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Abstract
Bootstrapping a classifier from a small set
of seed rules can be viewed as the propaga-
tion of labels between examples via features
shared between them. This paper introduces a
novel variant of the Yarowsky algorithm based
on this view. It is a bootstrapping learning
method which uses a graph propagation algo-
rithm with a well defined objective function.
The experimental results show that our pro-
posed bootstrapping algorithm achieves state
of the art performance or better on several dif-
ferent natural language data sets.

1 Introduction
In this paper, we are concerned with a case of semi-
supervised learning that is close to unsupervised
learning, in that the labelled and unlabelled data
points are from the same domain and only a small
set of seed rules is used to derive the labelled points.
We refer to this setting as bootstrapping. In contrast,
typical semi-supervised learning deals with a large
number of labelled points, and a domain adaptation
task with unlabelled points from the new domain.

The two dominant discriminative learning meth-
ods for bootstrapping are self-training (Scud-
der, 1965) and co-training (Blum and Mitchell,
1998). In this paper we focus on a self-training
style bootstrapping algorithm, the Yarowsky algo-
rithm (Yarowsky, 1995). Variants of this algorithm
have been formalized as optimizing an objective
function in previous work by Abney (2004) and Haf-
fari and Sarkar (2007), but it is not clear that any
perform as well as the Yarowsky algorithm itself.

We take advantage of this formalization and in-
troduce a novel algorithm called Yarowsky-prop
which builds on the algorithms of Yarowsky (1995)
and Subramanya et al. (2010). It is theoretically
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x denotes an example
f , g denote features
i, k denote labels
X set of training examples
Fx set of features for example x
Y current labelling of X
Yx current label for example x
⊥ value of Yx for unlabelled examples
L number of labels (not including ⊥)
Λ set of currently labelled examples
V set of currently unlabelled examples
Xf set of examples with feature f
Λf set of currently labelled examples with f
Vf set of currently unlabelled examples with f
Λj set of examples currently labelled with j
Λfj set of examples with f currently labelled with j

Table 1: Notation of Abney (2004).

well-understood as minimizing an objective func-
tion at each iteration, and it obtains state of the art
performance on several different NLP data sets. To
our knowledge, this is the first theoretically mo-
tivated self-training bootstrapping algorithm which
performs as well as the Yarowsky algorithm.

2 Bootstrapping

Abney (2004) defines useful notation for semi-
supervised learning, shown in table 1. Note that Λ,
V , etc. are relative to the current labelling Y . We
additionally define F to be the set of all features,
and use U to denote the uniform distribution. In the
bootstrapping setting the learner is given an initial
partial labelling Y (0) where only a few examples are
labelled (i.e. Y (0)

x = ⊥ for most x).
Abney (2004) defines three probability distribu-

tions in his analysis of bootstrapping: θfj is the pa-
rameter for feature f with label j, taken to be nor-
malized so that θf is a distribution over labels. φx is
the labelling distribution representing the current Y ;
it is a point distribution for labelled examples and
uniform for unlabelled examples. πx is the predic-
tion distribution over labels for example x.

The approach of Haghighi and Klein (2006b) and
Haghighi and Klein (2006a) also uses a small set of
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Algorithm 1: The basic Yarowsky algorithm.

Require: training data X and a seed DL θ(0)

1: apply θ(0) to X produce a labelling Y (0)

2: for iteration t to maximum or convergence do
3: train a new DL θ on Y (t)

4: apply θ to X , to produce Y (t+1)

5: end for

seed rules but uses them to inject features into a joint
model p(x, j) which they train using expectation-
maximization for Markov random fields. We focus
on discriminative training which does not require
complex partition functions for normalization. Blum
and Chawla (2001) introduce an early use of trans-
ductive learning using graph propagation. X. Zhu
and Z. Ghahramani and J. Lafferty (2003)’s method
of graph propagation is predominantly transductive,
and the non-transductive version is closely related to
Abney (2004) c.f. Haffari and Sarkar (2007).1

3 Existing algorithms
3.1 Yarowsky

A decision list (DL) is a (ordered) list of feature-
label pairs (rules) which is produced by assigning
a score to each rule and sorting on this score. It
chooses a label for an example from the first rule
whose feature is a feature of the example. For a
DL the prediction distribution is defined by πx(j) ∝
maxf∈Fx θfj . The basic Yarowsky algorithm is
shown in algorithm 1. Note that at any point some
training examples may be left unlabelled by Y (t).

