/0.916

a/0.336

a/0.847

b/0.847

b/0.99

b/0.56
a/0.560.946

1.36
ε/0.916

Figure 2: FST representations of (a) bigram and unigram
counts; and (b) smoothed bigram model, when trained on the
single string “a b a b b a”

models or count files, or pruning them) can be pro-
cessed by the same operations. By convention, all
counts and probabilities are stored as negative logs,
and the FSTs are in the Tropical semiring. The sym-
bol table provided during counting is kept with the
model FSTs.

4.1 N-gram Counting
The command line binary ngramcount takes as
input an FST archive (far) consisting of a collection
of acyclic WFSTs and outputs an n-gram WFST of
the specified order. The acyclic WFSTs can be linear
automata representing strings from a corpus – easily
compiled using the farcompilestrings com-
mand of OpenFst – or weighted word lattices output
from, say, a speech recognition or machine transla-
tion system. In such a way, expected frequencies of
n-grams can be counted. To count all trigrams, bi-
grams and unigrams in the compiled (far) corpus:
ngramcount -order=3 in.far >3g.cnt.fst

For example, counting with the -order=2 flag
(bigrams) from a corpus consisting of a single string
“a b a b b a” yields the FST in Figure 2(a).
Each state represents a prefix history: the leftmost
state is the initial state, representing the <s> his-
tory; the central state is the unigram state, represent-
ing the ε history; the topmost state represents the his-

tory ‘a’; and the bottom state represents the history
‘b’. Since this is a bigram model, histories consist of
at most one prior symbol from the vocabulary. Dou-
ble circles represent final states, which come with a
final weight encoding the negative log count of end-
ing the string at that state. Only the ‘a’ history state
and the unigram state are final states, since our ex-
ample string ends with the symbol ‘a’. (The unigram
state is always final.) The ε transitions are backoff
transitions, and the weights on each n-gram transi-
tion are negative log counts of that symbol occurring
following the history that the state represents. Hence
the bigram “b b” occurs once, yielding a negative
log of zero for the transition labeled with ‘b’ leaving
the state representing the history ‘b’.

4.2 N-gram Model Parameter Estimation
Given counts, one can build a smoothed n-gram
model by normalizing and smoothing, which is ac-
complished with the ngrammake command line
binary. The library has several available smooth-
ing methods, including Katz (1987), absolute dis-
counting (Ney et al., 1994), Kneser-Ney (1995) and
(the default) Witten-Bell (1991). See Chen and
Goodman (1998) for a detailed presentation of these
smoothing methods. Each of these smoothing meth-
ods is implemented as a relatively simple derived
subclass, thus allowing for straightforward exten-
sion to new and different smoothing methods. To
make a smoothed n-gram model from counts:
ngrammake 3g.cnt.fst >3g.mod.fst

Figure 2(b) shows the model built using the de-
fault Witten-Bell smoothing from the count FST in
2(a). The topology remains identical, but now the
n-gram transition weights and final weights are neg-
ative log probabilities. The backoff transitions (la-
beled with ε) have the negative log backoff weights,
which ensure that the model is correctly normalized.

Models, by default, are smoothed by interpolat-
ing higher- and lower-order probabilities. This is
even true for methods more typically associated with
backoff (rather than mixture) smoothing styles, such
as Katz. While the smoothing values are estimated
using interpolation, the model is encoded as a back-
off model by pre-summing the interpolated proba-
bilities, so that the backoff transitions are to be tra-
versed only for symbols without transitions out of
the current state. While these backoff transitions are
labeled with ε, see Section 4.4 for discussion of ap-
plying them as failure transitions.
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4.3 N-gram Model Merging and Pruning
Two n-gram count FSTs or two model FSTs can be
merged into a single FST using ngrammerge, with
command line flags to allow for scaling of each of
the two, and to indicate whether to carry out full nor-
malization. This approach allows for various sorts of
MAP adaptation approaches for the n-gram models
(Bacchiani et al., 2006). To merge two input FST
models with no scaling:
ngrammerge in.mod1 in.mod2 >mrg.mod

N-gram model pruning is provided with three dif-
ferent methods: count pruning based on a threshold;
the method from Seymore and Rosenfeld (1996);
and relative entropy pruning of Stolcke (1998). Like
smoothing, each of these pruning methods is imple-
mented as a relatively simple derived subclass, thus
allowing for straightforward extension to new and
different pruning methods. To prune a smoothed n-
gram model:
ngramshrink -theta=4 in.mod >prn.mod

4.4 N-gram Utilities
In addition to the above detailed core operations on
language models, the OpenGrm NGram library has
a number of utilities that make building and using
the models very easy. There are utilities related
to input and output, including ngramsymbols,
which produces a symbol table from a corpus;
ngramread, which reads in textual count files
and models in ARPA format and encodes them
as an FST; ngramprint which prints n-gram
counts or ARPA format text files; and ngraminfo
which displays information about the model, such
as number of n-grams of various orders. There
are also utilities related to the use of the models,
including ngramapply, which applies the model
to an input FST archive (far); ngramrandgen
which randomly generates strings from the model;
and ngramperplexity which calculates the per-
plexity of a corpus given the model. Note that
ngramapply includes options for interpreting the
backoff transitions as failure transitions.
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