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Abstract

All types of part-of-speech (POS) tagging er-
rors have been equally treated by existing tag-
gers. However, the errors are not equally im-
portant, since some errors affect the perfor-
mance of subsequent natural language pro-
cessing (NLP) tasks seriously while others do
not. This paper aims to minimize these serious
errors while retaining the overall performance
of POS tagging. Two gradient loss functions
are proposed to reflect the different types of er-
rors. They are designed to assign a larger cost
to serious errors and a smaller one to minor
errors. Through a set of POS tagging exper-
iments, it is shown that the classifier trained
with the proposed loss functions reduces se-
rious errors compared to state-of-the-art POS
taggers. In addition, the experimental result
on text chunking shows that fewer serious er-
rors help to improve the performance of sub-
sequent NLP tasks.

1 Introduction

Part-of-speech (POS) tagging is needed as a pre-
processor for various natural language processing
(NLP) tasks such as parsing, named entity recogni-
tion (NER), and text chunking. Since POS tagging is
normally performed in the early step of NLP tasks,
the errors in POS tagging are critical in that they
affect subsequent steps and often lower the overall
performance of NLP tasks.

Previous studies on POS tagging have shown
high performance with machine learning techniques
(Ratnaparkhi, 1996; Brants, 2000; Lafferty et al.,

2001). Among the types of machine learning ap-
proaches, supervised machine learning techniques
were commonly used in early studies on POS tag-
ging. With the characteristics of a language (Rat-
naparkhi, 1996; Kudo et al., 2004) and informa-
tive features for POS tagging (Toutanova and Man-
ning, 2000), the state-of-the-art supervised POS tag-
ging achieves over 97% of accuracy (Shen et al.,
2007; Manning, 2011). This performance is gen-
erally regarded as the maximum performance that
can be achieved by supervised machine learning
techniques. There have also been many studies on
POS tagging with semi-supervised (Subramanya et
al., 2010; Søgaard, 2011) or unsupervised machine
learning methods (Berg-Kirkpatrick et al., 2010;
Das and Petrov, 2011) recently. However, there still
exists room to improve supervised POS tagging in
terms of error differentiation.

It should be noted that not all errors are equally
important in POS tagging. Let us consider the parse
trees in Figure 1 as an example. In Figure 1(a),
the word “plans” is mistagged as a noun where it
should be a verb. This error results in a wrong parse
tree that is severely different from the correct tree
shown in Figure 1(b). The verb phrase of the verb
“plans” in Figure 1(b) is discarded in Figure 1(a)
and the whole sentence is analyzed as a single noun
phrase. Figure 1(c) and (d) show another tagging er-
ror and its effect. In Figure 1(c), a noun is tagged as
a NNS (plural noun) where its correct tag is NN (sin-
gular or mass noun). However, the error in Figure
1(c) affects only locally the noun phrase to which
“physics” belongs. As a result, the general structure
of the parse tree in Figure 1(c) is nearly the same as
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(a) A parse tree with a serious error.
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(b) The correct parse tree of the sentence“The treasury
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Figure 1: An example of POS tagging errors

the correct one in Figure 1(d). That is, a sentence
analyzed with this type of error would yield a cor-
rect or near-correct result in many NLP tasks such
as machine translation and text chunking.

The goal of this paper is to differentiate the seri-
ous POS tagging errors from the minor errors. POS
tagging is generally regarded as a classification task,
and zero-one loss is commonly used in learning clas-
sifiers (Altun et al., 2003). Since zero-one loss con-
siders all errors equally, it can not distinguish error
types. Therefore, a new loss is required to incorpo-
rate different error types into the learning machines.