We use Collins and Singer (1999) for our exact
specification of Yarowsky.2 It uses DL rule scores

θfj ∝
|Λfj |+ ε

|Λf |+ Lε
(1)

where ε is a smoothing constant. When constructing
a DL it keeps only the rules with (pre-normalized)
score over a threshold ζ. In our implementation we
add the seed rules to each subsequent DL.3

1Large-scale information extraction, e.g. (Hearst, 1992),
Snowball (Agichtein and Gravano, 2000), AutoSlog (Riloff and
Shepherd, 1997), and Junto (Talukdar, 2010) among others, also
have similarities to our approach. We focus on the formal anal-
ysis of the Yarowsky algorithm by Abney (2004).

2It is similar to that of Yarowsky (1995) but is better spec-
ified and omits word sense disambiguation optimizations. The
general algorithm in Yarowsky (1995) is self-training with any
kind of underlying supervised classifier, but we follow the con-
vention of using Yarowsky to refer to the DL algorithm.

3This is not clearly specified in Collins and Singer (1999),

3.2 Yarowsky-cautious

Collins and Singer (1999) also introduce a variant
algorithm Yarowsky-cautious. Here the DL training
step keeps only the top n rules (f, j) over the thresh-
old for each label j, ordered by |Λf |. Additionally
the threshold ζ is checked against |Λfj |/|Λf | instead
of the smoothed score. n begins at n0 and is incre-
mented by ∆n at each iteration. We add the seed DL
to the new DL after applying the cautious pruning.
Cautiousness limits not only the size of the DL but
also the number of labelled examples, prioritizing
decisions which are believed to be of high accuracy.

At the final iteration Yarowsky-cautious uses the
current labelling to train a DL without a threshold
or cautiousness, and this DL is used for testing. We
call this the retraining step.4

3.3 DL-CoTrain

Collins and Singer (1999) also introduce the co-
training algorithm DL-CoTrain. This algorithm al-
ternates between two DLs using disjoint views of
the features in the data. At each step it trains a DL
and then produces a new labelling for the other DL.
Each DL uses thresholding and cautiousness as we
describe for Yarowsky-cautious. At the end the DLs
are combined, the result is used to label the data, and
a retraining step is done from this single labelling.

3.4 Y-1/DL-1-VS

One of the variant algorithms of Abney (2004) is
Y-1/DL-1-VS (referred to by Haffari and Sarkar
(2007) as simply DL-1). Besides various changes
in the specifics of how the labelling is produced,
this algorithm has two differences versus Yarowsky.
Firstly, the smoothing constant ε in (1) is replaced
by 1/|Vf |. Secondly, π is redefined as πx(j) =

1
|Fx|

∑
f∈Fx

θfj , which we refer to as the sum def-
inition of π. This definition does not match a literal
DL but is easier to analyze.

We are not concerned here with the details of
Y-1/DL-1-VS, but we note that Haffari and Sarkar

but is used for DL-CoTrain in the same paper.
4The details of Yarowsky-cautious are not clearly specified

in Collins and Singer (1999). Based on similar parts of DL-
CoTrain we assume the that the top n selection is per label
rather in total, that the thresholding value is unsmoothed, and
that there is a retraining step. We also assume their notation
Count′(x) to be equivalent to |Λf |.
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(2007) provide an objective function for this al-
gorithm using a generalized definition of cross-
entropy in terms of Bregman distance, which mo-
tivates our objective in section 4. The Breg-
man distance between two discrete probability dis-
tributions p and q is defined as Bψ(p, q) =∑

i [ψ(pi)− ψ(qi)− ψ′(qi)(pi − qi)]. As a specific
case we have Bt2(p, q) =

∑
i(pi− qi)2 = ||p− q||2.

