
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 363–367,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Fast and Robust Part-of-Speech Tagging Using Dynamic Model Selection

Jinho D. Choi
Department of Computer Science
University of Colorado Boulder
choijd@colorado.edu

Martha Palmer
Department of Linguistics

University of Colorado Boulder
mpalmer@colorado.edu

Abstract

This paper presents a novel way of improv-
ing POS tagging on heterogeneous data. First,
two separate models are trained (generalized
and domain-specific) from the same data set
by controlling lexical items with different doc-
ument frequencies. During decoding, one of
the models is selected dynamically given the
cosine similarity between each sentence and
the training data. This dynamic model selec-
tion approach, coupled with a one-pass, left-
to-right POS tagging algorithm, is evaluated
on corpora from seven different genres. Even
with this simple tagging algorithm, our sys-
tem shows comparable results against other
state-of-the-art systems, and gives higher ac-
curacies when evaluated on a mixture of the
data. Furthermore, our system is able to tag
about 32K tokens per second. We believe that
this model selection approach can be applied
to more sophisticated tagging algorithms and
improve their robustness even further.

1 Introduction

When it comes to POS tagging, two things must be
checked. First, a POS tagger needs to be tested for
its robustness in handling heterogeneous data.1 Sta-
tistical POS taggers perform very well when their
training and testing data are from the same source,
achieving over 97% tagging accuracy (Toutanova et
al., 2003; Giménez and Màrquez, 2004; Shen et
al., 2007). However, the performance degrades in-
creasingly as the discrepancy between the training

1We use the term “heterogeneous data” as a mixture of data
collected from several different sources.

and testing data gets larger. Thus, to ensure robust-
ness, a tagger needs to be evaluated on several dif-
ferent kinds of data. Second, a POS tagger should be
tested for its speed. POS tagging is often performed
as a pre-processing step to other tasks (e.g., pars-
ing, chunking) and it should not be a bottleneck for
those tasks. Moreover, recent NLP tasks deal with
very large-scale data where tagging speed is critical.

To improve robustness, we first train two separate
models; one is optimized for a general domain and
the other is optimized for a domain specific to the
training data. During decoding, we dynamically se-
lect one of the models by measuring similarities be-
tween input sentences and the training data. Our hy-
pothesis is that the domain-specific and generalized
models perform better for sentences similar and not
similar to the training data, respectively. In this pa-
per, we describe how to build both models using the
same training data and select an appropriate model
given input sentences during decoding. Each model
uses a one-pass, left-to-right POS tagging algorithm.
Even with the simple tagging algorithm, our system
gives results that are comparable to two other state-
of-the-art systems when coupled with this dynamic
model selection approach. Furthermore, our system
shows noticeably faster tagging speed compared to
the other two systems.

For our experiments, we use corpora from seven
different genres (Weischedel et al., 2011; Nielsen et
al., 2010). This allows us to check the performance
of each system on different kinds of data when run
individually or selectively. To the best of our knowl-
edge, this is the first time that a POS tagger has been
evaluated on such a wide variety of data in English.

363

2 Approach

2.1 Training generalized and domain-specific
models using document frequency

Consider training data as a collection of documents
where each document contains sentences focusing
on a similar topic. For instance, in the Wall Street
Journal corpus, a document can be an individual file
or all files within each section.2 To build a gener-
alized model, lexical features (e.g., n-gram word-
forms) that are too specific to individual documents
should be avoided so that a classifier can place more
weight on features common to all documents.

To filter out these document-specific features, a
threshold is set for the document frequency of each
lowercase simplified word-form (LSW) in the train-
ing data. A simplified word-form (SW) is derived by
applying the following regular expressions sequen-
tially to the original word-form, w. ‘replaceAll’ is a
function that replaces all matches of the regular ex-
pression in w (the 1st parameter) with the specific
string (the 2nd parameter). In a simplified word, all
numerical expressions are replaced with 0.

