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Abstract

We address the problem of learning the map-
ping between words and their possible pro-
nunciations in terms of sub-word units. Most
previous approaches have involved genera-
tive modeling of the distribution of pronuncia-
tions, usually trained to maximize likelihood.
We propose a discriminative, feature-rich ap-
proach using large-margin learning. This ap-
proach allows us to optimize an objective
closely related to a discriminative task, to
incorporate a large number of complex fea-
tures, and still do inference efficiently. We
test the approach on the task of lexical access;
that is, the prediction of a word given a pho-
netic transcription. In experiments on a sub-
set of the Switchboard conversational speech
corpus, our models thus far improve classi-
fication error rates from a previously pub-
lished result of 29.1% to about 15%. We
find that large-margin approaches outperform
conditional random field learning, and that
the Passive-Aggressive algorithm for large-
margin learning is faster to converge than the
Pegasos algorithm.

1 Introduction

One of the problems faced by automatic speech
recognition, especially of conversational speech, is
that of modeling the mapping between words and
their possible pronunciations in terms of sub-word
units such as phones. While pronouncing dictionar-
ies provide each word’s canonical pronunciation(s)
in terms of phoneme strings, running speech of-
ten includes pronunciations that differ greatly from
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the dictionary. For example, some pronunciations
of “probably” in the Switchboard conversational
speech database are [praabiy], [praaliy], [pr
ay], and [p ow ih] (Greenberg et al., 1996). While
some words (e.g., common words) are more prone
to such variation than others, the effect is extremely
general: In the phonetically transcribed portion of
Switchboard, fewer than half of the word tokens
are pronounced canonically (Fosler-Lussier, 1999).
In addition, pronunciation variants sometimes in-
clude sounds not present in the dictionary at all,
such as nasalized vowels (“‘can’t” — [k ae_n n t])
or fricatives introduced due to incomplete consonant
closures (“legal” — [l iy g_fr ix 1).! This varia-
tion makes pronunciation modeling one of the major
challenges facing speech recognition (McAllaster et
al., 1998; Jurafsky et al., 2001; Saraglar and Khu-
danpur, 2004; Bourlard et al., 1999). 2

Most efforts to address the problem have involved
either learning alternative pronunciations and/or
their probabilities (Holter and Svendsen, 1999) or
using phonetic transformation (substitution, inser-
tion, and deletion) rules, which can come from lin-
guistic knowledge or be learned from data (Riley
et al., 1999; Hazen et al., 2005; Hutchinson and
Droppo, 2011). These have produced some im-
provements in recognition performance. However,
they also tend to cause additional confusability due
to the introduction of additional homonyms (Fosler-

"'We use the ARPAbet phonetic alphabet with additional di-
acritics, such as [_n] for nasalization and [_fr] for frication.

This problem is separate from the grapheme-to-phoneme
problem, in which pronunciations are predicted from a word’s
spelling; here, we assume the availability of a dictionary of
canonical pronunciations as is usual in speech recognition.
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Lussier et al., 2002). Some other alternatives are
articulatory pronunciation models, in which words
are represented as multiple parallel sequences of ar-
ticulatory features rather than single sequences of
phones, and which outperform phone-based models
on some tasks (Livescu and Glass, 2004; Jyothi et
al., 2011); and models for learning edit distances be-
tween dictionary and actual pronunciations (Ristad
and Yianilos, 1998; Filali and Bilmes, 2005).

All of these approaches are generative—i.e., they
provide distributions over possible pronunciations
given the canonical one(s)—and they are typically
trained by maximizing the likelihood over train-
ing data. In some recent work, discriminative ap-
proaches have been proposed, in which an objective
more closely related to the task at hand is optimized.
For example, (Vinyals et al., 2009; Korkmazskiy
and Juang, 1997) optimize a minimum classification
error (MCE) criterion to learn the weights (equiv-
alently, probabilities) of alternative pronunciations
for each word; (Schramm and Beyerlein, 2001) use
a similar approach with discriminative model com-
bination. In this work, the weighted alternatives are
then used in a standard (generative) speech recog-
nizer. In other words, these approaches optimize
generative models using discriminative criteria.

