
Proceedings of the ACL-HLT 2011 System Demonstrations, pages 103–108,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

An Efficient Indexer for Large N-Gram Corpora

Hakan Ceylan
Department of Computer Science

University of North Texas
Denton, TX 76203
hakan@unt.edu

Rada Mihalcea
Department of Computer Science

University of North Texas
Denton, TX 76203

rada@cs.unt.edu

Abstract

We introduce a new publicly available tool
that implements efficient indexing and re-
trieval of large N-gram datasets, such as the
Web1T 5-gram corpus. Our tool indexes the
entire Web1T dataset with an index size of
only 100 MB and performs a retrieval of any
N-gram with a single disk access. With an
increased index size of 420 MB and dupli-
cate data, it also allows users to issue wild
card queries provided that the wild cards in the
query are contiguous. Furthermore, we also
implement some of the smoothing algorithms
that are designed specifically for large datasets
and are shown to yield better language mod-
els than the traditional ones on the Web1T 5-
gram corpus (Yuret, 2008). We demonstrate
the effectiveness of our tool and the smooth-
ing algorithms on the English Lexical Substi-
tution task by a simple implementation that
gives considerable improvement over a basic
language model.

1 Introduction

The goal of statistical language modeling is to cap-
ture the properties of a language through a proba-
bility distribution so that the probabilities of word
sequences can be estimated. Since the probability
distribution is built from a corpus of the language
by computing the frequencies of the N-grams found
in the corpus, the data sparsity is always an issue
with the language models. Hence, as it is the case
with many statistical models used in Natural Lan-
guage Processing (NLP), the models give a much
better performance with larger data sets.

However the large data sets, such as the Web1T
5-Gram corpus of (Brants and Franz, 2006), present

a major challenge. The language models built from
these sets cannot fit in memory, hence efficient ac-
cessing of the N-gram frequencies becomes an is-
sue. Trivial methods such as linear or binary search
over the entire dataset in order to access a single
N-gram prove inefficient, as even a binary search
over a single file of 10,000,000 records, which is
the case of the Web1T corpus, requires in the worst
casedlog2(10, 000, 000)e = 24 accesses to the disk
drive.

Since the access to N-grams is costly for these
large data sets, the implementation of further im-
provements such as smoothing algorithms becomes
impractical. In this paper, we overcome this problem
by implementing a novel, publicly available tool1

that employs an indexing strategy that reduces the
access time to any N-gram in the Web1T corpus to a
single disk access. We also make a second contribu-
tion by implementing some of the smoothing models
that take into account the size of the dataset, and are
shown to yield up to 31% perplexity reduction on the
Brown corpus (Yuret, 2008). Our implementation is
space efficient, and provides a fast access to both the
N-gram frequencies, as well as their smoothed prob-
abilities.

2 Related Work

Language modeling toolkits are used extensively for
speech processing, machine translation, and many
other NLP applications. The two of the most pop-
ular toolkits that are also freely available are the
CMU Statistical Language Modeling (SLM) Toolkit
(Clarkson and Rosenfeld, 1997), and theSRI Lan-
guage Modeling Toolkit(Stolcke, 2002). However,

1Our tool can be freely downloaded from the download sec-
tion under http://lit.csci.unt.edu

103



even though these tools represent a great resource
for building language models and applying them to
various problems, they are not designed for very
large corpora, such as the Web1T 5-gram corpus
(Brants and Franz, 2006), hence they do not provide
efficient implementations to access these data sets.

Furthermore, (Yuret, 2008) has recently shown
that the widely popular smoothing algorithms for
language models such asKneser-Ney(Kneser and
Ney, 1995),Witten-Bell(Witten and Bell, 1991), or
Absolute Discountingdo not realize the full poten-
tials of very large corpora, which often come with
missing counts. The reason for the missing counts
is due to the omission of low frequency N-grams in
the corpus. (Yuret, 2008) shows that with a modified
version of Kneser-Ney smoothing algorithm, named
as the Dirichlet-Kneser-Ney, a 31% reduction in per-
plexity can be obtained on the Brown corpus.