1. w.replaceAll(\d%, 0) (e.g., 1% → 0)

2. w.replaceAll(\$\d, 0) (e.g., $1 → 0)

3. w.replaceAll(∧\.\d, 0) (e.g., .1 → 0)

4. w.replaceAll(\d(,|:|-|\/|\.)\d, 0)
(e.g., 1,2|1:2|1-2|1/2|1.2 → 0)

5. w.replaceAll(\d+, 0) (e.g., 1234 → 0)

A LSW is a decapitalized SW. Given a set of LSW’s
whose document frequencies are greater than a cer-
tain threshold, a model is trained by using only lexi-
cal features associated with these LSW’s. For a gen-
eralized model, we use a threshold of 2, meaning
that only lexical features whose LSW’s occur in at
least 3 documents of the training data are used. For
a domain-specific model, we use a threshold of 1.

The generalized and domain-specific models are
trained separately; their learning parameters are op-
timized by running n-fold cross-validation where n
is the total number of documents in the training data
and grid search on Liblinear parameters c and B (see
Section 2.4 for more details about the parameters).

2For our experiments, we treat each section of the Wall
Street Journal as one document.

2.2 Dynamic model selection during decoding

Once both generalized and domain-specific models
are trained, alternative approaches can be adapted
for decoding. One is to run both models and merge
their outputs. This approach can produce output that
is potentially more accurate than output from either
model, but takes longer to decode because the merg-
ing cannot be processed until both models are fin-
ished. Instead, we take an alternative approach, that
is to select one of the models dynamically given the
input sentence. If the model selection is done ef-
ficiently, this approach runs as fast as running just
one model, yet can give more robust performance.

The premise of this dynamic model selection is
that the domain-specific model performs better for
input sentences similar to its training space, whereas
the generalized model performs better for ones that
are dissimilar. To measure similarity, a set of SW’s,
say T , used for training the domain-specific model
is collected. During decoding, a set of SW’s in each
sentence, say S, is collected. If the cosine similarity
between T and S is greater than a certain threshold,
the domain-specific model is selected for decoding;
otherwise, the generalized model is selected.

0.0710 0.02 0.04

190

0

40

80

120

160

Cosine Similarity

O
cc

ur
re

nc
e

5%

Figure 1: Cosine similarity distribution: the y-axis shows
the number of occurrences for each cosine similarity dur-
ing cross-validation.

The threshold is derived automatically by running
cross-validation; for each fold, both models are run
simultaneously and cosine similarities of sentences
on which the domain-specific model performs bet-
ter are extracted. Figure 1 shows the distribution
of cosine similarities extracted during our cross-
validation. Given the cosine similarity distribution,
the similarity at the first 5% area (in this case, 0.025)
is taken as the threshold.

364

2.3 Tagging algorithm and features

Each model uses a one-pass, left-to-right POS tag-
ging algorithm. The motivation is to analyze how
dynamic model selection works with a simple algo-
rithm first and then apply it to more sophisticated
ones later (e.g., bidirectional tagging algorithm).

Our feature set (Table 1) is inspired by Giménez
and Màrquez (2004) although ambiguity classes are
derived selectively for our case. Given a word-form,
we count how often each POS tag is used with the
form and keep only ones above a certain threshold.
For both generalized and domain-specific models, a
threshold of 0.7 is used, which keeps only POS tags
used with their forms over 70% of the time. From
our experiments, we find this to be more useful than
expanding ambiguity classes with lower thresholds.

Lexical
fi±{0,1,2,3}, (mi−2,i−1), (mi−1,i), (mi−1,i+1),
(mi,i+1), (mi+1,i+2), (mi−2,i−1,i), (mi−1,i,i+1),
(mi,i+1,i+2), (mi−2,i−1,i+1), (mi−1,i+1,i+2)

POS
pi−{3,2,1}, ai+{0,1,2,3}, (pi−2,i−1), (ai+1,i+2),
(pi−1, ai+1), (pi−2, pi−1, ai), (pi−2, pi−1, ai+1),
(pi−1, ai, ai+1), (pi−1, ai+1, ai+2)

Affix c:1, c:2, c:3, cn:, cn−1:, cn−2:, cn−3:

Binary
initial uppercase, all uppercase/lowercase,
contains 1/2+ capital(s) not at the beginning,
contains a (period/number/hyphen)

Table 1: Feature templates. i: the index of the current
word, f : SW, m: LSW, p: POS, a: ambiguity class, c∗:
character sequence in wi (e.g., c:2: the 1st and 2nd char-
acters of wi, cn−1:: the n-1’th and n’th characters of wi).
See Giménez and Màrquez (2004) for more details.