We propose a general, flexible discriminative ap-
proach to pronunciation modeling, rather than dis-
criminatively optimizing a generative model. We
formulate a linear model with a large number
of word-level and subword-level feature functions,
whose weights are learned by optimizing a discrim-
inative criterion. The approach is related to the re-
cently proposed segmental conditional random field
(SCRF) approach to speech recognition (Zweig et
al., 2011). The main differences are that we opti-
mize large-margin objective functions, which lead
to sparser, faster, and better-performing models than
conditional random field optimization in our exper-
iments; and we use a large set of different feature
functions tailored to pronunciation modeling.

In order to focus attention on the pronunciation
model alone, our experiments focus on a task that
measures only the mapping between words and sub-
word units. Pronunciation models have in the past
been tested using a variety of measures. For gener-
ative models, phonetic error rate of generated pro-
nunciations (Venkataramani and Byrne, 2001) and
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phone- or frame-level perplexity (Riley et al., 1999;
Jyothi et al., 2011) are appropriate measures. For
our discriminative models, we consider the task
of lexical access; that is, prediction of a single
word given its pronunciation in terms of sub-word
units (Fissore et al., 1989; Jyothi et al., 2011). This
task is also sometimes referred to as “pronunciation
recognition” (Ristad and Yianilos, 1998) or “pro-
nunciation classification” (Filali and Bilmes, 2005).)
As we show below, our approach outperforms both
traditional phonetic rule-based models and the best
previously published results on our data set obtained
with generative articulatory approaches.

2 Problem setting

We define a pronunciation of a word as a representa-
tion of the way it is produced by a speaker in terms
of some set of linguistically meaningful sub-word
units. A pronunciation can be, for example, a se-
quence of phones or multiple sequences of articu-
latory features such as nasality, voicing, and tongue
and lip positions. For purposes of this paper, we will
assume that a pronunciation is a single sequence of
units, but the approach applies to other representa-
tions. We distinguish between two types of pronun-
ciations of a word: (i) canonical pronunciations, the
ones typically found in the dictionary, and (ii) sur-
face pronunciations, the ways a speaker may actu-
ally produce the word. In the task of lexical access
we are given a surface pronunciation of a word, and
our goal is to predict the word.

Formally, we define a pronunciation as a sequence
of sub-word units p = (p1, p2, - .., Pk ), where pi, €
Pforalll <k < K and P is the set of all sub-word
units. The index k can represent either a fixed-length
frame or a variable-length segment. P* denotes the
set of all finite-length sequences over P. We denote
a word by w € V where V is the vocabulary. Our
goal is to find a function f : P* — V that takes as
input a surface pronunciation and returns the word
from the vocabulary that was spoken.

In this paper we propose a discriminative super-
vised learning approach for learning the function f
from a training set of pairs (p, w). We aim to find a
function f that performs well on the training set as
well as on unseen examples. Let & = f(p) be the
predicted word given the pronunciation p. We assess
the quality of the function f by the zero-one loss: if



w # w then the error is one, otherwise the error is
zero. The goal of the learning process is to mini-
mize the expected zero-one loss, where the expec-
tation is taken with respect to a fixed but unknown
distribution over words and surface pronunciations.
In the next section we present a learning algorithm
that aims to minimize the expected zero-one loss.

3 Algorithm

Similarly to previous work in structured prediction
(Taskar et al., 2003; Tsochantaridis et al., 2005),
we construct the function f from a predefined set
of N feature functions, {¢; }évzl each of the form
¢j : P* xV — R. Each feature function takes a sur-
face pronunciation p and a proposed word w and re-
turns a scalar which, intuitively, should be correlated
with whether the pronunciation p corresponds to the
word w. The feature functions map pronunciations
of different lengths along with a proposed word to a
vector of fixed dimension in R"V. For example, one
feature function might measure the Levenshtein dis-
tance between the pronunciation p and the canonical
pronunciation of the word w. This feature function
counts the minimum number of edit operations (in-
sertions, deletions, and substitutions) that are needed
to convert the surface pronunciation to the canonical
pronunciation; it is low if the surface pronunciation
is close to the canonical one and high otherwise.