Then Bregman distance-based entropy is Ht2(p) =
−

∑
i p

2
i , KL-Divergence is Bt2 , and cross-entropy

follows the standard definition in terms of Ht2 and
Bt2 . The objective minimized by Y-1/DL-1-VS is:

∑
x∈X
f∈Fx

Ht2(φx||θf ) =
∑
x∈X
f∈Fx

[
Bt2(φx||θf )−

∑
y

φ2
x

]
.

(2)

3.5 Yarowsky-sum

As a baseline for the sum definition of π, we intro-
duce the Yarowsky-sum algorithm. It is the same
as Yarowsky except that we use the sum definition
when labelling: for example x we choose the label j
with the highest (sum) πx(j), but set Yx = ⊥ if the
sum is zero. Note that this is a linear model similar
to a conditional random field (CRF) (Lafferty et al.,
2001) for unstructured multiclass problems.

3.6 Bipartite graph algorithms

Haffari and Sarkar (2007) suggest a bipartite
graph framework for semi-supervised learning
based on their analysis of Y-1/DL-1-VS and objec-
tive (2). The graph has vertices X ∪ F and edges
{(x, f) : x ∈ X, f ∈ Fx}, as in the graph shown
in figure 1(a). Each vertex represents a distribution
over labels, and in this view Yarowsky can be seen as
alternately updating the example distributions based
on the feature distributions and visa versa.

Based on this they give algorithm 2, which
we call HS-bipartite. It is parametrized by two
functions which are called features-to-example and
examples-to-feature here. Each can be one of
two choices: average(S) is the normalized aver-
age of the distributions of S, while majority(S)
is a uniform distribution if all labels are supported
by equal numbers of distributions of S, and other-
wise a point distribution with mass on the best sup-
ported label. The average-majority form is similar

Algorithm 2: HS-bipartite.

1: apply θ(0) to X produce a labelling Y (0)

2: for iteration t to maximum or convergence do
3: for f ∈ F do
4: let p = examples-to-feature({φx : x ∈ Xf})
5: if p 6= U then let θf = p
6: end for
7: for x ∈ X do
8: let p = features-to-example({θf : f ∈ Fx})
9: if p 6= U then let φx = p

10: end for
11: end for

to Y-1/DL-1-VS, and the majority-majority form
minimizes a different objective similar to (2).

In our implementation we label training data (for
the convergence check) with the φ distributions from
the graph. We label test data by constructing new
φx = examples-to-feature(Fx) for the unseen x.

3.7 Semi-supervised learning algorithm of Sub-
ramanya et al. (2010)

Subramanya et al. (2010) give a semi-supervised al-
gorithm for part of speech tagging. Unlike the algo-
rithms described above, it is for domain adaptation
with large amounts of labelled data rather than boot-
strapping with a small number of seeds.

This algorithm is structurally similar to Yarowsky
in that it begins from an initial partial labelling and
repeatedly trains a classifier on the labelling and
then relabels the data. It uses a CRF (Lafferty et al.,
2001) as the underlying supervised learner. It dif-
fers significantly from Yarowsky in two other ways:
First, instead of only training a CRF it also uses a
step of graph propagation between distributions over
the n-grams in the data. Second, it does the propa-
gation on distributions over n-gram types rather than
over n-gram tokens (instances in the data).

They argue that using propagation over types al-
lows the algorithm to enforce constraints and find
similarities that self-training cannot. We are not con-
cerned here with the details of this algorithm, but
it motivates our work firstly in providing the graph
propagation which we will describe in more detail in
section 4, and secondly in providing an algorithmic
structure that we use for our algorithm in section 5.