This paper proposes two gradient loss functions to
reflect differences among POS tagging errors. The
functions assign relatively small cost to minor er-
rors, while larger cost is given to serious errors.
They are applied to learning multiclass support vec-
tor machines (Tsochantaridis et al., 2004) which is
trained to minimize the serious errors. Overall accu-
racy of this SVM is not improved against the state-

of-the-art POS tagger, but the serious errors are sig-
nificantly reduced with the proposed method. The
effect of the fewer serious errors is shown by apply-
ing it to the well-known NLP task of text chunking.
Experimental results show that the proposed method
achieves a higher F1-score compared to other POS
taggers.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related studies on POS tagging. In
Section 3, serious and minor errors are defined, and
it is shown that both errors are observable in a gen-
eral corpus. Section 4 proposes two new loss func-
tions for discriminating the error types in POS tag-
ging. Experimental results are presented in Section
5. Finally, Section 6 draws some conclusions.

2 Related Work

The POS tagging problem has generally been solved
by machine learning methods for sequential label-
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Tag category POS tags
Substantive NN, NNS, NNP, NNPS, CD, PRP, PRP$
Predicate VB, VBD, VBG, VBN, VBP, VBZ, MD, JJ, JJR, JJS
Adverbial RB, RBR, RBS, RP, UH, EX, WP, WP$, WRB, CC, IN, TO

Determiner DT, PDT, WDT
Etc FW, SYM, POS, LS

Table 1: Tag categories and POS tags in Penn Tree Bank tag set

ing. In early studies, rich linguistic features and su-
pervised machine learning techniques are applied by
using annotated corpora like the Wall Street Journal
corpus (Marcus et al., 1994). For instance, Ratna-
parkhi (1996) used a maximum entropy model for
POS tagging. In this study, the features for rarely
appearing words in a corpus are expanded to im-
prove the overall performance. Following this direc-
tion, various studies have been proposed to extend
informative features for POS tagging (Toutanova
and Manning, 2000; Toutanova et al., 2003; Man-
ning, 2011). In addition, various supervised meth-
ods such as HMMs and CRFs are widely applied to
POS tagging. Lafferty et al. (2001) adopted CRFs
to predict POS tags. The methods based on CRFs
not only have all the advantages of the maximum
entropy markov models but also resolve the well-
known problem of label bias. Kudo et al. (2004)
modified CRFs for non-segmented languages like
Japanese which have the problem of word boundary
ambiguity.

As a result of these efforts, the performance of
state-of-the-art supervised POS tagging shows over
97% of accuracy (Toutanova et al., 2003; Giménez
and Màrquez, 2004; Tsuruoka and Tsujii, 2005;
Shen et al., 2007; Manning, 2011). Due to the high
accuracy of supervised approaches for POS tagging,
it has been deemed that there is no room to im-
prove the performance on POS tagging in supervised
manner. Thus, recent studies on POS tagging focus
on semi-supervised (Spoustová et al., 2009; Sub-
ramanya et al., 2010; Søgaard, 2011) or unsuper-
vised approaches (Haghighi and Klein, 2006; Gold-
water and Griffiths, 2007; Johnson, 2007; Graca et
al., 2009; Berg-Kirkpatrick et al., 2010; Das and
Petrov, 2011). Most previous studies on POS tag-
ging have focused on how to extract more linguistic
features or how to adopt supervised or unsupervised

approaches based on a single evaluation measure,
accuracy. However, with a different viewpoint for
errors on POS tagging, there is still some room to
improve the performance of POS tagging for subse-
quent NLP tasks, even though the overall accuracy
can not be much improved.

In ordinary studies on POS tagging, costs of er-
rors are equally assigned. However, with respect
to the performance of NLP tasks relying on the re-
sult of POS tagging, errors should be treated differ-
ently. In the machine learning community, cost sen-
sitive learning has been studied to differentiate costs
among errors. By adopting different misclassifica-
tion costs for each type of errors, a classifier is op-
timized to achieve the lowest expected cost (Elkan,
2001; Cai and Hofmann, 2004; Zhou and Liu, 2006).

3 Error Analysis of Existing POS Tagger

The effects of POS tagging errors to subsequent
NLP tasks vary according to their type. Some errors
are serious, while others are not. In this paper, the
seriousness of tagging errors is determined by cat-
egorical structures of POS tags. Table 1 shows the
Penn tree bank POS tags and their categories. There
are five categories in this table:substantive, pred-
icate, adverbial, determiner, andetc. Serious tag-
ging errors are defined as misclassifications among
the categories, while minor errors are defined as mis-
classifications within a category. This definition fol-
lows the fact that POS tags in the same category
form similar syntax structures in a sentence (Zhao
and Marcus, 2009). That is, inter-category errors are
treated as serious errors, while intra-category errors
are treated as minor errors.