2.4 Machine learning

Liblinear L2-regularization, L1-loss support vector
classification is used for our experiments (Hsieh et
al., 2008). From several rounds of cross-validation,
learning parameters of (c = 0.2, e = 0.1, B = 0.4) and
(c = 0.1, e = 0.1, B = 0.9) are found for the gener-
alized and domain-specific models, respectively (c:
cost, e: termination criterion, B: bias).

3 Related work

Toutanova et al. (2003) introduced a POS tagging
algorithm using bidirectional dependency networks,
and showed the best contemporary results. Giménez
and Màrquez (2004) used one-pass, left-to-right
and right-to-left combined tagging algorithm and
achieved near state-of-the-art results. Shen et al.

(2007) presented a tagging approach using guided
learning for bidirectional sequence classification and
showed current state-of-the-art results.3

Our individual models (generalized and domain-
specific) are similar to Giménez and Màrquez (2004)
in that we use a subset of their features and take one-
pass, left-to-right tagging approach, which is a sim-
pler version of theirs. However, we use Liblinear for
learning, which trains much faster than their classi-
fier, Support Vector Machines.

4 Experiments

4.1 Corpora

For training, sections 2-21 of the Wall Street Jour-
nal (WSJ) from OntoNotes v4.0 (Weischedel et al.,
2011) are used. The entire training data consists of
30,060 sentences with 731,677 tokens. For evalua-
tion, corpora from seven different genres are used:
the MSNBC broadcasting conversation (BC), the
CNN broadcasting news (BN), the Sinorama news
magazine (MZ), the WSJ newswire (NW), and the
GALE web-text (WB), all from OntoNotes v4.0. Ad-
ditionally, the Mipacq clinical notes (CN) and the
Medpedia articles (MD) are used for evaluation of
medical domains (Nielsen et al., 2010). Table 2
shows distributions of these evaluation sets.

4.2 Accuracy comparisons

Our models are compared with two other state-of-
the-art systems, the Stanford tagger (Toutanova et
al., 2003) and the SVMTool (Giménez and Màrquez,
2004). Both systems are trained with the same train-
ing data and use configurations optimized for their
best reported results. Tables 3 and 4 show tagging
accuracies of all tokens and unknown tokens, re-
spectively. Our individual models (Models D and
G) give comparable results to the other systems.
Model G performs better than Model D for BC, CN,
and MD, which are very different from the WSJ.
This implies that the generalized model shows its
strength in tagging data that differs from the train-
ing data. The dynamic model selection approach
(Model S) shows the most robust results across gen-
res, although Models D and G still can perform

3Some semi-supervised and domain-adaptation approaches
using external data had shown better performance (Daume III,
2007; Spoustová et al., 2009; Søgaard, 2011).

365

BC BN CN MD MZ NW WB Total
Source MSNBC CNN Mipacq Medpedia Sinorama WSJ ENG -
Sentences 2,076 1,969 3,170 1,850 1,409 1,640 1,738 13,852
All tokens 31,704 31,328 35,721 34,022 32,120 39,590 34,707 239,192
Unknown tokens 3,077 1,284 6,077 4,755 2,663 983 2,609 21,448

Table 2: Distributions of evaluation sets. The Total column indicates a mixture of data from all genres.

BC BN CN MD MZ NW WB Total
Model D 91.81 95.27 87.36 90.74 93.91 97.45 93.93 92.97
Model G 92.65 94.82 88.24 91.46 93.24 97.11 93.51 93.05
Model S 92.26 95.13 88.18 91.34 93.88 97.46 93.90 93.21
G over D 50.63 36.67 68.80 40.22 21.43 9.51 36.02 41.74
Stanford 87.71 95.50 88.49 90.86 92.80 97.42 94.01 92.50

SVMTool 87.82 95.13 87.86 90.54 92.94 97.31 93.99 92.32

Table 3: Tagging accuracies of all tokens (in %). Models D and G indicate domain-specific and generalized models,
respectively and Model S indicates the dynamic model selection approach. “G over D” shows how often Model G is
selected over Model D using the dynamic selection (in %).