3.8 Collins and Singer (1999)’s EM

We implemented the EM algorithm of Collins and
Singer (1999) as a baseline for the other algorithms.
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Method V N (u) qu
φ-θ X ∪ F Nx = Fx, Nf = Xf qx = φx, qf = θf
π-θ X ∪ F Nx = Fx, Nf = Xf qx = πx, qf = θf
θ-only F Nf =

⋃
x∈Xf

Fx \ f qf = θf
θT-only F Nf =

⋃
x∈Xf

Fx \ f qf = θT
f

Table 2: Graph structures for propagation.

They do not specify tuning details, but to get com-
parable accuracy we found it was necessary to do
smoothing and to include weights λ1 and λ2 on the
expected counts of seed-labelled and initially unla-
belled examples respectively (Nigam et al., 2000).

4 Graph propagation
The graph propagation of Subramanya et al. (2010)
is a method for smoothing distributions attached to
vertices of a graph. Here we present it with an alter-
nate notation using Bregman distances as described
in section 3.4.5 The objective is

µ
∑
u∈V

v∈N (i)

wuvBt2(qu, qv) + ν
∑
u∈V

Bt2(qu, U) (3)

where V is a set of vertices, N (v) is the neighbour-
hood of vertex v, and qv is an initial distribution for
each vertex v to be smoothed. They give an iterative
update to minimize (3). Note that (3) is independent
of their specific graph structure, distributions, and
semi-supervised learning algorithm.

We propose four methods for using this propaga-
tion with Yarowsky. These methods all use con-
stant edge weights (wuv = 1). The distributions
and graph structures are shown in table 2. Figure 1
shows example graphs for φ-θ and θ-only. π-θ and
θT-only are similar, and are described below.

The graph structure of φ-θ is the bipartite graph
of Haffari and Sarkar (2007). In fact, φ-θ the propa-
gation objective (3) and Haffari and Sarkar (2007)’s
Y-1/DL-1-VS objective (2) are identical up to con-
stant coefficients and an extra constant term.6 φ-θ

5We omit the option to hold some of the distributions at fixed
values, which would add an extra term to the objective.

6The differences are specifically: First, (3) adds the con-
stant coefficients µ and ν. Second, (3) sums over each edge
twice (once in each direction), while (2) sums over each only
once. Since wuv = wvu and Bt2(qu, qv) = Bt2(qv, qu), this
can be folded into the constant µ. Third, after expanding (2)
there is a term |Fx| inside the sum for Ht2(φx) which is not
present in (3). This does not effect the direction of minimiza-
tion. Fourth, Bt2(qu, U) in (3) expands to Ht2(qu) plus a con-
stant, adding an extra constant term to the total.

θf|F |

θf4

θf3

θf2

θf1 φx1

φx2

φx3

φx4

φx|X|

... ...
(a) φ-θ method

θf1

θf|F |

θf2

θf4

θf3

...

(b) θ-only method

Figure 1: Example graphs for φ-θ and θ-only propagation.

therefore gives us a direct way to optimize (2).
The other three methods do not correspond to the

objective of Haffari and Sarkar (2007). The π-θ
method is like φ-θ except for using π as the distribu-
tion for example vertices.

The bipartite graph of the first two methods dif-
fers from the structure used by Subramanya et al.
(2010) in that it does propagation between two dif-
ferent kinds of distributions instead of only one kind.
We also adopt a more comparable approach with a
graph over only features. Here we define adjacency
by co-occurrence in the same example. The θ-only
method uses this graph and θ as the distribution.

Finally, we noted in section 3.7 that the algo-
rithm of Subramanya et al. (2010) does one addi-
tional step in converting from token level distribu-
tions to type level distributions. The θT-only method
therefore uses the feature-only graph but for the dis-
tribution uses a type level version of θ defined by
θT
fj = 1

|Xf |
∑

x∈Xf
πx(j).

5 Novel Yarowsky-prop algorithm

We call our graph propagation based algorithm
Yarowsky-prop. It is shown with θT-only propaga-
tion in algorithm 3. It is based on the Yarowsky al-
gorithm, with the following changes: an added step
to calculate θT (line 4), an added step to calculate θP

(line 5), the use of θP rather than the DL to update
the labelling (line 6), and the use of the sum defini-
tion of π. Line 7 does DL training as we describe in
sections 3.1 and 3.2. Propagation is done with the
iterative update of Subramanya et al. (2010).