Table 2 shows the distribution of inter-category
and intra-category errors observed in section 22–
24 of the WSJ corpus (Marcus et al., 1994) that is
tagged by the Stanford Log-linear Part-Of-Speech
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Predicted category
Substantive Predicate Adverbial Determiner Etc

Substantive 614 479 32 10 15
Predicate 585 743 107 2 14

True category Adverbial 41 156 500 42 2
Determiner 13 7 47 24 0

Etc 23 11 3 1 0

Table 2: The distribution of tagging errors on WSJ corpus by Stanford Part-Of-Speech Tagger.

Tagger (Manning, 2011) (trained with WSJ sections
00–18). In this table, bold numbers denote inter-
category errors while all other numbers show intra-
category errors. The number of total errors is 3,471
out of 129,654 words. Among them, 1,881 errors
(54.19%) are intra-category, while 1,590 of the er-
rors (45.81%) are inter-category. If we can reduce
these inter-category errors under the cost of mini-
mally increasing intra-category errors, the tagging
results would improve in quality.

Generally in POS tagging, all tagging errors are
regarded equally in importance. However, inter-
category and intra-category errors should be distin-
guished. Since a machine learning method is opti-
mized by a loss function, inter-category errors can
be efficiently reduced if a loss function is designed
to handle both types of errors with different cost. We
propose two loss functions for POS tagging and they
are applied to multiclass Support Vector Machines.

4 Learning SVMs with Class Similarity

POS tagging has been solved as a sequential labeling
problem which assumes dependency among words.
However, by adopting sequential features such as
POS tags of previous words, the dependency can be
partially resolved. If it is assumed that words are
independent of one another, POS tagging can be re-
garded as a multiclass classification problem. One
of the best solutions for this problem is by using an
SVM.

4.1 Training SVMs with Loss Function

Assume that a training data setD =
{(x1, y1), (x2, y2), . . . , (xl, yl)} is given where
xi ∈ R

d is an instance vector andyi ∈ {+1,−1}
is its class label. SVM finds an optimal hyperplane

satisfying

xi · w + b ≥ +1 for yi = +1,

xi · w + b ≤ −1 for yi = −1,

wherew andb are parameters to be estimated from
training dataD. To estimate the parameters, SVMs
minimizes a hinge loss defined as

ξi = Lhinge(yi, w · xi + b)

= max{0, 1 − yi · (w · xi + b)}.

With regularizer||w||2 to control model complexity,
the optimization problem of SVMs is defined as

min
w,ξ

1

2
||w||2 + C

l
∑

i=1

ξi,

subject to

yi(xi · w + b) ≥ 1− ξi, andξi ≥ 0 ∀i,

whereC is a user parameter to penalize errors.
Crammer et al. (2002) expanded the binary-class

SVM for multiclass classifications. In multiclass
SVMs, by considering all classes the optimization
of SVM is generalized as

min
w,ξ

1

2

∑

k∈K

||wk||
2 + C

l
∑

i=1

ξi,

with constraints

(wyi · φ(xi, yi))− (wk · φ(xi, k)) ≥ 1− ξi,

ξi ≥ 0 ∀i, ∀k ∈ K \ yi,

whereφ(xi, yi) is a combined feature representation
of xi andyi, andK is the set of classes.
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Figure 2: A tree structure of POS tags.

