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Abstract

Prepositions and conjunctions are two of
the largest remaining bottlenecks in parsing.
Across various existing parsers, these two
categories have the lowest accuracies, and
mistakes made have consequences for down-
stream applications. Prepositions and con-
junctions are often assumed to depend on lex-
ical dependencies for correct resolution. As
lexical statistics based on the training set only
are sparse, unlabeled data can help amelio-
rate this sparsity problem. By including un-
labeled data features into a factorization of
the problem which matches the representation
of prepositions and conjunctions, we achieve
a new state-of-the-art for English dependen-
cies with 93.55% correct attachments on the
current standard. Furthermore, conjunctions
are attached with an accuracy of 90.8%, and
prepositions with an accuracy of 87.4%.

1 Introduction

Prepositions and conjunctions are two large remain-
ing bottlenecks in parsing. Across various exist-
ing parsers, these two categories have the lowest
accuracies, and mistakes made on these have con-
sequences for downstream applications. Machine
translation is sensitive to parsing errors involving
prepositions and conjunctions, because in some lan-
guages different attachment decisions in the parse
of the source language sentence produce differ-
ent translations. Preposition attachment mistakes
are particularly bad when translating into Japanese
(Schwartz et al., 2003) which uses a different post-
position for different attachments; conjunction mis-

takes can cause word ordering mistakes when trans-
lating into Chinese (Huang, 1983).

Prepositions and conjunctions are often assumed
to depend on lexical dependencies for correct resolu-
tion (Jurafsky and Martin, 2008). However, lexical
statistics based on the training set only are typically
sparse and have only a small effect on overall pars-
ing performance (Gildea, 2001). Unlabeled data can
help ameliorate this sparsity problem. Backing off
to cluster membership features (Koo et al., 2008) or
by using association statistics from a larger corpus,
such as the web (Bansal and Klein, 2011; Zhou et
al., 2011), have both improved parsing.

Unlabeled data has been shown to improve the ac-
curacy of conjunctions within complex noun phrases
(Pitler et al., 2010; Bergsma et al., 2011). How-
ever, it has so far been less effective within full
parsing — while first-order web-scale counts notice-
ably improved overall parsing in Bansal and Klein
(2011), the accuracy on conjunctions actually de-
creased when the web-scale features were added
(Table 4 in that paper).

In this paper we show that unlabeled data can help
prepositions and conjunctions, provided that the de-
pendency representation is compatible with how the
parsing problem is decomposed for learning and in-
ference. By incorporating unlabeled data into factor-
izations which capture the relevant dependencies for
prepositions and conjunctions, we produce a parser
for English which has an unlabeled attachment ac-
curacy of 93.5%, over an 18% reduction in error
over the best previously published parser (Bansal
and Klein, 2011) on the current standard for depen-
dency parsing. The best model for conjunctions at-
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taches them with 90.8% accuracy (42.5% reduction
in error over MSTParser), and the best model for
prepositions with 87.4% accuracy (18.2% reduction
in error over MSTParser).

We describe the dependency representations of
prepositions and conjunctions in Section 2. We dis-
cuss the implications of these representations for
how learning and inference for parsing are decom-
posed (Section 3) and how unlabeled data may be
used (Section 4). We then present experiments ex-
ploring the connection between representation, fac-
torization, and unlabeled data in Sections 5 and 6.

2 Dependency Representations

A dependency tree is a rooted, directed tree (or ar-
borescence), in which the vertices are the words in
the sentence plus an artificial root node, and each
edge (h, m) represents a directed dependency rela-
tion from the head h to the modifier m. Through-
out this section, we will use Y to denote a particular
parse tree, and (h, m) ∈ Y to denote a particular
edge in Y .

The Wall Street Journal Penn Treebank (PTB)
(Marcus et al., 1993) contains parsed constituency
trees (where each sentence is represented as a
context-free-grammar derivation). Dependency
parsing requires a conversion from these con-
stituency trees to dependency trees. The Tree-
bank constituency trees left noun phrases (NPs)
flat, although there have been subsequent projects
which annotate the internal structure of noun phrases
(Vadas and Curran, 2007; Weischedel et al., 2011).
The presence or absence of these noun phrase in-
ternal annotations interacts with constituency-to-
dependency conversion program in ways which have
effects on conjunctions and prepositions.