This algorithm is adapted to the other propagation
methods described in section 4 by changing the type
of propagation on line 5. In θ-only, propagation is
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Algorithm 3: Yarowsky-prop.
1: let θfj be the scores of the seed rules // crf train
2: for iteration t to maximum or convergence do
3: let πx(j) = 1

|Fx|
∑
f∈Fx

θfj // post. decode

4: let θT
fj =

P
x∈Xf

πx(j)

|Xf | // token to type
5: propagate θT to get θP // graph propagate
6: label the data with θP // viterbi decode
7: train a new DL θfj // crf train
8: end for

done on θ, using the graph of figure 1(b). In φ-θ and
π-θ propagation is done on the respective bipartite
graph (figure 1(a) or the equivalent with π). Line
4 is skipped for these methods, and φ is as defined
in section 2. For the bipartite graph methods φ-θ
and π-θ only the propagated θ values on the feature
nodes are used for θP (the distributions on the exam-
ple nodes are ignored after the propagation itself).

The algorithm uses θfj values rather than an ex-
plicit DL for labelling. The (pre-normalized) score
for any (f, j) not in the DL is taken to be zero. Be-
sides using the sum definition of π when calculating
θT, we also use a sum in labelling. When labelling
an example x (at line 6 and also on testing data) we
use arg maxj

∑
f∈Fx: θP

f 6=U
θP
fj , but set Yx = ⊥ if

the sum is zero. Ignoring uniform θP
f values is in-

tended to provide an equivalent to the DL behaviour
of using evidence only from rules that are in the list.

We include the cautiousness of Yarowsky-
cautious (section 3.2) in the DL training on line 7. At
the labelling step on line 6 we label only examples
which the pre-propagated θ would also assign a label
(using the same rules described above for θP). This
choice is intended to provide an equivalent to the
Yarowsky-cautious behaviour of limiting the num-
ber of labelled examples; most θP

f are non-uniform,
so without it most examples become labelled early.

We observe further similarity between the
Yarowsky algorithm and the general approach of
Subramanya et al. (2010) by comparing algorithm
3 here with their algorithm 1. The comments in al-
gorithm 3 give the corresponding parts of their algo-
rithm. Note that each line has a similar purpose.

6 Evaluation

6.1 Tasks and data

For evaluation we use the tasks of Collins and Singer
(1999) and Eisner and Karakos (2005), with data

Rank Score Feature Label
1 0.999900 New-York loc.
2 0.999900 California loc.
3 0.999900 U.S. loc.
4 0.999900 Microsoft org.
5 0.999900 I.B.M. org.
6 0.999900 Incorporated org.
7 0.999900 Mr. per.
8 0.999976 U.S. loc.
9 0.999957 New-York-Stock-Exchange loc.
10 0.999952 California loc.
11 0.999947 New-York loc.
12 0.999946 court-in loc.
13 0.975154 Company-of loc.

...
Figure 2: A DL from iteration 5 of Yarowsky on the named en-
tity task. Scores are pre-normalized values from the expression
on the left side of (1), not θfj values. Context features are indi-
cated by italics; all others are spelling features. Specific feature
types are omitted. Seed rules are indicated by bold ranks.

kindly provided by the respective authors.
The task of Collins and Singer (1999) is named

entity classification on data from New York Times
text.7 The data set was pre-processed by a statisti-
cal parser (Collins, 1997) and all noun phrases that
are potential named entities were extracted from the
parse tree. Each noun phrase is to be labelled as
a person, organization, or location. The parse tree
provides the surrounding context as context features
such as the words in prepositional phrase and rela-
tive clause modifiers, etc., and the actual words in
the noun phrase provide the spelling features. The
test data additionally contains some noise examples
which are not in the three named entity categories.
We use the seed rules the authors provide, which are
the first seven items in figure 2. For DL-CoTrain,
we use their two views: one view is the spelling fea-
tures, and the other is the context features. Figure 2
shows a DL from Yarowsky training on this task.