A tool similar to ours that uses a hashing tech-
nique in order to provide a fast access to the Web1T
corpus is presented in detail in (Hawker et al., 2007).
The tool provides access to queries with wild card
symbols, and the performance of the tool on106

queries on a 2.66 GHz processor with 1.5 GBytes
of memory is given approximately as one hour. An-
other tool,Web1T5-Easy, described in (Evert, 2010),
provides indexing of the Web1T corpus via rela-
tional database tables implemented in an SQLite en-
gine. It allows interactive searches on the corpus as
well as collocation discovery. The indexing time of
this tool is reported to be two weeks, while the non-
cached retrieval time is given to be in order of a few
seconds. Other tools that implement a binary search
algorithm as a simpler, yet less efficient method are
also given in (Giuliano et al., 2007; Yuret, 2007).

3 The Web1T 5-gram Corpus

The Web1T 5-gram corpus (Brants and Franz, 2006)
consists of sequences of words (N-grams) and their
associated counts extracted from a Web corpus of
approximately one trillion words. The length of each
sequence,N , ranges from1 to 5, and the size of the
entire corpus is approximately 88GB (25GB in com-
pressed form). The unigrams form the vocabulary
of the corpus and are stored in a single file which
includes around 13 million tokens and their associ-
ated counts. The remaining N-grams are stored sep-
arately across multiple files in lexicographic order.
For example, there are 977,069,902 distinct trigrams
in the dataset, and they are stored consecutively in
98 files in lexicographic order. Furthermore, each

N-gram file contains 10,000,000 N-grams except the
last one, which contains less. It is also important to
note that N-grams with counts less than 40 are ex-
cluded from the dataset forN = 2, 3, 4, 5, and the
tokens with less than 200 are excluded from the un-
igrams.

4 The Indexer

4.1 B+-trees

We used a B+-tree structure for indexing. A B+-
tree is essentially a balanced search tree where each
node has several children. Indexing large files us-
ing B+ trees is a popular technique implemented
by most database systems today as the underlying
structure for efficient range queries. Although many
variations of B+-trees exist, we use the definition for
primary indexing given in (Salzberg, 1988). There-
fore we assume that the data, which is composed of
records, is only stored in the leaves of the tree and
the internal nodes store only the keys.

The data in the leaves of a B+-tree is grouped
into buckets, where the size of a bucket is deter-
mined by a bucket factor parameter,bkfr. Therefore
at any given time, each bucket can hold a number of
records in the range[1, bkfr]. Similarly, the num-
ber of keys that each internal node can hold is deter-
mined by theorderparameter,v. By definition, each
internal node except the root can have any number of
keys in the range[v, 2v], and the root must have at
least one key. Finally, an internal node withk keys
hask + 1 children.

4.2 Mapping Unigrams to Integer Keys

A key in a B+-tree is a lookup value for a record,
and a record in our case is an N-gram together with
its count. Therefore each line of an N-gram file in
the Web1T dataset makes up a record. Since each
N-gram is distinct, it is possible to use the N-gram
itself as a key. However in order to reduce the stor-
age requirements and make the comparisons faster
during a lookup, we map each unigram to an inte-
ger, and form the keys of the records using the inte-
ger values instead of the tokens themselves.2

To map unigrams to integers, we use the unigrams
sorted in lexicographic order and assign an integer
value to each unigram starting from 1. In other
words, if we let the m-tupleU = (t1, t2, ..., tm) rep-
resent all the unigrams sorted in lexicographic order,

2This method does not give optimal storage, for which one
should implement a compression Huffman coding scheme.

104



then for a unigramti, i gives its key value. The key
of trigram ”ti tj tk” is simply given as ”i j k.” Thus,
the comparison of two keys can be done in a similar
fashion to the comparison of two N-grams; we first
compare the first integer of each key, and in case of
equality, we compare the second integers, and so on.
We stop the comparison as soon as an inequality is
found. If all the comparisons result in equality then
the two keys (N-grams) are equal.

4.3 Searching for a Record

We construct a B+-tree for each N-gram file in the
dataset forN = 2, 3, 4, 5, and keep the key of the
first N-gram for each file in memory. When a query
q is issued, we first find the file that containsq by
comparing the key ofq to the keys in memory. Since
this is an in-memory operation, it can be simply
done by performing a binary search. Once the cor-
rect file is found, we then search the B+-tree con-
structed for that file for the N-gramq by using its
key.