We consider two such mapping regimes here:

1. PTB trees→ Penn2Malt1 → Dependencies

2. PTB trees patched with NP-internal annota-
tions (Vadas and Curran, 2007) → penncon-
verter2 → Dependencies

1http://w3.msi.vxu.se/˜nivre/research/
Penn2Malt.html

2Johansson and Nugues (2007) http://nlp.cs.lth.
se/software/treebank_converter/

Regime (1) is very commonly done in papers
which report dependency parsing experiments (e.g.,
(McDonald and Pereira, 2006; Nivre et al., 2007;
Zhang and Clark, 2008; Huang and Sagae, 2010;
Koo and Collins, 2010)). Penn2Malt uses the head
finding table from Yamada and Matsumoto (2003).

Regime (2) is based on the recommendations of
the two converter tools; as of the date of this writing,
the Penn2Malt website says: “Penn2Malt has been
superseded by the more sophisticated pennconverter,
which we strongly recommend”. The pennconverter
website “strongly recommends” patching the Tree-
bank with the NP annotations of Vadas and Curran
(2007). A version of pennconverter was used to pre-
pare the data for the CoNLL Shared Tasks of 2007-
2009, so the trees produced by Regime 2 are similar
(but not identical)3 to these shared tasks. As far as
we are aware, Bansal and Klein (2011) is the only
published work which uses both steps in Regime (2).

The dependency representations produced by
Regime 2 are designed to be more useful for ex-
tracting semantics (Johansson and Nugues, 2007).
The parsing attachment accuracy of MALTPARSER
(Nivre et al., 2007) was lower using pennconverter
than Penn2Malt, but using the output of MALT-
PARSER under the new format parses produces a
much better semantic role labeler than using its out-
put with Penn2Malt (Johansson and Nugues, 2007).

Figures 1 and 2 show how conjunctions and
prepositions, respectively, are represented after the
two different conversion processes. These differ-
ences are not rare–70.7% of conjunctions and 5.2%
of prepositions in the development set have a differ-
ent parent under the two conversion types. These
representational differences have serious implica-
tions for how well various factorizations will be able
to capture these two phenomena.

3 Implications of Representations on the
Scope of Factorization

Parsing requires a) learning to score potential parse
trees, and b) given a particular scoring function,
finding the highest scoring tree according to that
function. The number of potential trees for a sen-

3The CoNLL data does not include the NP annotations; it
does include annotations of named entities (Weischedel and
Brunstein, 2005) so had some internal NP edges.
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Conversion 1 Conversion 2

Committee

the House
Ways

and Means
(a)

Committee

the House
Ways

and

Means
(b)

debt

notes and other
(c)

notes

and

debt

other
(d)

sell

or merge 600 by
(e)

sell

or

merge

600 by

(f)

Figure 1: Examples of conjunctions: the House Ways
and Means Committee, notes and other debt, and sell or
merge 600 by. The conjunction is bolded, the left con-
junct (in the linear order of the sentence) is underlined,
and the right conjunct is italicized.

tence is exponential, so parsing is made tractable by
decomposing the problem into a set of local sub-
structures which can be combined using dynamic
programming. Four possible factorizations are: sin-
gle edges (edge-based), pairs of edges which share
a parent (siblings), pairs of edges where the child
of one is the parent of the other (grandparents), and
triples of edges where the child of one is the parent
of two others (grandparent+sibling). In this section,
we discuss these factorizations and their relevance
to conjunction and preposition representations.