Since both binary and multiclass SVMs adopt a
hinge loss, the errors between classes have the same
cost. To assign different cost to different errors,
Tsochantaridis et al. (2004) proposed an efficient
way to adopt arbitrary loss function,L(yi, yj) which
returns zero ifyi = yj, otherwiseL(yi, yj) > 0.
Then, the hinge lossξi is re-scaled with the inverse
of the additional loss between two classes. By scal-
ing slack variables with the inverse loss, margin vi-
olation with high lossL(yi, yj) is more severely re-
stricted than that with low loss. Thus, the optimiza-
tion problem withL(yi, yj) is given as

min
w,ξ

1

2

∑

k∈K

||wk||
2 + C

l
∑

i=1

ξi, (1)

with constraints

(wyi · φ(xi, yi))− (wk · φ(xi, k)) ≥ 1−
ξi

L(yi, k)
,

ξi ≥ 0 ∀i, ∀k ∈ K \ yi,

With the Lagrange multiplierα, the optimization
problem in Equation (1) is easily converted to the
following dual quadratic problem.

min
α

1

2

l
∑

i,j

∑

ki∈K\yi

∑

kj∈K\yj

αi,ki
αj,kj

×

J(xi, yi, ki)J(xj , yj, kj)−

l
∑

i

∑

ki∈K\yi

αi,ki
,

with constraints

α ≥ 0 and
∑

ki∈K\yi

αi,ki

L(yi, ki)
≤ C, ∀i = 1, · · · , l,

whereJ(xi, yi, ki) is defined as

J(xi, yi, ki) = φ(xi, yi)− φ(xi, ki).

4.2 Loss Functions for POS tagging

To design a loss function for POS tagging, this paper
adopts categorical structures of POS tags. The sim-
plest way to reflect the structure of POS tags shown
in Table 1 is to assign larger cost to inter-category
errors than to intra-category errors. Thus, the loss
function with the categorical structure in Table 1 is
defined as

Lc(yi, yj) =















0 if yi = yj,
δ if yi 6= yj but they belong

to the same POS category,
1 otherwise,

(2)

where0 < δ < 1 is a constant to reduce the value of
Lc(yi, yj) whenyi andyj are similar. As shown in
this equation, inter-category errors have larger cost
than intra-category errors. This lossLc(yi, yj) is
named ascategory loss.

The loss functionLc(yi, yj) is designed to reflect
the categories in Table 1. However, the structure
of POS tags can be represented as a more complex
structure. Let us consider the category,predicate.
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Figure 3: Effect of the proposed loss function in multiclassSVMs

This category has ten POS tags, and can be further
categorized into two sub-categories:verb and ad-
ject. Figure 2 represents a categorical structure of
POS tags as a tree with five categories of POS tags
and their seven sub-categories.

To express the tree structure of Figure 2 as a loss,
another loss functionLt(yi, yj) is defined as

Lt(yi, yj) =

1

2
[Dist(Pi,j , yi) + Dist(Pi,j, yj)]× γ, (3)

wherePi,j denotes the nearest common parent of
both yi andyj, and the functionDist(Pi,j, yi) re-
turns the number of steps fromPi,j to yi. The user
parameterγ is a scaling factor of a unit loss for a
single step. This lossLt(yi, yj) returns large value
if the distance betweenyi andyj is far in the tree
structure, and it is named astree loss.

As shown in Equation (1), two proposed loss
functions adjust margin violation between classes.
They basically assign less value for intra-category
errors than inter-category errors. Thus, a classi-
fier is optimized to strictly keep inter-category er-
rors within a smaller boundary. Figure 3 shows a
simple example. In this figure, there are three POS
tags and two categories. NN (singular or mass noun)
and NNS (plural noun) belong to the same cate-
gory, while VB (verb, base form) is in another cat-
egory. Figure 3(a) shows the decision boundary of
NN based on hinge loss. As shown in this figure, a

single ξ is applied for the margin violation among
all classes. Figure 3(b) also presents the decision
boundary of NN, but it is determined with the pro-
posed loss function. In this figure, the margin vio-
lation is applied differently to inter-category (NN to
VB) and intra-category (NN to NNS) errors. It re-
sults in reducing errors between NN and VB even if
the errors between NN and NNS could be slightly
increased.