As is the case with any binary search tree, a search
in a B+-tree starts at the root level and ends in the
leaves. If we letri and pj represent a key and a
pointer to the child of an internal node respectively,
for i = 1, 2, ..., k and j = 1, 2, ..., k + 1, then to
search an internal node, including the root, for a key
q, we first find the keyrm that satisfies one of the
following:

• (q < rm) ∧ (m = 1)

• (rm−1 ≤ q) ∧ (rm > q) for 1 < m ≤ k

• (q > rm) ∧ (m = k)

If one of the first two cases is satisfied, the search
continues on the child node found by followingpm,
whereas if the last condition is satisfied, the pointer
pm+1 is followed. Since the keys in an internal node
are sorted, a binary search can be performed to find
rm. Finally, when a leaf node is reached, the entire
bucket is read into memory first, then a record with
a key value ofq is searched.

4.4 Constructing a B+-tree

The construction of a B+-tree is performed through
successive record insertions.3 Given a record, we

3Note that this may cause efficiency issues for very large
files as memory might become full during the construction pro-
cess, hence in practice, the file is usually sorted prior to index-
ing.

first compute its key, find the leaf node it is supposed
to be in, and insert it if the bucket is not full. Other-
wise, the leaf node is split into two nodes, each con-
tainingdbkfr/2e, andbbkfr/2c+1 records, and the
first key of the node containing the larger key values
is placed into the parent internal node together with
the node’s pointer. The insertion of a key to an in-
ternal node is similar, only this time both split nodes
containv values, and the middle key value is sent up
to the parent node.

Note that not all the internal nodes of a B+-tree
have to be kept on the disk, and read from there each
time we do a search. In practice, all but the last two
levels of a B+-tree are placed in memory. The rea-
son for this is the high branching factor of the B+-
trees together with their effective storage utilization.
It has been shown in (Yao, 1978) that the nodes of a
high-order B+-tree areln2 ≈ 69% full on average.

However, note that the tree will be fixed in our
case, i.e., once it is constructed we will not be in-
serting any other N-gram records. Therefore we do
not need to worry about the 69% space utilization,
but instead try to make each bucket, and each in-
ternal node full. Thus, with abkfr = 1250, and
v = 100, an N-gram file with 10,000,000 records
would have 8,000 leaf nodes on level 3, 40 inter-
nal nodes on level 2, and the root node on level 1.
Furthermore, let us assume that integers, disk and
memory pointers all hold 8 bytes of space. There-
fore a 5-gram key would require 40 bytes, and a full
internal node in level 2 would require(200x40) +
(201x8) = 9, 608 bytes. Thus the level 2 would re-
quire 9, 608x40 ≈ 384 Kbytes, and level 1 would
require(40∗40)+(41∗8) = 1, 928 bytes. Hence, a
Web1T 5-gram file, which has an average size of 286
MB can be indexed with approximately 386 Kbytes.
There are 118 5-gram files in the Web1T dataset, so
we would need386x118 ≈ 46 MBytes of memory
space in order to index all of them. A similar calcu-
lation for 4-grams, trigrams, and bigrams for which
the bucket factor values are selected as 1600, 2000,
and 2500 respectively, shows that the entire Web1T
corpus, except unigrams, can be indexed with ap-
proximately 100 MBytes, all of which can be kept
in memory, thereby reducing the disk access to only
one. As a final note, in order to compute a key
for a given N-gram quickly, we keep the unigrams
in memory, and use a hashing scheme for mapping
tokens to integers, which additionally require 178
Mbytes of memory space.