3.1 Edge-based Scoring
One possible factorization corresponds to first-order
parsing, in which the score of a parse tree Y decom-
poses completely across the edges in the tree:

S(Y ) =
∑

(h,m)∈Y

S(h, m) (1)

Conversion 1 Conversion 2

plan

in

law
(a)

plan

in

law
(b)

yesterday

opening of

trading

here

(c)

opening

of

trading

here yesterday

(d)

whose

plans
for

issues
(e)

plans

whose
for

issues
(f)

Figure 2: Examples of prepositions: plan in the S&L
bailout law, opening of trading here yesterday, and whose
plans for major rights issues. The preposition is bolded
and the (semantic) head is underlined.

Conjunctions: Under Conversion 1, we can see
three different representations of conjunctions in
Figures 1(a), 1(c), and 1(e). Under edge-based scor-
ing, the conjunction would be scored along with nei-
ther of its conjuncts in 1(a). In Figure 1(c), the con-
junction is scored along with its right conjunct only;
in figure 1(e) along with its left conjunct only. The
inconsistency here is likely to make learning more
difficult, as what is learned is split across these three
cases. Furthermore, the conjunction is connected
with an edge to either zero or one of its two argu-
ments; at least one of the arguments is completely
ignored in terms of scoring the conjunction.

In Figures 1(c) and 1(e), the words being con-
joined are connected to each other by an edge. This
overloads the meaning of an edge; an edge indicates
both a head-modifier relationship and a conjunction
relationship. For example, compare the two natural
phrases dogs and cats and really nice. dogs and cats
are a good pair to conjoin, but cats is not a good
modifier for dogs, so there is a tension when scoring
an edge like (dogs, cats): it should get a high score
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when actually indicating a conjunction and low oth-
erwise. (nice, really) shows the opposite pattern–
really is a good modifier for nice, but nice and re-
ally are not two words which should be conjoined.
This may be partially compensated for by including
features about the surrounding words (McDonald et
al., 2005), but any feature templates which would be
identical across the two contexts will be in tension.

In Figures 1(b), 1(d) and 1(f), the conjunction par-
ticipates in a directed edge with each of the con-
juncts. Thus, in edge-based scoring, at least under
Conversion 2 neither of the conjuncts is being ig-
nored; however, the factorization scores each edge
independently, so how compatible these two con-
juncts are with each other cannot be included in the
scoring of a tree.
Prepositions: For all of the examples in Figure 2,
there is a directed edge from the head of the phrase
that the preposition modifies to the preposition. Dif-
ferences in head finding rules account for the dif-
ferences in preposition representations. In the sec-
ond example, the first conversion scheme chooses
yesterday as the head of the overall NP, resulting in
the edge yesterday→ of, while the second conver-
sion scheme ignores temporal phrases when finding
the head, resulting in the more semantically mean-
ingful opening→of. Similarly, in the third example,
the preposition for attaches to the pronoun whose in
the first conversion scheme, while it attaches to the
noun plans in the second.

With edge-based scoring, the object is not acces-
sible when scoring where the preposition should at-
tach, and PP-attachment is known to depend on the
object of the preposition (Hindle and Rooth, 1993).

3.2 Sibling Scoring
Another alternative factorization is to score sib-
lings as well as parent-child edges (McDonald and
Pereira, 2006). Scores decompose as:

S(Y ) =
∑

 (h, m, s) (h, m) ∈ Y, (h, s) ∈ Y,
(m, s) ∈ Sib(Y )


S(h, m, s) (2)

where Sib(Y ) is the set containing ordered and ad-
jacent sibling pairs in Y : if (m, s) ∈ Sib(Y ), there
must exist a shared parent h such that (h, m) ∈ Y
and (h, s) ∈ Y , m and s must be on the same side
of h, m must be closer to h than s in the linear order

of the sentence, and there must not exist any other
children of h in between m and s.

Under this factorization, two of the three ex-
amples in Conversion 1 (and none of the exam-
ples in Conversion 2) in Figure 1 now include the
conjunction and both conjuncts in the same score
(Figures 1(c) and 1(e)). The scoring for head-
modifier dependencies and conjunction dependen-
cies are again being overloaded: (debt, notes, and)
and (debt, and, other) are both sibling parts in Fig-
ure 1(c), yet only one of them represents a conjunc-
tion. The position of the conjunction in the sibling
is not enough to determine whether one is scoring a
true conjunction relation or just the conjunction and
a different sibling; in 1(c) the conjunction is on the
right of its sibling argument, while in 1(e) the con-
junction is on the left.

