
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 1–5,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Higher-Order Constituent Parsing and Parser Combination∗

Xiao Chen and Chunyu Kit
Department of Chinese, Translation and Linguistics

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong SAR, China

{cxiao2,ctckit}@cityu.edu.hk

Abstract

This paper presents a higher-order model for
constituent parsing aimed at utilizing more lo-
cal structural context to decide the score of
a grammar rule instance in a parse tree. Ex-
periments on English and Chinese treebanks
confirm its advantage over its first-order ver-
sion. It achieves its best F1 scores of 91.86%
and 85.58% on the two languages, respec-
tively, and further pushes them to 92.80%
and 85.60% via combination with other high-
performance parsers.

1 Introduction

Factorization is crucial to discriminative parsing.
Previous discriminative parsing models usually fac-
tor a parse tree into a set of parts. Each part is scored
separately to ensure tractability. In dependency
parsing (DP), the number of dependencies in a part
is called the order of a DP model (Koo and Collins,
2010). Accordingly, existing graph-based DP mod-
els can be categorized into tree groups, namely, the
first-order (Eisner, 1996; McDonald et al., 2005a;
McDonald et al., 2005b), second-order (McDonald
and Pereira, 2006; Carreras, 2007) and third-order
(Koo and Collins, 2010) models.

Similarly, we can define the order of constituent
parsing in terms of the number of grammar rules
in a part. Then, the previous discriminative con-
stituent parsing models (Johnson, 2001; Henderson,
2004; Taskar et al., 2004; Petrov and Klein, 2008a;

∗The research reported in this paper was partially supported
by the Research Grants Council of HKSAR, China, through the
GRF Grant 9041597 (CityU 144410).

Petrov and Klein, 2008b; Finkel et al., 2008) are the
first-order ones, because there is only one grammar
rule in a part. The discriminative re-scoring models
(Collins, 2000; Collins and Duffy, 2002; Charniak
and Johnson, 2005; Huang, 2008) can be viewed as
previous attempts to higher-order constituent pars-
ing, using some parts containing more than one
grammar rule as non-local features.

In this paper, we present a higher-order con-
stituent parsing model1 based on these previous
works. It allows multiple adjacent grammar rules
in each part of a parse tree, so as to utilize more
local structural context to decide the plausibility of
a grammar rule instance. Evaluated on the PTB
WSJ and Chinese Treebank, it achieves its best F1
scores of 91.86% and 85.58%, respectively. Com-
bined with other high-performance parsers under
the framework of constituent recombination (Sagae
and Lavie, 2006; Fossum and Knight, 2009), this
model further enhances the F1 scores to 92.80% and
85.60%, the highest ones achieved so far on these
two data sets.

2 Higher-order Constituent Parsing

Discriminative parsing is aimed to learn a function
f : S → T from a set of sentences S to a set of valid
parses T according to a given CFG, which maps an
input sentence s ∈ S to a set of candidate parses
T (s). The function takes the following discrimina-
tive form:

f(s) = arg max
t∈T (s)

g(t, s) (1)

1http://code.google.com/p/gazaparser/

1



thea portion of

DT

will32$ million realized from the sales be ...

VPNP

NP

QP PPVBN

IN

PP

begin(b) split(m) end(e)

...

Figure 1: A part of a parse tree centered at NP→ NP VP

where g(t, s) is a scoring function to evaluate the
event that t is the parse of s. Following Collins
(2002), this scoring function is formulated in the lin-
ear form

g(t, s) = θ ·Ψ(t, s), (2)

where Ψ(t, s) is a vector of features and θ the vector
of their associated weights. To ensure tractability,
this model is factorized as

g(t, s) =
∑
r∈t

g(Q(r), s) =
∑
r∈t

θ · Φ(Q(r), s), (3)

where g(Q(r), s) scores Q(r), a part centered at
grammar rule instance r in t, and Φ(Q(r), s) is the
vector of features for Q(r). Each Q(r) makes its
own contribution to g(t, s). A part in a parse tree
is illustrated in Figure 1. It consists of the center
grammar rule instance NP→ NP VP and a set of im-
mediate neighbors, i.e., its parent PP → IN NP, its
children NP → DT QP and VP → VBN PP, and its
sibling IN → of. This set of neighboring rule in-
stances forms a local structural context to provide
useful information to determine the plausibility of
the center rule instance.