The choice of the bucket factor and the inter-

105



nal node order parameters depend on the hard-disk
speed, and the available memory.4. Recall that even
to fetch a single N-gram record from the disk, the en-
tire bucket needs to be read. Therefore as the bucket
factor parameter is reduced, the size of the index will
grow, but the access time would be faster as long as
the index could be entirely fit in memory. On the
other hand, with a too large bucket factor, although
the index can be made smaller, thereby reducing the
memory requirements, the access time may be un-
acceptable for the application. Note that a random
reading of a bucket of records from the hard-disk
requires the disk head to first go to the location of
the first record, and then do a sequential read.5 As-
suming a hard-disk having an average transfer rate
of 100 MBytes, once the disk head finds the correct
location, a 40 bytes N-gram record can be read in
4x10−7 seconds. Thus, assuming a seek time around
8-10 ms, even with a bucket factor of 1,000, it can be
seen that the seek time is still the dominating factor.
Therefore, as the bucket size gets smaller than 1,000,
even though the index size will grow, there would be
almost no speed up in the access time, which justi-
fies our parameter choices.

4.5 Handling Wild Card Queries

Having described the indexing scheme, and how to
search for a single N-gram record, we now turn our
attention to queries including one or more wild card
symbols, which in our case is the underscore char-
acter ” ” , as it does not exist among the unigram
tokens of the Web1T dataset. We manually add the
wild card symbol to our mapping of tokens to inte-
gers, and map it to the integer0, so that a search for a
query with a wild card symbol would be unsuccess-
ful but would point to the first record in the file that
replaces the wild card symbol with a real token as
the key for the wild card symbol is guaranteed to be
the smallest. Having found the first record we per-
form a sequential read until the last read record does
not match the query. The reason this strategy works
is because the N-grams are sorted in lexicographic
order in the data set, and also when we map unigram
tokens to integers, we preserve their order, i.e., the
first token in the lexicographically sorted unigram
list is assigned the value 1, the second is assigned

4We used a 7200 RPM disk-drive with an average read seek
time of 8.5 ms, write seek time of 10.0 ms, and a data transfer
time up to 3 GBytes per second.

5A rotational latency should also be taken into account be-
fore the sequential reading can be done.

2, and so forth. For example, for a given queryOur
Honorable , the record that would be pointed at the
end of search in the trigram file3gm-0041is the N-
gramOur Honorable Court 186, which is the first
N-gram in the data set that starts with the bigram
Our Honorable.

Note however that the methodology that is de-
scribed to handle the queries with wild card sym-
bols will only work if the wild card symbols are
the last tokens of the query and they are contigu-
ous. For example a query such asOur Court will
not work as N-grams satisfying this query are not
stored contiguously in the data set. Therefore in or-
der to handle such queries, we need to store addi-
tional copies of the N-grams sorted in different or-
ders. When the last occurrence of the contiguous
wild card symbols is in positionp of a query N-gram
for p = 0, 1, ..., N − 1, then the N-grams sorted lex-
icographically starting from position(p + 1)modN
needs to be searched. A lexicographical sort for a
positionp, for 0 ≤ p ≤ (N − 1) is performed by
moving all the tokens in positions0...(p − 1) to the
end for each N-gram in the data set. Thus, for all
the bigrams in the data set, we need one extra copy
sorted in position 1, for all the trigrams, we need
two extra copies; one sorted in position 1, and an-
other sorted in position 2, and so forth. Hence, in
order to handle the contiguous wild card queries in
any position, in addition to the 88 GBytes of origi-
nal Web1T data, we need an extra disk space of 265
GBytes. Furthermore, the indexing cost of the du-
plicate data is an additional 320 MBytes. Thus, the
total disk cost of the system will be approximately
353 GBytes plus the index size of 420 MBytes, and
since we keep the entire index in memory, the final
memory cost of the system will be 420 MBytes +
178 MBytes = 598 MBytes.

4.6 Performance

Given that today’s commodity hardware comes with
at least 4 GBytes of memory and 1 TBytes of hard-
disk space, the requirements of our tool are rea-
sonable. Furthermore, our tool is implemented in
a client-server architecture, and it allows multiple
clients to submit multiple queries to the server over
a network. The server can be queried with an N-
gram query either for its count in the corpus, or
its smoothed probability with a given smoothing
method. The queries with wild cards can ask for
the retrieval of all the N-grams satisfying a query, or
only for the total count so the network overhead can