For none of the other preposition or conjunc-
tion examples does a sibling factorization bring
more of the arguments into the scope of what is
scored along with the preposition/conjunction. Sib-
ling scoring may have some benefit in that preposi-
tions/conjunctions should have only one argument,
so for prepositions (under both conversions) and
conjunctions (under Conversion 2), the model can
learn to disprefer the existence of any siblings and
thus enforce choosing a single child.

3.3 Grandparent Scoring
Another alternative over pairs of edges scores grand-
parents instead of siblings, with factorization:

S(Y ) =
∑

{
(h, m, c) (h, m) ∈ Y, (m, c) ∈ Y

}S(h, m, c) (3)

Under Conversion 2, we would expect this fac-
torization to perform much better on conjunctions
and prepositions than edge-based or sibling-based
factorizations. Both conjunctions and prepositions
are consistently represented by exactly one grand-
parent relation (with one relevant argument as the
grandparent, the preposition/conjunction as the par-
ent, and the other argument as the child), so this is
the first factorization that has allowed the compati-
bility of the two arguments to affect the attachment
of the preposition/conjunction.

Under Conversion 1, this factorization is particu-
larly appropriate for prepositions, but would be un-
likely to help conjunctions, which have no children.
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3.4 Grandparent-Sibling Scoring
A further widening of the factorization takes grand-
parents and siblings simultaneously:

S(Y ) =
∑

 (g, h, m, s) (g, h) ∈ Y, (h, m) ∈ Y,
(h, s) ∈ Y, (m, s) ∈ Sib(Y )


S(g, h, m, s) (4)

For projective parsing, dynamic programming for
this factorization was derived in Koo and Collins
(2010) (Model 1 in that paper), and for non-
projective parsing, dual decomposition was used for
this factorization in Koo et al. (2010).

This factorization should combine all the ben-
efits of the sibling and grandparent factorizations
described above–for Conversion 1, sibling scoring
may help conjunctions and grandparent scoring may
help prepositions, and for Conversion 2, grandparent
scoring should help both, while sibling scoring may
or may not add some additional gains.

4 Using Unlabeled Data Effectively

Associations from unlabeled data have the poten-
tial to improve both conjunctions and prepositions.
We predict that web counts which include both con-
juncts (for conjunctions), or which include both the
attachment site and the object of a preposition (for
prepositions) will lead to the largest improvements.

For the phrase dogs and cats, edge-based counts
would measure the associations between dogs and
and, and and and cats, but never any web counts
that include both dogs and cats. For the phrase ate
spaghetti with a fork, edge-based scoring would not
use any web counts involving both ate and fork.

We use associations rather than raw counts. The
phrases trading and transacting versus trading and
what provide an example of the difference between
associations and counts. The phrase trading and
what has a higher count than the phrase trading and
transacting, but trading and transacting are more
highly associated. In this paper, we use point-wise
mutual information (PMI) to measure the strength of
associations of words participating in potential con-
junctions or prepositions.4 For three words h, m, c,
this is calculated with:

PMI(h, m, c) = log
P (h .* m .* c)

P (h)P (m)P (c)
(5)

4PMI can be unreliable when frequency counts are small
(Church and Hanks, 1990), however the data used was thresh-
olded, so all counts used are at least 10.

The probabilities are estimated using web-scale
n-gram counts, which are looked up using the
tools and web-scale n-grams described in Lin et al.
(2010). Defining the joint probability using wild-
cards (rather than the exact sequence h m c) is
crucially important, as determiners, adjectives, and
other words may naturally intervene between the
words of interest.