The function f maximizes a score relating the
word w to the pronunciation p. We restrict our-
selves to scores that are linear in the feature func-
tions, where each ¢; is scaled by a weight 0;:

N
> 06;(p.w) =0 ¢(Fw),
j=1

where we have used vector notation for the feature
functions ¢ = (¢1,...,¢n) and for the weights
0 = (61,...,0N). Linearity is not a very strong
restriction, since the feature functions can be arbi-
trarily non-linear. The function f is defined as the
word w that maximizes the score,
f(p) = argmax 6 - ¢(p,w).
weY

Our goal in learning 0 is to minimize the expected

zero-one loss:

0" = arg;nin E @ w)~p [ﬂw#(fv)] ’
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where 1, is 1 if predicate m holds and O other-
wise, and where p is an (unknown) distribution from
which the examples in our training set are sampled
iid. Let S = {(p,w1),..., (P, wm)} be the
training set. Instead of working directly with the
zero-one loss, which is non-smooth and non-convex,
we use the surrogate hinge loss, which upper-bounds
the zero-one loss:

L(07ﬁi7 wl) - 15)12']}}{ |:]lwi7£w

—0-0(p;,wi) +0-p(p;,w)|. (1)

Finding the weight vector @ that minimizes the
£?-regularized average of this loss function is the
structured support vector machine (SVM) problem
(Taskar et al., 2003; Tsochantaridis et al., 2005):

by 1 &
0" = argmin 5||9H2 +— ;Lw,pi,wi), )

where ) is a user-defined tuning parameter that bal-
ances between regularization and loss minimization.

In practice, we have found that solving the
quadratic optimization problem given in Eq. (2) con-
verges very slowly using standard methods such as
stochastic gradient descent (Shalev-Shwartz et al.,
2007). We use a slightly different algorithm, the
Passive-Aggressive (PA) algorithm (Crammer et al.,
2006), whose average loss is comparable to that of
the structured SVM solution (Keshet et al., 2007).

The Passive-Aggressive algorithm is an efficient
online algorithm that, under some conditions, can
be viewed as a dual-coordinate ascent minimizer of
Eq. (2) (The connection to dual-coordinate ascent
can be found in (Hsieh et al., 2008)). The algorithm
begins by setting & = 0 and proceeds in rounds.
In the ¢-th round the algorithm picks an example
(p;, w;) from S at random uniformly without re-
placement. Denote by =1 the value of the weight
vector before the ¢-th round. Let w! denote the pre-
dicted word for the i-th example according to °~!:

Wt = argmax 071 ¢(p;, w) + Lo -
weyY
Let A¢l = ¢(p;,wi) — ¢(P;,w!). Then the algo-

rithm updates the weight vector ' as follows:

0! =01 +alAp! 3)



where

| Tyt — 0 A
of =minq —, — 1 — .
Am 1Al

In practice we iterate over the m examples in the
training set several times; each such iteration is an
epoch. The final weight vector is set to the average
over all weight vectors during training.

An alternative loss function that is often used to
solve structured prediction problems is the log-loss:

L(6,p;, wi) = — log Py(wi[p;) 4)
where the probability is defined as
0D, wi)
Po(wilp;) = SNz

Minimization of Eq. (2) under the log-loss results in
a probabilistic model commonly known as a condi-
tional random field (CRF) (Lafferty et al., 2001). By
taking the sub-gradient of Eq. (4), we can obtain an
update rule similar to the one shown in Eq. (3).

4 Feature functions

Before defining the feature functions, we define
some notation. Suppose p € P* is a sequence of
sub-word units. We use p;.,, to denote the n-gram
substring p1 . ..p,. The two substrings @ and b are
said to be equal if they have the same length and
a; = b; for 1 <4 < n. For a given sub-word unit n-
gram u € P", we use the shorthand w € p to mean
that we can find % in P; i.e., there exists an index ¢
such that p;.;,,, = u. We use |p| to denote the length
of the sequence p.

We assume we have a pronunciation dictionary,
which is a set of words and their baseforms. We ac-
cess the dictionary through the function pron, which
takes a word w € )V and returns a set of baseforms.

4.1 TF-IDF feature functions

Term frequency (TF) and inverse document fre-
quency (IDF) are measures that have been heavily
used in information retrieval to search for documents
using word queries (Salton et al., 1975). Similarly to
(Zweig et al., 2010), we adapt TF and IDF by treat-
ing a sequence of sub-word units as a “document”
and n-gram sub-sequences as “words.” In this anal-
ogy, we use sub-sequences in surface pronunciations
to “search” for baseforms in the dictionary. These
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features measure the frequency of each n-gram in
observed pronunciations of a given word in the train-
ing set, along with the discriminative power of the n-
gram. These features are therefore only meaningful
for words actually observed in training.