106



be avoided depending on the application needs.
Our program requires about one day of offline

processing due to resorting the entire data a few
times. Note that some of the files in the corpus
need to be sorted as many as four times. For the
sorting process, the files are first individually sorted,
and then a k-way merge is performed. In our im-
plementation, we used a min heap structure for this
purpose, and k is always chosen as the number of
files for a given N. The index construction however
is relatively fast. It takes about an hour to construct
the index for the 5-grams. Once the offline process-
ing is done, it only takes a few minutes to start the
server, and from that point the online performance
of our tool is very fast. It takes about 1-2 seconds to
process 1000 randomly picked 5-gram queries (with
no wild card symbols), which may or may not exist
in the corpus. For the queries asking for the fre-
quencies only, our tool implements a small caching
mechanism that takes the temporal locality into ac-
count. The mechanism is very useful for wild card
queries involving stop words, such as”the ” , and
”of the ” which occur frequently, and take a long
time to process due to the sequential read of a large
number of records from the data set.

5 Lexical Substitution

In this section we demonstrate the effectiveness of
our tool by using it on the the English Lexical Sub-
stitution task, which was first introduced in SemEval
2007 (McCarthy and Navigli, 2007). The task re-
quires both the human annotators and the participat-
ing systems to replace a target word in a given sen-
tence with the most appropriate alternatives. The de-
scription of the tasks, the data sets, the performance
of the participating systems as well as a post analy-
sis of the results is given in (McCarthy and Navigli,
2009).

Although the task includes three subtasks, in this
evaluation we are only concerned with one of them,
namely thebestsubtask. The best subtask asks the
systems and the annotators to provide only one sub-
stitute for the target words – the most appropriate
one. Two separate datasets were provided with this
task: a trial dataset was first provided in order for
the participants to get familiar with the task and train
their systems. The trial data used a lexical sample of
30 words with 10 instances each. The systems were
then tested on a larger test data, which used a lexical
sample of 171 words each again having 10 instances.

Our methodology for this task is very simple; we

Model Precision Mod Precision
No Smoothing 10.13 14.78
Absolute Discounting 11.05 16.75
KN with Missing Counts 11.19 16.75
Dirichlet KN 10.98 15.76

Table 1: Results on the trial data

Model Precision Mod Precision
No Smoothing 9.01 14.15
Absolute Discounting 11.64 18.62
KN with Missing Counts 11.61 18.54
Dirichlet KN 11.03 17.48
Best Baseline 9.95 15.28
Best SEMEVAL System 12.90 20.65

Table 2: Results on the test data

replace the target word with an alternative from a list
of candidates, and find the probability of the context
with the new word using a language model. The can-
didate that gives the highest probability is provided
as the system’s best guess. The list of candidates is
obtained from two different lexical sources, Word-
Net (Fellbaum, 1998) and Roget’s Thesaurus (The-
saurus.com, 2007). We retrieve all the synonyms
for all the different senses of the word from both re-
sources and combine them. We did not consider any
lexical relations other than synonymy, and similarly
we did not consider any words at a further semantic
distance.

We start with a simple language model that cal-
culates the probability of the context of a word,
and then continue with three smoothing algorithms
discussed in (Yuret, 2008), namelyAbsolute Dis-
counting, Kneser-Ney with Missing Counts, and the
Dirichlet-Kneser-Ney Discounting. Note that all
three are interpolated models, i.e., they do not just
back-off to a lower order probability when an N-
gram is not found, but rather use the higher and
lower order probabilities all the time in a weighted
fashion.

The results on the trial dataset are shown in Ta-
ble 1, and the results on the test dataset are shown
in Table 2. In all the experiments we use the trigram
models, i.e., we keepN fixed to 3. Since our sys-
tem makes a guess for all the target words in the set,
our precision and recall scores, as well as the mod
precision and the mod recall scores are the same,
so only one from each is shown in the table. Note
that the highest achievable score for this task is not
100%, but is restricted by the frequency of the best
substitute, and it is given as 46.15%. The highest
scoring participating system achieved 12.9%, which

107



gave a 2.95% improvement over the baseline (Yuret,
2008; McCarthy and Navigli, 2009); the scores ob-
tained by the best SEMEVAL system as well as the
best baseline calculated using the synonyms for the
first synset in WordNet are also shown in Table 2.