BC BN CN MD MZ NW WB Total
Model S 60.97 77.73 68.69 67.30 75.97 88.40 76.27 70.54
Stanford 19.24 87.31 71.20 64.82 66.28 88.40 78.15 64.32

SVMTool 19.08 78.35 66.51 62.94 65.23 86.88 76.47 47.65

Table 4: Tagging accuracies of unknown tokens (in %).

better for individual genres (except for NW, where
Model S performs better than any other model).

For both all and unknown token experiments,
Model S performs better than the other systems
when evaluated on a mixture of the data (the Total
column). The differences are statistically significant
for both experiments (McNemar’s test, p < .0001).
The Stanford tagger gives significantly better results
for unknown tokens in BN; we suspect that this is
where their bidirectional tagging algorithm has an
advantage over our simple left-to-right algorithm.

4.3 Speed comparisons

Tagging speeds are measured by running each sys-
tem on the mixture of all data. Our system and the
Stanford system are both written in Java; the Stan-
ford tagger provides APIs that allow us to make fair
comparisons between the two systems. The SVM-
Tool is written in Perl, so there is a systematic dif-
ference between the SVMTool and our system.

Table 5 shows speed comparisons between these
systems. All experiments are evaluated on an In-
tel Xeon 2.57GHz machine. Our system tags about
32K tokens per second (0.03 milliseconds per to-

ken), which includes run-time for both POS tagging
and model selection.

Stanford SVMTool Model S
tokens / sec. 421 1,163 31,914

Table 5: Tagging speeds.

5 Conclusion

We present a dynamic model selection approach that
improves the robustness of POS tagging on hetero-
geneous data. We believe that this approach can
be applied to more sophisticated algorithms and im-
prove their robustness even further. Our system also
shows noticeably faster tagging speed against two
other state-of-the-art systems. For future work, we
will experiment with more diverse training and test-
ing data and also more sophisticated algorithms.

Acknowledgments

This work was supported by the SHARP program
funded by ONC: 90TR0002/01. The content is
solely the responsibility of the authors and does not
necessarily represent the official views of the ONC.

366

References
Hal Daume III. 2007. Frustratingly Easy Domain Adap-

tation. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
ACL’07, pages 256–263.

Jesús Giménez and Lluı́s Màrquez. 2004. SVMTool: A
general POS tagger generator based on Support Vec-
tor Machines. In Proceedings of the 4th International
Conference on Language Resources and Evaluation,
LREC’04.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya
Keerthi, and S. Sundararajan. 2008. A Dual Coordi-
nate Descent Method for Large-scale Linear SVM. In
Proceedings of the 25th international conference on
Machine learning, ICML’08, pages 408–415.

Rodney D. Nielsen, James Masanz, Philip Ogren, Wayne
Ward, James H. Martin, Guergana Savova, and Martha
Palmer. 2010. An architecture for complex clinical
question answering. In Proceedings of the 1st ACM
International Health Informatics Symposium, IHI’10,
pages 395–399.

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007.
Guided Learning for Bidirectional Sequence Classi-
fication. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
ACL’07, pages 760–767.

Anders Søgaard. 2011. Semi-supervised condensed
nearest neighbor for part-of-speech tagging. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, ACL’11, pages 48–52.

Drahomı́ra ”johanka” Spoustová, Jan Hajič, Jan Raab,
and Miroslav Spousta. 2009. Semi-supervised Train-
ing for the Averaged Perceptron POS Tagger. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics, EACL’09, pages 763–771.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network.
In Proceedings of the Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology,
NAACL’03, pages 173–180.

Ralph Weischedel, Eduard Hovy, Martha Palmer, Mitch
Marcus, Robert Belvin, Sameer Pradhan, Lance
Ramshaw, and Nianwen Xue. 2011. OntoNotes: A
Large Training Corpus for Enhanced Processing. In
Joseph Olive, Caitlin Christianson, and John McCary,
editors, Handbook of Natural Language Processing
and Machine Translation. Springer.

367