2.1 Feature
The feature vector Φ(Q(r), s) consists of a series
of features {φi(Q(r), s))|i ≥ 0}. The first feature
φ0(Q(r), s) is calculated with a PCFG-based gen-
erative parsing model (Petrov and Klein, 2007), as
defined in (4) below, where r is the grammar rule in-
stance A → B C that covers the span from the b-th

to the e-th word, splitting at the m-th word, x, y and
z are latent variables in the PCFG-based model, and
I(·) and O(·) are the inside and outside probabili-
ties, respectively.

All other features φi(Q(r), s) are binary func-
tions that indicate whether a configuration exists in
Q(r) and s. These features are by their own na-
ture in two categories, namely, lexical and structural.
All features extracted from the part in Figure 1 are
demonstrated in Table 1. Some back-off structural
features are used for smoothing, which cannot be
presented due to limited space. With only lexical
features in a part, this parsing model backs off to a
first-order one similar to those in the previous works.
Adding structural features, each involving a least a
neighboring rule instance, makes it a higher-order
parsing model.

2.2 Decoding

The factorization of the parsing model allows us to
develop an exact decoding algorithm for it. Follow-
ing Huang (2008), this algorithm traverses a parse
forest in a bottom-up manner. However, it deter-
mines and keeps the best derivation for every gram-
mar rule instance instead of for each node. Be-
cause all structures above the current rule instance
is not determined yet, the computation of its non-
local structural features, e.g., parent and sibling fea-
tures, has to be delayed until it joins an upper level
structure. For example, when computing the score
of a derivation under the center rule NP → NP VP

in Figure 1, the algorithm will extract child features
from its children NP → DT QP and VP → VBN PP.
The parent and sibling features of the two child rules
can also be extracted from the current derivation and
used to calculate the score of this derivation. But
parent and sibling features for the center rule will
not be computed until the decoding process reaches
the rule above, i.e., PP→ IN NP.

This algorithm is more complex than the approx-
imate decoding algorithm of Huang (2008). How-
ever, its efficiency heavily depends on the size of the
parse forest it has to handle. Forest pruning (Char-

φ0(Q(r), s) =

∑
x

∑
y

∑
z
O(Ax, b, e)P(Ax → By Cz)I(By, b,m)I(Cz,m, e)

I(S, 0, n)
(4)

2



Template Description Comments

Lexical
feature

N-gram on inner
/outer edge

wb/e+l(l=0,1,2,3,4) & b/e & l & NP

Similar to the distributional
similarity cluster bigrams
features in Finkel et al. (2008)

wb/e−l(l=1,2,3,4,5) & b/e & l & NP
wb/e+lwb/e+l+1(l=0,1,2,3) & b/e & l & NP
wb/e−l−1wb/e−l(l=1,2,3,4) & b/e & l & NP
wb/e+lwb/e+l+1wb/e+l+2(l=0,1,2) & b/e & l & NP
wb/e−l−2wb/e−l−1wb/e−l(l=1,2,3) & b/e & l & NP

Bigram on edges wb/e−1wb/e & NP
Similar to the lexical span
features in Taskar et al. (2004)
and Petrov and Klein (2008b)

Split pair wm−1wm & NP→ NP VP

Inner/Outer pair
wbwe−1 & NP→ NP VP
wb−1we & NP→ NP VP

Rule bigram
Left & NP & NP Similar to the bigrams features

in Collins (2000)Right & NP & NP

Structural
feature

Parent PP→ IN NP & NP→ NP VP
Similar to the grandparent
rules features in Collins (2000)

Child
NP→ DT QP & VP→ VBN PP & NP→ NP VP
NP→ DT QP & NP→ NP VP
VP→ VBN PP & NP→ NP VP

Sibling Left & IN→ of & NP→ NP VP

Table 1: Examples of lexical and structural feature

niak and Johnson, 2005; Petrov and Klein, 2007)
is therefore adopted in our implementation for ef-
ficiency enhancement. A parallel decoding strategy
is also developed to further improve the efficiency
without loss of optimality. Interested readers can re-
fer to Chen (2012) for more technical details of this
algorithm.