5 Experiments

5.1 Experimental Setting

Experiments are performed with a well-known stan-
dard data set, the Wall Street Journal (WSJ) corpus.
The data is divided into training, development and
test sets as in (Toutanova et al., 2003; Tsuruoka and
Tsujii, 2005; Shen et al., 2007). Table 3 shows some
simple statistics of these data sets. As shown in
this table, training data contains 38,219 sentences
with 912,344 words. In the development data set,
there are 5,527 sentences with about 131,768 words,
those in the test set are 5,462 sentences and 129,654
words. The development data set is used only to se-
lect δ in Equation (2) andγ in Equation (3).

Table 4 shows the feature set for our experiments.
In this table,wi andti denote the lexicon and POS
tag for thei-th word in a sentence respectively. We
use almost the same feature set as used in (Tsuruoka
and Tsujii, 2005) including word features, tag fea-
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Training Develop Test
Section 0–18 19–21 22–24

# of sentences 38,219 5,527 5,462
# of terms 912,344 131,768 129,654

Table 3: Simple statistics of experimental data

Feature Name Description

Word features
wi−2, wi−1, wi, wi+1, wi+2

wi−1 · wi, wi · wi+1

Tag features

ti−2, ti−1, ti+1, ti+2

ti−2 · ti−1, ti+1 · ti+2

ti−2 · ti−1 · ti+1, ti−1 · ti+1 · ti+2

ti−2 · ti−1 · ti+1 · ti+2

Tag/Word
combination

ti−2·wi, ti−1 ·wi, ti+1·wi, ti+2·wi

ti−1 · ti+1 · wi

Prefix features prefixes ofwi (up to length 9)
Suffix features suffixes ofwi (up to length 9)

Lexical features

whetherwi contains capitals
whetherwi has a number
whetherwi has a hyphen
whetherwi is all capital
whetherwi starts with capital and
locates at the middle of sentence

Table 4: Feature template for experiments

tures, word/tag combination features, prefix and suf-
fix features as well as lexical features. The POS tags
for words are obtained from a two-pass approach
proposed by Nakagawa et al. (2001).

In the experiments, two multiclass SVMs with the
proposed loss functions are used. One is CL-MSVM
with category loss and the other is TL-MSVM with
tree loss. A linear kernel is used for both SVMs.

5.2 Experimental Results

CL-MSVM with δ = 0.4 shows the best overall per-
formance on the development data where its error
rate is as low as 2.71%.δ = 0.4 implies that the
cost of intra-category errors is set to 40% of that of
inter-category errors. The error rate of TL-MSVM
is 2.69% whenγ is 0.6. δ = 0.4 andγ = 0.6 are set
in the all experiments below.

Table 5 gives the comparison with the previous
work and proposed methods on the test data. As can
be seen from this table, the best performing algo-
rithms achieve near 2.67% error rate (Shen et al.,
2007; Manning, 2011). CL-MSVM and TL-MSVM

Error
(%)

# of Intra
error

# of Inter
error

(Giménez and Màrquez,
2004)

2.84
1,995
(54.11%)

1,692
(45.89%)

(Tsuruoka and Tsujii,
2005)

2.85 - -

(Shen et al., 2007) 2.67
1,856
(53.52%)

1,612
(46.48%)

(Manning, 2011) 2.68
1,881
(54.19%)

1,590
(45.81%)

CL-MSVM (δ = 0.4) 2.69
1,916
(55.01%)

1,567
(44.99%)

TL-MSVM (γ = 0.6) 2.68
1,904
(54.74%)

1,574
(45.26%)

Table 5: Comparison with the previous works

achieve an error rate of 2.69% and 2.68% respec-
tively. Although overall error rates of CL-MSVM
and TL-MSVM are not improved compared to the
previous state-of-the-art methods, they show reason-
able performance.

For inter-category error, CL-MSVM achieves the
best performance. The number of inter-category er-
ror is 1,567, which shows 23 errors reduction com-
pared to previous best inter-category result by (Man-
ning, 2011). TL-MSVM also makes 16 less inter-
category errors than Manning’s tagger. When com-
pared with Shen’s tagger, both CL-MSVM and TL-
MSVM make far less inter-category errors even if
their overall performance is slightly lower than that
of Shen’s tagger. However, the intra-category er-
ror rate of the proposed methods has some slight
increases. The purpose of proposed methods is to
minimize inter-category errors but preserving over-
all performance. From these results, it can be found
that the proposed methods which are trained with the
proposed loss functions do differentiate serious and
minor POS tagging errors.