The tasks of Eisner and Karakos (2005) are word
sense disambiguation on several English words
which have two senses corresponding to two dif-
ferent words in French. Data was extracted from
the Canadian Hansards, using the English side to
produce training and test data and the French side
to produce the gold labelling. Features are the
original and lemmatized words immediately adja-

7We removed weekday and month examples from the test set
as they describe. They note 88962 examples in their training set,
but the file has 89305. We did not find any filtering criteria that
produced the expected size, and therefore used all examples.
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cent to the word to be disambiguated, and origi-
nal and lemmatized context words in the same sen-
tence. Their seeds are pairs of adjacent word fea-
tures, with one feature for each label (sense). We
use the ‘drug’, ‘land’, and ‘sentence’ tasks, and
the seed rules from their best seed selection: ‘alco-
hol’/‘medical’, ‘acres’/‘court’, and ‘reads’/‘served’
respectively (they do not provide seeds for their
other three tasks). For DL-CoTrain we use adjacent
words for one view and context words for the other.

6.2 Experimental set up

Where applicable we use smoothing ε = 0.1, a
threshold ζ = 0.95, and cautiousness parameters
n0 = ∆n = 5 as in Collins and Singer (1999)
and propagation parameters µ = 0.6, ν = 0.01 as
in Subramanya et al. (2010). Initial experiments
with different propagation parameters suggested that
as long as ν was set at this value changing µ had
relatively little effect on the accuracy. We did not
find any propagation parameter settings that outper-
formed this choice. For the Yarowsky-prop algo-
rithms we perform a single iteration of the propa-
gation update for each iteration of the algorithm.

For EM we use weights λ1 = 0.98, and λ2 = 0.02
(see section 3.8), which were found in initial experi-
ments to be the best values, and results are averaged
over 10 random initializations.

The named entity test set contains some examples
that are neither person, organization, nor location.
Collins and Singer (1999) define noise accuracy as
accuracy that includes such instances, and clean ac-
curacy as accuracy calculated across only the exam-
ples which are one of the known labels. We report
only clean accuracy in this paper; noise accuracy
tracks clean accuracy but is a little lower. There is
no difference on the word sense data sets. We also
report (clean) non-seeded accuracy, which we define
to be clean accuracy over only examples which are
not assigned a label by the seed rules. This is in-
tended to evaluate what the algorithm has learned,
rather than what it can achieve by using the input
information directly (Daume, 2011).

We test Yarowsky, Yarowsky-cautious,
Yarowsky-sum, DL-CoTrain, HS-bipartite in
all four forms, and Yarowsky-prop cautious and
non-cautious and in all four forms. For each algo-
rithm except EM we perform a final retraining step

Gold Spelling features Context features
loc. Waukegan maker, LEFT
loc. Mexico, president, of president-of, RIGHT
loc. La-Jolla, La Jolla company, LEFT

Figure 3: Named entity test set examples where Yarowsky-prop
θ-only is correct and no other tested algorithms are correct. The
specific feature types are omitted.

as described for Yarowsky-cautious (section 3.2).
Our programs and experiment scripts have been
made available.8

6.3 Accuracy

Table 3 shows the final test set accuracies for the
all the algorithms. The seed DL accuracy is also
included for reference.

The best performing form of our novel algo-
rithm is Yarowsky-prop-cautious θ-only. It numer-
ically outperforms DL-CoTrain on the named entity
task, is not (statistically) significantly worse on the
drug and land tasks, and is significantly better on
the sentence task. It also numerically outperforms
Yarowsky-cautious on the named entity task and is
significantly better on the drug task. Is significantly
worse on the land task, where most algorithms con-
verge at labelling all examples with the first sense. It
is significantly worse on the sentence task, although
it is the second best performing algorithm and sev-
eral percent above DL-CoTrain on that task.