The term frequency of a sub-word unit n-gram
u € P™ in a sequence p is the length-normalized
frequency of the n-gram in the sequence:

Pl —[ul+1

: : ]Lu‘ pz1+\u\ 1°

Next, define the set of words in the training set that
contain the n-gram w as Vg = {w € V | (p,w) €
S,u € p}. The inverse document frequency (IDF)
of an n-gram % is defined as

1

TF;
“P) = FoE

4

Val

IDF represents the discriminative power of an n-
gram: An n-gram that occurs in few words is better
at word discrimination than a very common n-gram.

IDFz = log

Finally, we define word-specific features using TF
and IDF. Suppose the vocabulary is indexed: V =
{w1,...,w,}. Define €, as a binary vector with
elements

(éw)i = ]lwi:w

We define the TF-IDF feature function of @ as
¢a(p, w) = (TFz(p) x IDFg) ® €y,

where ® : Rt x ReXd — Raexbd g the tensor
product. We therefore have as many TF-IDF feature
functions as we have n-grams. In practice, we only
consider n-grams of a certain order (e.g., bigrams).

The following toy example demonstrates how the
TF-IDF features are computed. Suppose we have

= {problem, probably}. The dictionary maps
“problem” to /pclpraabclblaxm/ and “prob-
ably” to /pclpraabclbliy/, and our input is
(p,w) = ([praabliy], problem). Then for the bi-
gram /liy/, we have TF ;;,/(p) = 1/5 (one out of
five bigrams in p), and IDFj;,, = log(2/1) (one
word out of two in the dictionary). The indicator

. T .
Vector 1S €proplem = [1 O] , so the final feature is

7 L1oe 2
b piy/ (D, w) = [5 %gl] -



4.2 Length feature function

The length feature functions measure how the length
of a word’s surface form tends to deviate from the
baseform. These functions are parameterized by a
and b and are defined as

bPa<nr<t (D, w) = Lo<arcd @ Cu,

where A¢ = |p| — [v], for some baseform v €
pron(w). The parameters a and b can be either posi-
tive or negative, so the model can learn whether the
surface pronunciations of a word tend to be longer
or shorter than the baseform. Like the TF-IDF fea-
tures, this feature is only meaningful for words ac-
tually observed in training.

As an example, suppose we have V =
{problem, probably}, and the word “probably” has
two baseforms, /pclpraabclbliy/ (of length
eight) and /pcl praabelbaxbelbliy/ (of length
eleven). If we are given an input (p,w) =
([pcl p r aa bel I ax m], probably), whose length of
the surface form is eight, then the length features for
the ranges 0 < A¢ < land —3 < Al < —2 are

po<ar<1(p,w) = [0 1]T,
¢_3<ne<—2(P,w) = [0 1]T,

respectively. Other length features are all zero.

4.3 Phonetic alignment feature functions

Beyond the length, we also measure specific pho-
netic deviations from the dictionary. We define pho-
netic alignment features that count the (normalized)
frequencies of phonetic insertions, phonetic dele-
tions, and substitutions of one surface phone for an-
other baseform phone. Given (p,w), we use dy-
namic programming to align the surface form p with
all of the baseforms of w. Following (Riley et al.,
1999), we encode a phoneme/phone with a 4-tuple:
consonant manner, consonant place, vowel manner,
and vowel place. Let the dash symbol “—” be a
gap in the alignment (corresponding to an inser-
tion/deletion). Given p,q € P U {—}, we say that
a pair (p,q) is a deletion if p € P and ¢ = —, is
an insertion if p = — and ¢ € P, and is a substi-
tution if both p,q € P. Given p,q € P U {—}, let
(81,52, 53,54) and (t1, ta,t3,t4) be the correspond-
ing 4-tuple encoding of p and ¢, respectively. The
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pcl p r aa pcl p er 1 iy

pcl p r aa bcl b — 1 iy
pcl p r aa pcd p er — — 1 iy
pcl p r aa bcl b ax bel b 1 iy

Table 1: Possible alignments of [p r aa pcl p er 1 iy] with
two baseforms of “probably” in the dictionary.

similarity between p and q is defined as

(p,q) 1, ifp=—orqg=—;
s(p,q) =
P Z?:l ﬂsi:tw

Consider aligning p with the K,, = |pron(w)]
baseforms of w. Define the length of the align-
ment with the k-th baseform as Ly, for 1 < k <
K. The resulting alignment is a sequence of pairs
(ak71, bk71), ey (aklew bk:,Lk)a where Qf i b]m' S
PU{—}forl < i< Li. Now we define the align-
ment features, given p,q € P U {—}, as

otherwise.