Approaches which cluster words (i.e., Koo et
al. (2008)) are also designed to identify words
which are semantically related. As manually labeled
parsed data is sparse, this may help generalize across
similar words. However, if edges are not connected
to the semantic head, cluster-based methods may be
less effective. For example, the choice of yesterday
as the head of opening of trading here yesterday in
Figure 2(c) or whose in 2(e) may make cluster-based
features less useful than if the semantic heads were
chosen (opening and plans, respectively).

5 Experiments

The previous section motivated the use of unlabeled
data for attaching prepositions and conjunctions. We
have also hypothesized that these features will be
most effective when the data representation and the
learning representation both capture relevant prop-
erties of prepositions and conjunctions. We predict
that Conversion 2 and a factorization which includes
grand-parent scoring will achieve the highest perfor-
mance. In this section, we investigate the impact
of unlabeled data on parsing accuracy using the two
conversions and using each of the factorizations de-
scribed in Section 3.1-3.4.

5.1 Unlabeled Data Feature Set
Clusters: We replicate the cluster-based features
from Koo et al. (2008), which includes features over
all edges (h, m), grand-parent triples (h, m, c), and
parent sibling triples (h, m, s). The features were
all derived from the publicly available clusters pro-
duced by running the Brown clustering algorithm
(Brown et al., 1992) over the BLLIP corpus with the
Penn Treebank sentences excluded.5

Preposition and conjunction-inspired features
(motivated by Section 4) are described below:

5people.csail.mit.edu/maestro/papers/
bllip-clusters.gz
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Web Counts: For each set of words of interest, we
compute the PMI between the words, and then in-
clude binary features for whether the mutual infor-
mation is undefined, if it is negative, and whether it
is greater than each positive integer.

For conjunctions, we only do this for triples of
both conjunct and the conjunction (and if the con-
junction is and or or and the two potential conjuncts
are the same coarse grained part-of-speech). For
prepositions, we consider only cases in which the
parent is a noun or a verb and the child is a noun
(this corresponds to the cases considered by Hindle
and Rooth (1993) and others). Prepositions use as-
sociation features to score both the triple (parent,
preposition, child) and all pairs within that triple.
The counts features are not used if all the words in-
volved are stopwords. For the scope of this paper we
use only the above counts related to prepositions and
conjunctions.

5.2 Parser

We use the Model 1 version of dpo3, a state-of-the-
art third-order dependency parser (Koo and Collins,
2010))6. We augment the feature set used with the
web-counts-based features relevant to prepositions
and conjunctions and the cluster-based features. The
only other change to the parser’s existing feature set
was the addition of binary features for the part-of-
speech tag of the child of the root node, alone and
conjoined with the tags of its children. For further
details about the parser, see Koo and Collins (2010).

5.3 Experimental Set-up

Training was done on Section 2-21 of the Penn
Treebank. Section 22 was used for development,
and Section 23 for test. We use automatic part-
of-speech tags for both training and testing (Rat-
naparkhi, 1996). The set of potential edges was
pruned using the marginals produced by a first-order
parser trained using exponentiated gradient descent
(Collins et al., 2008) as in Koo and Collins (2010).
We train the full parser for 15 iterations of averaged
perceptron training (Collins, 2002), choose the itera-
tion with the best unlabeled attachment score (UAS)
on the development set, and apply the model after
that iteration to the test set.

6http://groups.csail.mit.edu/nlp/dpo3/

We also ran MSTParser (McDonald and Pereira,
2006), the Berkeley constituency parser (Petrov and
Klein, 2007), and the unmodified dpo3 Model 1
(Koo and Collins, 2010) using Conversion 2 (the
current recommendations) for comparison. Since
the converted Penn Treebank now contains a few
non-projective sentences, we ran both the projective
and non-projective versions of the second order (sib-
ling) MSTParser. The Berkeley parser was trained
on the constituency trees of the PTB patched with
Vadas and Curran (2007), and then the predicted
parses were converted using pennconverter.

6 Results and Discussion

Table 1 shows the unlabeled attachment scores,
complete sentence exact match accuracies, and the
accuracies of conjunctions and prepositions under
Conversion 2.7 The incorporation of the unlabeled
data features (clusters and web counts) into the dpo3
parser yields a significantly better parser than dpo3
alone (93.54 UAS versus 93.21)8, and is more than
a 1.5% improvement over MSTParser.