Figure 3 shows (all) three examples from the
named entity test set where Yarowsky-prop-cautious
θ-only is correct but none of the other Yarowsky
variants are. Note that it succeeds despite mis-
leading features; “maker” and “company” might be
taken to indicate a company and “president-of” an
organization, but all three examples are locations.

Yarowsky-prop-cautious φ-θ and π-θ also per-
form respectably, although not as well. Yarowsky-
prop-cautious θT-only and the non-cautious versions
are significantly worse. Although θT-only was in-
tended to incorporate Subramanya et al. (2010)’s
idea of type level distributions, it in fact performs
worse than θ-only. We believe that Collins and
Singer (1999)’s definition (1) of θ incorporates suf-
ficient type level information that the creation of a
separate distribution is unnecessary in this case.

Figure 4 shows the test set non-seeded accuracies
as a function of the iteration for many of the algo-

8The software is included with the paper submission and
will be maintained at https://github.com/sfu-natlang/yarowsky.
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Algorithm
Task

named entity drug land sentence

EM
81.05 78.64 55.96 54.85 32.86 31.07 67.88 65.42
±0.31 ±0.34 ±0.41 ±0.43 ±0.00 ±0.00 ±3.35 ±3.57

Seed DL 11.29 0.00 5.18 0.00 2.89 0.00 7.18 0.00
DL-CoTrain (cautious) 91.56 90.49 59.59 58.17 78.36 77.72 68.16 65.69
Yarowsky 81.19 78.79 55.70 54.02 79.03 78.41 62.91 60.04
Yarowsky-cautious 91.11 89.97 54.40 52.63 79.10 78.48 78.64 76.99
Yarowsky-cautious sum 91.56 90.49 54.40 52.63 78.36 77.72 78.64 76.99
HS-bipartite avg-avg 45.84 45.89 52.33 50.42 78.36 77.72 54.56 51.05
HS-bipartite avg-maj 81.98 79.69 52.07 50.14 78.36 77.72 55.15 51.67
HS-bipartite maj-avg 73.55 70.18 52.07 50.14 78.36 77.72 55.15 51.67
HS-bipartite maj-maj 73.66 70.31 52.07 50.14 78.36 77.72 55.15 51.67
Yarowsky-prop φ-θ 80.39 77.89 53.63 51.80 78.36 77.72 55.34 51.88
Yarowsky-prop π-θ 78.34 75.58 54.15 52.35 78.36 77.72 54.56 51.05
Yarowsky-prop θ-only 78.56 75.84 54.66 52.91 78.36 77.72 54.56 51.05
Yarowsky-prop θT-only 77.88 75.06 52.07 50.14 78.36 77.72 54.56 51.05
Yarowsky-prop-cautious φ-θ 90.19 88.95 56.99 55.40 78.36 77.72 74.17 72.18
Yarowsky-prop-cautious π-θ 89.40 88.05 58.55 57.06 78.36 77.72 70.10 67.78
Yarowsky-prop-cautious θ-only 92.47 91.52 58.55 57.06 78.36 77.72 75.15 73.22
Yarowsky-prop-cautious θT-only 78.45 75.71 58.29 56.79 78.36 77.72 54.56 51.05
Num. train/test examples 89305 / 962 134 / 386 1604 / 1488 303 / 515

Table 3: Test set percent accuracy and non-seeded test set percent accuracy (respectively) for the algorithms on all tasks. Bold
items are a maximum in their column. Italic items have a statistically significant difference versus DL-CoTrain (p < 0.05 with a
McNemar test). For EM, ± indicates one standard deviation but statistical significance was not measured.

rithms on the named entity task. The Yarowsky-prop
non-cautious algorithms quickly converge to the fi-
nal accuracy and are not shown. While the other
algorithms (figure 4(a)) make a large accuracy im-
provement in the final retraining step, the Yarowsky-
prop (figure 4(b)) algorithms reach comparable ac-
curacies earlier and gain much less from retraining.