5.3 Chunking Experiments

The task of chunking is to identify the non-recursive
cores for various types of phrases. In chunking, the
POS information is one of the most crucial aspects in
identifying chunks. Especially inter-category POS
errors seriously affect the performance of chunking
because they are more likely to mislead the chunk
compared to intra-category errors.

Here, chunking experiments are performed with
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POS tagger Accuracy (%) Precision Recall F1-score

(Shen et al., 2007) 96.08 94.03 93.75 93.89
(Manning, 2011) 96.08 94 93.8 93.9
CL-MSVM (δ = 0.4) 96.13 94.1 93.9 94.00
TL-MSVM (γ = 0.6) 96.12 94.1 93.9 94.00

Table 6: The experimental results for chunking

a data set provided for the CoNLL-2000 shared
task. The training data contains 8,936 sentences
with 211,727 words obtained from sections 15–18
of the WSJ. The test data consists of 2,012 sentences
and 47,377 words in section 20 of the WSJ. In order
to represent chunks, an IOB model is used, where
every word is tagged with a chunk label extended
with B (the beginning of a chunk), I (inside a chunk),
and O (outside a chunk). First, the POS informa-
tion in test data are replaced to the result of our POS
tagger. Then it is evaluated using trained chunking
model. Since CRFs (Conditional Random Fields)
has been shown near state-of-the-art performance in
text chunking (Fei Sha and Fernando Pereira, 2003;
Sun et al., 2008), we use CRF++, an open source
CRF implementation by Kudo (2005), with default
feature template and parameter settings of the pack-
age. For simplicity in the experiments, the values
of δ in Equation (2) andγ in Equation (3) are set
to be 0.4 and 0.6 respectively which are same as the
previous section.

Table 6 gives the experimental results of text
chunking according to the kinds of POS taggers in-
cluding two previous works, CL-MSVM, and TL-
MSVM. Shen’s tagger and Manning’s tagger show
nearly the same performance. They achieve an ac-
curacy of 96.08% and around 93.9 F1-score. On the
other hand, CL-MSVM achieves 96.13% accuracy
and 94.00 F1-score. The accuracy and F1-score of
TL-MSVM are 96.12% and 94.00. Both CL-MSVM
and TL-MSVM show slightly better performances
than other POS taggers. As shown in Table 5, both
CL-MSVM and TL-MSVM achieve lower accura-
cies than other methods, while their inter-category
errors are less than that of other experimental meth-
ods. Thus, the improvement of CL-MSVM and TL-
MSVM implies that, for the subsequent natural lan-
guage processing, a POS tagger should considers
different cost of tagging errors.

6 Conclusion

In this paper, we have shown that supervised POS
tagging can be improved by discriminating inter-
category errors from intra-category ones. An inter-
category error occurs by mislabeling a word with
a totally different tag, while an intra-category error
is caused by a similar POS tag. Therefore, inter-
category errors affect the performances of subse-
quent NLP tasks far more than intra-category errors.
This implies that different costs should be consid-
ered in training POS tagger according to error types.

As a solution to this problem, we have proposed
two gradient loss functions which reflect different
costs for two error types. The cost of an error type is
set according to (i) categorical difference or (ii) dis-
tance in the tree structure of POS tags. Our POS
experiment has shown that if these loss functions
are applied to multiclass SVMs, they could signif-
icantly reduce inter-category errors. Through the
text chunking experiment, it is shown that the multi-
class SVMs trained with the proposed loss functions
which generate fewer inter-category errors achieve
higher performance than existing POS taggers.

We have shown that cost sensitive learning can be
applied to POS tagging only with multiclass SVMs.
However, the proposed loss functions are general
enough to be applied to other existing POS taggers.
Most supervised machine learning techniques are
optimized on their loss functions. Therefore, the
performance of POS taggers based on supervised
machine learning techniques can be improved by ap-
plying the proposed loss functions to learn their clas-
sifiers.
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