6.1 Impact of Factorization

In all four metrics (attachment of all non-
punctuation tokens, sentence accuracy, prepositions,
and conjunctions), there is no significant difference
between the version of the parser which uses the
grandparent and sibling factorization (Grand+Sib)
and the version which uses just the grandparent fac-
torization (Grand). A parser which uses only grand-
parents (referred to as Model 0 in Koo and Collins
(2010)) may therefore be preferable, as it contains
far fewer parameters than a third-order parser.

While the grandparent factorization and the sib-
ling factorization (Sib) are both “second-order”
parsers, scoring up to two edges (involving three
words) simultaneously, their results are quite dif-
ferent, with the sibling factorization scoring much
worse. This is particularly notable in the conjunc-
tion case, where the sibling model is over 5% abso-
lute worse in accuracy than the grandparent model.

7As is standard for English dependency parsing, five punc-
tuation symbols :, ,, “, ”, and . are excluded from the results
(Yamada and Matsumoto, 2003).

8If the (deprecated) Conversion 1 is used, the new features
improve the UAS of dpo3 from 93.04 to 93.51.
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Model UAS Exact Match Conjunctions Prepositions
MSTParser (proj) 91.96 38.9 84.0 84.2
MSTParser (non-proj) 91.98 38.7 83.8 84.6
Berkeley (converted) 90.98 36.0 85.6 84.3
dpo3 (Grand+Sib) 93.21 44.8 89.6 86.9
dpo3+Unlabeled (Edges) 93.12 43.6 85.3 87.0
dpo3+Unlabeled (Sib) 93.15 43.7 85.5 86.8
dpo3+Unlabeled (Grand) 93.55 46.1 90.6 87.5
dpo3+Unlabeled (Grand+Sib) 93.54 46.0 90.8 87.4

- Clusters 93.10 45.0 90.5 87.5
- Prep,Conj Counts 93.52 45.8 89.9 87.1

Table 1: Test set accuracies under Conversion 2 of unlabeled attachment scores, complete sentence exact match accu-
racies, conjunction accuracy, and preposition accuracy. Bolded items are the best in each column, or not significantly
different from the best in that column (sign test, p < .05).

6.2 Impact of Unlabeled Data

The unlabeled data features improved the already
state-of-the-art dpo3 parser in UAS, complete sen-
tence accuracy, conjunctions, and prepositions.
However, because the sample sizes are much smaller
for the latter three cases, only the UAS improvement
is statistically significant.9 Overall, the results in Ta-
ble 1 show that while the inclusion of unlabeled data
improves parser performance, increasing the size of
factorization matters even more. Ablation experi-
ments showed that cluster features have a larger im-
pact on overall UAS, while count features have a
larger impact on prepositions and conjunctions.

6.3 Comparison with Other Parsers

The resulting dpo3+Unlabeled parser is significantly
better than both versions of MSTParser and the
Berkeley parser converted to dependencies across all
four evaluations. dpo3+Unlabeled has an UAS 1.5%
higher than MSTParser, which has an UAS 1.0%
higher than the converted constituency parser. The
MSTParser uses sibling scoring, so it is unsurpris-
ing that it performs less well on the new conversion.

While the converted constituency parser is not
as good on dependencies as MSTParser overall,
note that it is over a percent and a half better than
MSTParser on attaching conjunctions (85.6% versus
84.0%). Conjunction scope may benefit from paral-
lelism and higher-level structure, which is easily ac-
cessible when joining two matching non-terminals

9There are 52,308 non-punctuation tokens in the test set,
compared with 2416 sentences, 1373 conjunctions, and 5854
prepositions.

in a context-free grammar, but much harder to
determine in the local views of graph-based de-
pendency parsers. The dependencies arising from
the Berkeley constituency trees have higher con-
junction accuracies than either the edge-based or
sibling-based dpo3+Unlabeled parser. However,
once grandparents are included in the factorization,
the dpo3+Unlabeled is significantly better at attach-
ing conjunctions than the constituency parser, at-
taching conjunctions with an accuracy over 90%.
Therefore, some of the disadvantages of dependency
parsing compared with constituency parsing can be
compensated for with larger factorizations.