Ky L

1
@bpﬂq(ﬁv w) = 7 Z Z lami}% br,i=q>

P p=1i=1
where the normalization term is

Ky Ly
k=1 =1 ]la/c

Zy = =
{‘p ‘ - K w
The normalization for insertions differs from the

normalization for substitutions and deletions, so that
the resulting values always lie between zero and one.

—p» ifpE P;

ifp=—.

As an example, consider the input pair (p,w) =
([praapcl perliy],probably) and suppose there
are two baseforms of the word “probably” in the
dictionary. Let one possible alignments be the one
shown in Table 1. Since /p/ occurs four times in the
alignments and two of them are aligned to [b], the
feature for p — b is then ¢p—p (P, w) = 2/4.

Unlike the TF-IDF feature functions and the
length feature functions, the alignment feature func-
tions can assign a non-zero score to words that are
not seen at training time (but are in the dictionary),
as long as there is a good alignment with their base-
forms. The weights given to the alignment fea-
tures are the analogue of substitution, insertion, and
deletion rule probabilities in traditional phone-based
pronunciation models such as (Riley et al., 1999);
they can also be seen as a generalized version of the
Levenshtein features of (Zweig et al., 2011).



4.4 Dictionary feature function

The dictionary feature is an indicator of whether
a pronunciation is an exact match to a baseform,
which also generalizes to words unseen in training.
We define the dictionary feature as

Pdict(P, w) = 1?6pron(w)~

For example, assume there is a baseform
/pclpraabclbliy/ for the word “probably” in
the dictionary, and p = /pcl praabcl bliy/. Then
¢dict(P, probably) = 1, while ¢gic¢ (P, problem) = 0.

4.5 Articulatory feature functions

Articulatory models represented as dynamic
Bayesian networks (DBNs) have been successful
in the past on the lexical access task (Livescu
and Glass, 2004; Jyothi et al., 2011). In such
models, pronunciation variation is seen as the
result of asynchrony between the articulators (lips,
tongue, etc.) and deviations from the intended
articulatory positions. Given a sequence p and a
word w, we use the DBN to produce an alignment
at the articulatory level, which is a sequence of
7-tuples, representing the articulatory variables® lip
opening, tongue tip location and opening, tongue
body location and opening, velum opening, and
glottis opening. We extract three kinds of features
from the output—substitutions, asynchrony, and
log-likelihood.

The substitution features are similar to the pho-
netic alignment features in Section 4.3, except that
the alignment is not a sequence of pairs but a se-
quence of 14-tuples (7 for the baseform and 7 for the
surface form). The DBN model is based on articu-
latory phonology (Browman and Goldstein, 1992),
in which there are no insertions and deletions, only
substitutions (apparent insertions and deletions are
accounted for by articulatory asynchrony). For-
mally, consider the seven sets of articulatory vari-
able values F1, ..., Fy. For example, F] could be
all of the values of lip opening, F; ={closed, crit-
ical, narrow, wide}. Let 7 = {F},..., Fr}. Con-
sider an articulatory variable ' € JF. Suppose the
alignment for F'is (a1,b1),...,(ar,br), where L

3We use the term “articulatory variable” for the “articulatory
features” of (Livescu and Glass, 2004; Jyothi et al., 2011), in
order to avoid confusion with our feature functions.
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is the length of the alignment and a;,b; € F|, for
1 < ¢ < L. Here the a; are the intended articulatory
variable values according to the baseform, and the
b; are the corresponding realized values. For each
a,b € F we define a substitution feature function:

Z]lal a,b;=b-

The asynchrony features are also extracted from
the DBN alignments. Articulators are not always
synchronized, which is one cause of pronunciation
variation. We measure this by looking at the phones
that two articulators are aiming to produce, and find
the time difference between them. Formally, we
consider two articulatory variables Fy, F), € F.
Let the alignment between the two variables be
(a1,b1),...,(ar,br), where now a; € F}, and b; €
Fy. Each a; and b; can be mapped back to the cor-
responding phone index ¢, ; and ¢, ;, for 1 <7 < L.
The average degree of asynchrony is then defined as