We did not implement Collins and Singer (1999)’s
CoBoost; however, in their results it performs com-
parably to DL-CoTrain and Yarowsky-cautious. As
with DL-CoTrain, CoBoost requires two views.

6.4 Cautiousness

Cautiousness appears to be important in the perfor-
mance of the algorithms we tested. In table 3, only
the cautious algorithms are able to reach the 90%
accuracy range.

To evaluate the effects of cautiousness we ex-
amine the Yarowsky-prop θ-only algorithm on the
named entity task in more detail. This algorithm has
two classifiers which are trained in conjunction: the
DL and the propagated θP. Figure 5 shows the train-
ing set coverage (of the labelling on line 6 of algo-
rithm 3) and the test set accuracy of both classifiers,
for the cautious and non-cautious versions.

The non-cautious version immediately learns a
DL over all feature-label pairs, and therefore has full

coverage after the first iteration. The DL and θP con-
verge to similar accuracies within a few more itera-
tions, and the retraining step increases accuracy by
less than one percent. On the other hand, the cau-
tious version gradually increases the coverage over
the iterations. The DL accuracy follows the cover-
age closely (similar to the behaviour of Yarowsky-
cautious, not shown here), while the propagated
classifier accuracy jumps quickly to near 90% and
then increases only gradually.

Although the DL prior to retraining achieves a
roughly similar accuracy in both versions, only the
cautious version is able to reach the 90% accuracy
range in the propagated classifier and retraining.
Presumably the non-cautious version makes an early
mistake, reaching a local minimum which it cannot
escape. The cautious version avoids this by making
only safe rule selection and labelling choices.

Figure 5(b) also helps to clarify the difference in
retraining that we noted in section 6.3. Like the
non-propagated DL algorithms, the DL component
of Yarowsky-prop has much lower accuracy than the
propagated classifier prior to the retraining step. But
after retraining, the DL and θP reach very similar ac-
curacies.
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Figure 4: Non-seeded test accuracy versus iteration for various
algorithms on named entity. The results for the Yarowsky-prop
algorithms are for the propagated classifier θP , except for the
final DL retraining iteration.

6.5 Objective function

The propagation method φ-θ was motivated by opti-
mizing the equivalent objectives (2) and (3) at each
iteration. Figure 6 shows the graph propagation ob-
jective (3) along with accuracy for Yarowsky-prop
φ-θ without cautiousness. The objective value de-
creases as expected, and converges along with accu-
racy. Conversely, the cautious version (not shown
here) does not clearly minimize the objective, since
cautiousness limits the effect of the propagation.

7 Conclusions
Our novel algorithm achieves accuracy compara-
ble to Yarowsky-cautious, but is better theoretically
motivated by combining ideas from Haffari and
Sarkar (2007) and Subramanya et al. (2010). It also
achieves accuracy comparable to DL-CoTrain, but
does not require the features to be split into two in-
dependent views.

As future work, we would like to apply our al-

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600

N
on

-s
ee

de
d 

te
st

 a
cc

ur
ac

y 
| C

ov
er

ag
e

Iteration

main
dl

coverage

(a) Non-cautious

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600

N
on

-s
ee

de
d 

te
st

 a
cc

ur
ac

y 
| C

ov
er

ag
e

Iteration

main
dl

coverage

(b) Cautious

Figure 5: Internal train set coverage and non-seeded test accu-
racy (same scale) for Yarowsky-prop θ-only on named entity.
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Figure 6: Non-seeded test accuracy (left axis), coverage (left
axis, same scale), and objective value (right axis) for Yarowsky-
prop φ-θ. Iterations are shown on a log scale. We omit the first
iteration (where the DL contains only the seed rules) and start
the plot at iteration 2 where there is a complete DL.

gorithm to a structured task such as part of speech
tagging. We also believe that our method for adapt-
ing Collins and Singer (1999)’s cautiousness to
Yarowsky-prop can be applied to similar algorithms
with other underlying classifiers, even to structured
output models such as conditional random fields.
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