Conjunctions
Conversion 1 Conversion 2

Scoring (deprecated)
Edge 86.3 85.3
Sib 87.8 85.5
Grand 87.2 90.6
Grand+Sib 88.3 90.8

Table 2: Unlabeled attachment accuracy for conjunc-
tions. Bolded items are the best in each column, or not
significantly different (sign test, p < .05).

6.4 Impact of Data Representation

Tables 2 and 3 show the results of the
dpo3+Unlabeled parser for conjunctions and
prepositions, respectively, under the two different
conversions. The data representation has an impact
on which factorizations perform best. Under
Conversion 1, conjunctions are more accurate under
a sibling parser than a grandparent parser, while the
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Prepositions
Conversion 1 Conversion 2

Scoring (deprecated)
Edge 87.4 87.0
Sib 87.5 86.8
Grand 87.9 87.5
Grand+Sib 88.4 87.4

Table 3: Unlabeled attachment accuracy for prepositions.
Bolded items are the best in each column, or not signifi-
cantly different (sign test, p < .05).

pattern is reversed for Conversion 2.
Conjunctions show a much stronger need for

higher order factorizations than prepositions do.
This is not too surprising, as prepositions have more
of a selectional preference than conjunctions, and
so the preposition itself is more informative about
where it should attach. While prepositions do im-
prove with larger factorizations, the improvement
beyond edge-based is not significant for Conversion
2. One hypothesis for why Conversion 1 shows more
of an improvement is that the wider scope leads to
the semantic head being included; in Conversion
2, the semantic head is chosen as the parent of the
preposition, so the wider scope is less necessary.

6.5 Preposition Error Analysis

Prepositions are still the largest source of errors in
the dpo3+Unlabeled parser. We therefore analyze
the errors made on the development set to determine
whether the difficult remaining cases for parsers cor-
respond to the Hindle and Rooth (1993) style PP-
attachment classification task. In the PP-attachment
classification task, the two choices for where the
preposition attaches are the previous verb or the pre-
vious noun, and the preposition itself has a noun ob-
ject. The ones that do attach to the preceeding noun
or verb (not necessarily the preceeding word) and
have a noun object (2323 prepositions) are attached
by the dpo3+Unlabeled grandparent-scoring parser
with 92.4% accuracy, while those that do not fit that
categorization (1703 prepositions) have the correct
parent only 82.7% of the time.

Local attachments are more accurate — preposi-
tions are attached with 94.8% accuracy if the correct
parent is the immediately preceeding word (2364
cases) and only 79.1% accuracy if it is not (1662
cases). The preference is not necessarily for low

attachments though: the prepositions whose parent
is not the preceeding word are attached more accu-
rately if the parent is the root word (usually corre-
sponding to the main verb) of the sentence (90.8%,
587 cases) than if the parent is lower in the tree
(72.7%, 1075 cases).

7 Conclusion

Features derived from unlabeled data (clusters and
web counts) significantly improve a state-of-the-art
dependency parser for English. We showed how
well various factorizations are able to take advantage
of these unlabeled data features, focusing our anal-
ysis on conjunctions and prepositions. Including
grandparents in the factorization increases the accu-
racy of conjunctions over 5% absolute over edge-
based or sibling-based scoring. The representation
of the data is extremely important for how the prob-
lem should be factored–under the old Penn2Malt de-
pendency representation, a sibling parser was more
accurate than a grandparent parser. As some impor-
tant relationships were represented as siblings and
some as grandparents, there was a need to develop
third-order parsers which could exploit both simul-
taneously (Koo and Collins, 2010). Under the new
pennconverter standard, a grandparent parser is sig-
nificantly better than a sibling parser, and there is no
significant improvement when including both.
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