On both the trial and the test data, we see that the
interpolated smoothing algorithms consistently im-
prove over the naive language modeling, which is
an encouraging result. Perhaps a surprising result
for us was the performance of the Dirichlet-Kneser-
Ney Smoothing Algorithm, which is shown to give
minimum perplexity on the Brown corpus out of the
given models. This might suggest that the parame-
ters of the smoothing algorithms need adjustments
for each task.

It is important to note that this evaluation is meant
as a simple proof of concept to demonstrate the use-
fulness of our indexing tool. We thus used a very
simple approach for lexical substitution, and did not
attempt to integrate several lexical resources and
more sophisticated algorithms, as some of the best
scoring systems did. Despite this, the performance
of our system exceeds the best baseline, and is better
than five out of the eight participating systems (see
(McCarthy and Navigli, 2007)).

6 Conclusions

In this paper we described a new publicly avail-
able tool that provides fast access to large N-gram
datasets with modest hardware requirements. In
addition to providing access to individual N-gram
records, our tool also handles queries with wild card
symbols, provided that the wild cards in the query
are contiguous. Furthermore, the tool also imple-
ments smoothing algorithms that try to overcome
the missing counts that are typical to N-gram cor-
pora due to the omission of low frequencies. We
tested our tool on the English Lexical Substitution
task, and showed that the smoothing algorithms give
an improvement over simple language modeling.

Acknowledgments

This material is based in part upon work sup-
ported by the National Science Foundation CA-
REER award #0747340 and IIS awards #0917170
and #1018613. Any opinions, findings, and conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

T. Brants and A. Franz. 2006. Web 1T 5-gram corpus
version 1.Linguistic Data Consortium.

P. Clarkson and R. Rosenfeld. 1997. Statistical language
modeling using the cmu-cambridge toolkit. InPro-
ceedings of ESCA Eurospeech, pages 2707–2710.

S. Evert. 2010. Google web 1t 5-grams made easy (but
not for the computer). InProceedings of the NAACL
HLT 2010 Sixth Web as Corpus Workshop, WAC-6 ’10,
pages 32–40.

C. Fellbaum, editor. 1998.WordNet: An Electronic Lex-
ical Database. MIT Press, Cambridge, MA.

C. Giuliano, A. Gliozzo, and C. Strapparava. 2007. Fbk-
irst: lexical substitution task exploiting domain and
syntagmatic coherence. InSemEval ’07: Proceedings
of the 4th International Workshop on Semantic Evalu-
ations, pages 145–148.

T. Hawker, M. Gardiner, and A. Bennetts. 2007. Practi-
cal queries of a massive n-gram database. InProceed-
ings of the Australasian Language Technology Work-
shop 2007, pages 40–48, Melbourne, Australia.

R. Kneser and H. Ney. 1995. Improved backing-off for
n-gram language modeling. InAcoustics, Speech, and
Signal Processing, 1995. ICASSP-95., 1995 Interna-
tional Conference on, volume 1, pages 181–184 vol.1.

D. McCarthy and R. Navigli. 2007. Semeval-2007 task
10: English lexical substitution task. InSemEval ’07:
Proceedings of the 4th International Workshop on Se-
mantic Evaluations, pages 48–53.

D. McCarthy and R. Navigli. 2009. The english lexical
substitution task. Language Resources and Evalua-
tion, 43:139–159.

B. Salzberg. 1988. File structures: an analytic ap-
proach. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

A. Stolcke. 2002. SRILM – an extensible language mod-
eling toolkit. In Proceedings of ICSLP, volume 2,
pages 901–904, Denver, USA.

Thesaurus.com. 2007. Rogets new millennium the-
saurus, first edition (v1.3.1).

I. H. Witten and T. C. Bell. 1991. The zero-frequency
problem: Estimating the probabilities of novel events
in adaptive text compression.IEEE Transactions on
Information Theory, 37(4):1085–1094.

A. Chi-Chih Yao. 1978. On random 2-3 trees.Acta Inf.,
9:159–170.

D. Yuret. 2007. Ku: word sense disambiguation by sub-
stitution. InSemEval ’07: Proceedings of the 4th In-
ternational Workshop on Semantic Evaluations, pages
207–213.

D. Yuret. 2008. Smoothing a tera-word language model.
In HLT ’08: Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguistics
on Human Language Technologies, pages 141–144.

108