(ba—>b D, w

L

% > (thi = tri) -

i=1

async(Fy, Fy) =

More generally, we compute the average asynchrony
between any two sets of variables Fi, Fo C F as

async(Fp, Fa) =

Z

=1

D thi=

Frer

Z tr i

1
!fl P2l o,

We then define the asynchrony features as

¢a§async(]—‘1 JJF2)<b — ]lagasync(]ﬁ ,F2)<b

Finally, the log-likelihood feature is the DBN
alignment score, shifted and scaled so that the value
lies between zero and one,

L(p,w)—h

¢dbn LL (p7 ) f )

where L is the log-likelihood function of the DBN,
h is the shift, and c is the scale.

Note that none of the DBN features are word-
specific, so that they generalize to words in the dic-
tionary that are unseen in the training set.

5 Experiments

All experiments are conducted on a subset of the
Switchboard conversational speech corpus that has



been labeled at a fine phonetic level (Greenberg et
al., 1996); these phonetic transcriptions are the input
to our lexical access models. The data subset, phone
set P, and dictionary are the same as ones previ-
ously used in (Livescu and Glass, 2004; Jyothi et al.,
2011). The dictionary contains 3328 words, consist-
ing of the 5000 most frequent words in Switchboard,
excluding ones with fewer than four phones in their
baseforms. The baseforms use a similar, slightly
smaller phone set (lacking, e.g., nasalization). We
measure performance by error rate (ER), the propor-
tion of test examples predicted incorrectly.

The TF-IDF features used in the experiments
are based on phone bigrams. For all of the ar-
ticulatory DBN features, we use the DBN from
(Livescu, 2005) (the one in (Jyothi et al., 2011)
is more sophisticated and may be used in fu-
ture work). For the asynchrony features, the ar-
ticulatory pairs are (Fp,F2) € {({tongue tip},
{tongue body}), ({lip opening}, {tongue tip,
tongue body}), and ({lip opening, tongue tip,
tongue body}, {glottis, velum})}, as in (Livescu,
2005). The parameters (a,b) of the length and
asynchrony features are drawn from (a,b) €
{(-3,-2),(-2,-1),...(2,3)}.

We compare the CRF*, Passive-Aggressive (PA),
and Pegasos learning algorithms. The regularization
parameter A is tuned on the development set. We run
all three algorithms for multiple epochs and pick the
best epoch based on development set performance.

For the first set of experiments, we use the same
division of the corpus as in (Livescu and Glass,
2004; Jyothi et al., 2011) into a 2492-word train-
ing set, a 165-word development set, and a 236-
word test set. To give a sense of the difficulty of
the task, we test two simple baselines. One is a lex-
icon lookup: If the surface form is found in the dic-
tionary, predict the corresponding word; otherwise,
guess randomly. For a second baseline, we calcu-
late the Levenshtein (0-1 edit) distance between the
input pronunciation and each dictionary baseform,
and predict the word corresponding to the baseform
closest to the input. The results are shown in the first
two rows of Table 2. We can see that, by adding just
the Levenshtein distance, the error rate drops signif-

*We use the term “CRF” since the learning algorithm corre-
sponds to CRF learning, although the task is multiclass classifi-
cation rather than a sequence or structure prediction task.
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| Model | ER]
lexicon lookup (from (Livescu, 2005)) | 59.3%
lexicon + Levenshtein distance 41.8%
(Jyothi et al., 2011) 29.1%
CRF/DP+ 21.5%
PA/DP+ 15.2%
Pegasos/DP+ 14.8%
PA/ALL 15.2%

Table 2: Lexical access error rates (ER) on the same data
split as in (Livescu and Glass, 2004; Jyothi et al., 2011).
Models labeled X/Y use learning algorithm X and feature
set Y. The feature set DP+ contains TF-IDF, DP align-
ment, dictionary, and length features. The set ALL con-
tains DP+ and the articulatory DBN features. The best
results are in bold; the differences among them are in-
significant (according to McNemar’s test with p = .05).

icantly. However, both baselines do quite poorly.