3 Constituent Recombination

Following Fossum and Knight (2009), our con-
stituent weighting scheme for parser combination
uses multiple outputs of independent parsers. Sup-
pose each parser generates a k-best parse list for an
input sentence, the weight of a candidate constituent
c is defined as

ω(c) =
∑

i

∑
k

λiδ(c, ti,k)f(ti,k), (5)

where i is the index of an individual parser, λi

the weight indicating the confidence of a parser,
δ(c, ti,k) a binary function indicating whether c is
contained in ti,k, the k-th parse output from the i-
th parser, and f(ti,k) the score of the k-th parse as-
signed by the i-th parser, as defined in Fossum and
Knight (2009).

The weight of a recombined parse is defined as the
sum of weights of all constituents in the parse. How-
ever, this definition has a systematic bias towards se-
lecting a parse with as many constituents as possible

English Chinese
Train. Section 2-21 Art. 1-270,400-1151
Dev. Section 22/24 Art. 301-325
Test. Section 23 Art. 271-300

Table 2: Experiment Setup

for the highest weight. A pruning threshold ρ, simi-
lar to the one in Sagae and Lavie (2006), is therefore
needed to restrain the number of constituents in a re-
combined parse. The parameters λi and ρ are tuned
by the Powell’s method (Powell, 1964) on a develop-
ment set, using the F1 score of PARSEVAL (Black
et al., 1991) as objective.

4 Experiment

Our parsing models are evaluated on both English
and Chinese treebanks, i.e., the WSJ section of Penn
Treebank 3.0 (LDC99T42) and the Chinese Tree-
bank 5.1 (LDC2005T01U01). In order to compare
with previous works, we opt for the same split as
in Petrov and Klein (2007), as listed in Table 2. For
parser combination, we follow the setting of Fossum
and Knight (2009), using Section 24 instead of Sec-
tion 22 of WSJ treebank as development set.

In this work, the lexical model of Chen and Kit
(2011) is combined with our syntactic model under
the framework of product-of-experts (Hinton, 2002).
A factor λ is introduced to balance the two models.
It is tuned on a development set using the gold sec-

3



English Chinese
R(%) P(%) F1(%) R(%) P(%) F1(%)

Berkeley parser 89.71 90.03 89.87 82.00 84.48 83.22
First-order 91.33 91.79 91.56 84.14 86.23 85.17

Higher-order 91.62 92.11 91.86 84.24 86.54 85.37
Higher-order+λ 91.60 92.13 91.86 84.45 86.74 85.58
Stanford parser - - - 77.40 79.57 78.47

C&J parser 91.04 91.76 91.40 - - -
Conbination 92.02 93.60 92.80 82.44 89.01 85.60

Table 3: The performance of our parsing models on the English and Chinese test sets.

System F1(%) EX(%)
Single

Charniak (2000) 89.70
Berkeley parser 89.87 36.7
Bod (2003) 90.70
Carreras et al. (2008) 91.1

Re-scoring
Collins (2000) 89.70
Charniak and Johnson (2005) 91.02
The parser of Charniak and Johnson 91.40 43.54
Huang (2008) 91.69 43.5

Combination
Fossum and Knight (2009) 92.4
Zhang et al. (2009) 92.3
Petrov (2010) 91.85 41.9

Self-training
Zhang et al. (2009) (s.t.+combo) 92.62
Huang et al. (2010) (single) 91.59 40.3
Huang et al. (2010) (combo) 92.39 43.1
Our single 91.86 40.89
Our combo 92.80 41.60

Table 4: Performance comparison on the English test set

tion search algorithm (Kiefer, 1953). The parame-
ters θ of each parsing model are estimated from a
training set using an averaged perceptron algorithm,
following Collins (2002) and Huang (2008).

The performance of our first- and higher-order
parsing models on all sentences of the two test sets
is presented in Table 3, where λ indicates a tuned
balance factor. This parser is also combined with
the parser of Charniak and Johnson (2005)2 and the
Stanford. parser3 The best combination results in
Table 3 are achieved with k=70 for English and
k=100 for Chinese for selecting the k-best parses.
Our results are compared with the best previous ones
on the same test sets in Tables 4 and 5. All scores

2ftp://ftp.cs.brown.edu/pub/nlparser/
3http://nlp.stanford.edu/software/lex-parser.shtml

System F1(%) EX(%)
Single

Charniak (2000) 80.85
Stanford parser 78.47 26.44
Berkeley parser 83.22 31.32
Burkett and Klein (2008) 84.24

Combination
Zhang et al. (2009) (combo) 85.45
Our single 85.56 31.61
Our combo 85.60 29.02

Table 5: Performance comparison on the Chinese test set

listed in these tables are calculated with evalb,4

and EX is the complete match rate.

5 Conclusion

This paper has presented a higher-order model for
constituent parsing that factorizes a parse tree into
larger parts than before, in hopes of increasing its
power of discriminating the true parse from the oth-
ers without losing tractability. A performance gain
of 0.3%-0.4% demonstrates its advantage over its
first-order version. Including a PCFG-based model
as its basic feature, this model achieves a better
performance than previous single and re-scoring
parsers, and its combination with other parsers per-
forms even better (by about 1%). More importantly,
it extends the existing works into a more general
framework of constituent parsing to utilize more
lexical and structural context and incorporate more
strength of various parsing techniques. However,
higher-order constituent parsing inevitably leads to
a high computational complexity. We intend to deal
with the efficiency problem of our model with some
advanced parallel computing technologies in our fu-
ture works.

4http://nlp.cs.nyu.edu/evalb/

4



References

E. Black, S. Abney, D. Flickenger, R. Grishman, P. Har-
rison, D. Hindle, R. Ingria, F. Jelinek, J. Klavans,
M. Liberman, M. Marcus, S. Roukos, B. Santorini,
and T. Strzalkowski. 1991. A procedure for quanti-
tatively comparing the syntactic coverage of English
grammars. In Proceedings of DARPA Speech and Nat-
ural Language Workshop, pages 306–311.

Rens Bod. 2003. An efficient implementation of a new
DOP model. In EACL 2003, pages 19–26.

David Burkett and Dan Klein. 2008. Two languages
are better than one (for syntactic parsing). In EMNLP
2008, pages 877–886.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
TAG, dynamic programming, and the perceptron for
efficient, feature-rich parsing. In CoNLL 2008, pages
9–16.

Xavier Carreras. 2007. Experiments with a higher-order
projective dependency parser. In EMNLP-CoNLL
2007, pages 957–961.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In ACL 2005, pages 173–180.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In NAACL 2000, pages 132–139.

Xiao Chen and Chunyu Kit. 2011. Improving part-of-
speech tagging for context-free parsing. In IJCNLP
2011, pages 1260–1268.

Xiao Chen. 2012. Discriminative Constituent Parsing
with Localized Features. Ph.D. thesis, City University
of Hong Kong.

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. In ACL
2002, pages 263–270.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. In ICML 2000, pages 175–182.

Michael Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In EMNLP 2002, pages
1–8.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996, pages 340–345.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, conditional
random field parsing. In ACL-HLT 2008, pages 959–
967.

Victoria Fossum and Kevin Knight. 2009. Combining
constituent parsers. In NAACL-HLT 2009, pages 253–
256.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In ACL 2004, pages
95–102.

Geoffrey E. Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural Com-
putation, 14(8):1771–1800.

Zhongqiang Huang, Mary Harper, and Slav Petrov. 2010.
Self-training with products of latent variable gram-
mars. In EMNLP 2010, pages 12–22.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In ACL-HLT 2008,
pages 586–594.

Mark Johnson. 2001. Joint and conditional estimation
of tagging and parsing models. In ACL 2001, pages
322–329.

J. Kiefer. 1953. Sequential minimax search for a maxi-
mum. Proceedings of the American Mathematical So-
ciety, 4:502–506.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In ACL 2010, pages 1–11.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In EACL 2006, pages 81–88.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Online large-margin training of dependency
parsers. In ACL 2005, pages 91–98.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In EMNLP-HLT
2005, pages 523–530.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In NAACL-HLT 2007, pages
404–411.

Slav Petrov and Dan Klein. 2008a. Discriminative log-
linear grammars with latent variables. In NIPS 20,
pages 1–8.

Slav Petrov and Dan Klein. 2008b. Sparse multi-scale
grammars for discriminative latent variable parsing. In
EMNLP 2008, pages 867–876.

Slav Petrov. 2010. Products of random latent variable
grammars. In NAACL-HLT 2010, pages 19–27.

M. J. D. Powell. 1964. An efficient method for finding
the minimum of a function of several variables without
calculating derivatives. Computer Journal, 7(2):155–
162.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In NAACL-HLT 2006, pages 129–132.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and
Christopher Manning. 2004. Max-margin parsing. In
EMNLP 2004, pages 1–8.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou
Li. 2009. K-best combination of syntactic parsers.
In EMNLP 2009, pages 1552–1560.

5