Table 2 shows the best previous result on this data
set from the articulatory model of Jyothi et al., which
greatly improves over our baselines as well as over
a much more complex phone-based model (Jyothi
et al., 2011). The remaining rows of Table 2 give
results with our feature functions and various learn-
ing algorithms. The best result for PA/DP+ (the PA
algorithm using all features besides the DBN fea-
tures) on the development set is with A = 100 and 5
epochs. Tested on the test set, this model improves
over (Jyothi et al., 2011) by 13.9% absolute (47.8%
relative). The best result for Pegasos with the same
features on the development set is with A = 0.01 and
10 epochs. On the test set, this model gives a 14.3%
absolute improvement (49.1% relative). CRF learn-
ing with the same features performs about 6% worse
than the corresponding PA and Pegasos models.

The single-threaded running time for PA/DP+ and
Pegasos/DP+ is about 40 minutes per epoch, mea-
sured on a dual-core AMD 2.4GHz CPU with 8GB
of memory; for CREF, it takes about 100 minutes for
each epoch, which is almost entirely because the
weight vector 0 is less sparse with CRF learning.
In the PA and Pegasos algorithms, we only update 6
for the most confusable word, while in CRF learn-
ing, we sum over all words. In our case, the number
of non-zero entries in 6 for PA and Pegasos is around
800,000; for CREF, it is over 4,000,000. Though PA
and Pegasos take roughly the same amount of time
per epoch, Pegasos tends to require more epochs to
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Figure 1: 5-fold cross validation (CV) results. The lex-
icon lookup baseline is labeled lex; lex + lev = lexi-
con lookup with Levenshtein distance. Each point cor-
responds to the test set error rate for one of the 5 data
splits. The horizontal red line marks the mean of the re-
sults with means labeled, and the vertical red line indi-
cates the mean plus and minus one standard deviation.

achieve the same performance as PA.

For the second experiment, we perform 5-fold
cross-validation. We combine the training, devel-
opment, and test sets from the previous experiment,
and divide the data into five folds. We take three
folds for training, one fold for tuning A and the best
epoch, and the remaining fold for testing. The re-
sults on the test fold are shown in Figure 1, which
compares the learning algorithms, and Figure 2,
which compares feature sets. Overall, the results
are consistent with our first experiment. The fea-
ture selection experiments in Figure 2 shows that
the TF-IDF features alone are quite weak, while the
dynamic programming alignment features alone are
quite good. Combining the two gives close to our
best result. Although the marginal improvement gets
smaller as we add more features, in general perfor-
mance keeps improving the more features we add.

6 Discussion

The results in Section 5 are the best obtained thus
far on the lexical access task on this conversational
data set. Large-margin learning, using the Passive-
Aggressive and Pegasos algorithms, has benefits
over CRF learning for our task: It produces sparser
models, is faster, and produces better lexical access
results. In addition, the PA algorithm is faster than
Pegasos on our task, as it requires fewer epochs.
Our ultimate goal is to incorporate such models
into complete speech recognizers, that is to predict
word sequences from acoustics. This requires (1)
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Figure 2: Feature selection results for five-fold cross val-
idation. In the figure, phone bigram TF-IDF is labeled
p2; phonetic alignment with dynamic programming is la-
beled DP. The dots and lines are as defined in Figure 1.

extension of the model and learning algorithm to
word sequences and (2) feature functions that re-
late acoustic measurements to sub-word units. The
extension to sequences can be done analogously to
segmental conditional random fields (SCRFs). The
main difference between SCRFs and our approach
would be the large-margin learning, which can be
straightforwardly applied to sequences. To incorpo-
rate acoustics, we can use feature functions based on
classifiers of sub-word units, similarly to previous
work on CRF-based speech recognition (Gunawar-
dana et al., 2005; Morris and Fosler-Lussier, 2008;
Prabhavalkar et al., 2011). Richer, longer-span (e.g.,
word-level) feature functions are also possible.
Thus far we have restricted the pronunciation-to-
word score to linear combinations of feature func-
tions. This can be extended to non-linear combi-
nations using a kernel. This may be challenging in
a high-dimensional feature space. One possibility
is to approximate the kernels as in (Keshet et al.,
2011). Additional extensions include new feature
functions, such as context-sensitive alignment fea-
tures, and joint inference and learning of the align-
ment models embedded in the feature functions.
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